A Multi-Level Strategy for Software Power Estimation

C. Brandolese, W. Fornaciari, L. Pomante, F. Salice, D. Sciuto
Politecnico di Milano, P.zza L. da Vinci, 32 - 20133 Milano, Italy
{brandole ,fornacia,pomante,salice, sciuto}@elet .polimi.it

ABSTRACT

In this paper a comprehensive methodology for soft-
ware power estimation is presented. The methodol-
ogy 1is supported by rigorous mathematical models of
power consumption at three different levels of abstrac-
tion. The methodology has been validated by means of
a complete framework developed on purpose within the
TOSCA co-design environment.

I. INTRODUCTION

Embedded system development requires fine tuning
of a number of specific constraints, since such appli-
cations strive for high volumes and there is a pay-off
for size, power and speed optimization techniques.
The current pervasiveness of microprocessor-based
architectures, is enforcing the importance of concur-
rently design (co-design) hardware and software. A
typical need is the possibility of working with mod-
els at different levels of granularity and accuracy,
to enable fast exploration of alternative designs and
to deal with the presence of partially characterized
components, such as the microprocessors. Further-
more, the steady shifting toward nomadic applica-
tions is increasing the importance of analyzing power
issues even during the software development process
[2], [3], [4]- Recent analysis and optimization tech-
niques[1], focused on specific aspects of the software
power consumption, such as I/O management, mem-
ory requirements, system bus traffic optimization and
instruction—set optimization but, according to our
best knowledge, no one is attempting a systematic
power /performance—-aware analysis flow for the soft-
ware. The goal of this paper is to describe how the dif-
ferent activities of the TOSCA hw/sw codesign flow,
have been extended to enable power analysis of the
software. In particular, due to space reasons, this
paper includes only the description of the different
models developed to power characterize the software
and two examples of their practical use. The paper
is organized as follows. Section II describes the com-
pilation steps we are considering for the software and
the related abstraction levels. Section III presents
the analysis models we developed to characterize in
power the instruction set of a microprocessor and how
this information are processed to back-annotate the
results towards the upper abstraction levels. Section

IV show how the identified model can be assembled
into a comprehensive power estimation flow allowing
the designer to navigate between different levels of ab-
straction and estimation accuracy. Finally SectionV,
reports some experimental results obtained by con-
sidering two commercial microprocessors showing the
achievements of the proposed methodology in terms
of accuracy and analysis speed.

II. SOFTWARE COMPILATION

The complete design flow presented in this paper has
been developed with two main goals: on one hand, to
provide a tool to compare the power consumption of
different algorithms on the same microprocessor, on
the other hand, to help a designer in the choice of the
best suited microprocessor under performance and
power constraints. To allow the comparison of the
power requirements of the same algorithm over dif-
ferent microprocessors, the compilation process have
to be retargetable. To this purpose, an intermedi-
ate representation based on the pseudo—assembly lan-
guage VIS (Virtual Instruction Set) has been intro-
duced [7]. Within this scheme, the compilation flow
is composed of two steps:

o Translation of the source code into the intermedi-

ate VIS language (compilation).
« Translation of the VIS code into the selected target
language (mapping).

Most of the complexity of the compilation is hidden
in the first step, making thus the second phase much
simpler and time—effective. Throughout the whole
compilation flow, track is kept on the transformations
being performed, to allow back—annotation of the in-
formation across the different levels of abstraction.
Figure 1 summarizes the compilation flow.

conpi l er

source VI S code

mapper

assenbly

ref erences

ref erences

Fig. 1. The compilation flow

A. Compilation

The translation from the source, high—-level, language
to VIS is an actual compilation. The source code
is parsed and a syntax—tree is built in memory: all
subsequent operations are performed on this internal
model. First of all, expressions and conditionals are
analyzed to determine the number of temporary vari-
ables necessary for calculations; these variables will
then be associated either to registers, to the stack
or to the local frame. With these information anno-
tated on the syntax—tree, op—code selection and code
generation can be performed. Note that the result
of this compilation is a virtual assembly and is thus
not related to any existing architecture. In partic-
ular, the number of registers available is not known
during this phase (unless a specific target architec-
ture has already been envisaged) and can thus be ei-
ther selected by the designer or left unspecified. If a
specific register—file size is selected, register binding
is performed while, if it is left unspecified, all regis-
ters that the algorithm requires are allocated. The
last compilation step adds to the purely “functional”
code, the system calls necessary to manage concur-
rency and communication, whenever present in the
specification.

B. Mapping

The transformation of the VIS code into the target
assembly is a mapping process based on mapping li-
braries. A mapping library is a collection of rules,
each specifying how one or more VIS instruction are
to be translated into the target assembler. Mapping
rules are written in C, with the support of a number of
functions and macro definitions, and compiled into a
dynamic library. The mapper kernel loads and parses
the VIS code, links the selected mapping library and
applies the suitable rules to produce as output the
assembly code.

III. POWER ESTIMATION MODELS

At the end of the compilation flow, three represen-
tations, at different abstraction levels, are available.
At assembly level, on one hand, the representation is
extremely detailed and allows a very accurate calcu-
lation of the power consumption, on the other hand
the raw power figures are hardly usable by the de-
signer. At source level, the limited detail results in
a less precise, but much more readable and useful,
power estimate. The VIS level represents a trade—off
between these two boundaries.

The methodology presented in the following consid-
ers all the three levels and provides models and tools
to perform estimates with the desired level of detail.

This section presents the models on which the power
estimation is based.

A. Assembly-level model

The basic idea is to characterize each assembly in-
struction and addressing mode with an average, i.e.
data independent, power consumption figure. Since
the clock frequency and power supply voltage are
known, power is often specified as an average current
drawn per clock cycle.

Under this assumption, the energy requirements of a
given assembly code can easily be derived once the
specific instruction set is completely characterized.
It is worth noting that, currently, only few processor
vendors can provide this type of information and even
fewer disclose them. Deriving the current absorp-
tion of each instruction, with its different addressing
modes is a lengthy process that requires measuring
the current drawn by the microprocessor core dur-
ing execution of long sequences of the same instruc-
tion with varying data. Furthermore, setting up a
suitable measurement environment is not trivial since
typical development boards rarely provide access to
the power supply pins of the core and have thus to
be modified and, in addition, costly equipment is nec-
essary to perform current measures at frequencies as
high as 40 to 200 MHz or even more. To overcome
all these problems, the model briefly presented in the
following has been developed.

The model is based on a functional analysis and de-
composition of the activities performed by a micro-
processor as it executes a specific instruction. The
key idea behind the model is the concept of func-
tionality that is a set of activities, aimed at a specific
goal, involving, partially or totally, one or more archi-
tectural units of a generic microprocessor. Function-
alities must be either time—disjoint or space—disjoint
or both. Two functionalities F; and F, are time—
disjoint if they operate in different clock cycles; they
are space—disjoint if they stimulate different archi-
tectural units. Under these constraints, the execu-
tion of an instruction can be modeled as the com-
bination of a certain number of functionalities. A
detailed analysis has led to the conclusion that an
acceptable set of functionalities is the following: As
an example consider the Intel 80486DX instruction
ADD R3, (R2)+: the op—code uses F&D and A&L,
the destination operand R3 uses WrReg and the
source operand (R2)+ uses Ld&St, A& L and WrReg.
The completion of the instruction stimulates thus
{F&D,A&L} U{WrReg} U {Ld&St, A&L, WrReg}
= {F&D, Ld&St, A&L,WrReg}.

Associating a current i f; to the j-th functionality, the
energy absorbed by the processor core executing the

TABLE I
A POSSIBLE FUNCTIONAL DECOMPOSITION

| Functionality | Activities |

F&D Fetch and decode

Br Branch, calls

WrReg Register writing
A&L Arithmetic and logic
Ld& St Load, store and stack

instruction s can be expressed as:
k

Vaanek,s™ > _ifj-as; (1)

=1
where k = 5 is the number of functgonalities and as ;
is a coefficient that specifies whether functionality
j is involved in the execution of instruction s. To
derive the currents if; a learning—set Sy, of power—
characterized instructions can be used [5]. Defin-
ing the matrices IN = {iynct s}, A = {a,;} and
IF = {if;}, the model of equation 1 can be rewritten
as:

€s = Vddnck,sTis =

IN=AXIF+R (2)
where R is a residual vector. Solving equation 2 for
IF in the least square sense (which implies neglecting
the residual) gives an estimate of the currents:

IF=(AT xA) ! xAxIN=A*xIN (3)
Substituting the estimate IF into equation 2 allows
deriving an estimate of the power consumption of in-
structions not in Sp. To verify the correctness of
this model, its statistical properties must be derived
and in particular the used estimator (the least square
method) must be proven unpolarized. Under the hy-
pothesis of a gaussian residual G(0, A?), the expecta-
tion value and the variance of the parameters are:

E[IF] = IF (4)

VAR[IF] = A2(AT x A)~1 (5)
Since A2, the input variance of the residual, is not
known it has to be sg‘t\)stituted by its estimated value:

X = |[IN — IN|]?/(m — k) (6)
where m is the number of samples and & is the number
of parameters. To verify the gaussian noise hypothe-
sis, a Zg.95 test can be performed: the null hypothesis
is accepted if the mean value of the residual falls in
the interval £1.96\%//m.
This model allows extrapolation of the power figures
of the whole instruction set, based on a limited num-
ber of measures (at least 10-15).
Even when no measures are available at all, it is still
possible to compare different algorithms or source
codes with respect to their power consumption. An
accurate analysis of the currents absorbed by differ-
ent microprocessors during the execution of a number
of instructions has revealed that though the absolute

value of the currents varies in a wide range (from
5-15 mA to 400-600 mA) their relative values, with
respect to a reference instruction, lay in a much nar-
rower range (1.0 +0.2).

This suggests that, using these relative values and a
set P of microprocessors, a single general model can
be derived.

The relative current is defined as:

1 if; .
lrel s = - = Z —]aS,J - Zlfrel,jasd' (7)

lref
Jj=1
For the generic ¢- th processor of the set P, character-
ized by Ay and IN¢; g = {is,rei - Nck,s }, the following
equation holds:

INrel,q = Aq X IFrel,q + Rrel,q (8)
where R,¢;,; is, again, a residual vector. Solving the
system in the least square sense yields:

IFrel,q = A; X INr,-el’q (9)
The general model should depend on a unique set of
parameters IF,;, rather than the processor—specific
parameters IF,; ;, and thus the model becomes:

INrel,q = Aq X IFrel + Rrel,q (10)
Combining equation 9 and 10 gives:

IFrel,q = AZ X INrel,q = IFTCl + AZ X Rrel,q (11)
Adding up these equations for all indices ¢ corre-
sponding to the p available processors, and dividing
both sides by p, yields:

p

1= 1.,
- ZIFrel,q = IFrel + - ZA q X Rrel,q (12)
pq:]_ p g=1

Equation 12 indicates that an estimator of the param-
eters of the general model can be the average of the
estimated parameters of each processor in the set P.
The statistical properties of the residual R,¢;,, and
of the chosen estimator are discussed in [5]. By ap-
plying the same method used for the single—processor
case, the expression for the variance can be derived
and results:

VAR[IF,] =

Z VAR[IF, 1 4] (13)
=1

The meaning of this last equation is that by increasing
the number p of considered processors, the variance
of the parameters of the general model decreases.

B. VIS-level model

The methodology presented in this section can be ap-
plied to derive the power characterization of the VIS
instruction set for any target processor. A VIS in-
struction is defined by:

e op-code: the type of operation;

o addressing mode: the type of operand;

o operand value: the value of the operands;

The class of an instruction is defined by its op-code
and the addressing mode of its operands, but ignor-
ing the value of operands. For each instruction class,
thus, a set of instructions can be built, varying the

value of the operands. As an example, consider the
VIS instruction MOVE.W #16, +5(R0): the op-code
is MOVE. W, the addressing modes of the two operands
are immediate (#16) and indirect (+5(R0)) and the
values are 16 for the first operand and the couple
(5, RO) for the second. It is not uncommon that in-
structions of the same class map to different assembly
codes and are thus characterized by different power
consumption [6].

As an example consider the ARM7TDMI micropro-
cessor: an immediate constant can be loaded into a
32-bit register directly if and only if it falls in the
range 0—255; when the immediate value is greater
than 255, its low and high bytes must be loaded
into the register separately, suitably shifting the reg-
ister content after the first load. To properly account
for these differences all the possible instructions of a
given instruction class must be analyzed. Let Z be
an instruction class and ¢; € Z a generic instruction
with specific operands values. Using the estimation
flow described in section IV, all instructions in Z can
be annotated with the actual timing ¢; = t(i;) and
average current ¢; = c(i;).

To derive single values ¢(Z) and ¢(Z) for the VIS in-
struction class 7, four different approaches have been
adopted:

+ Different translations only. The class timings
and currents are computed by averaging only the
values t; and c; corresponding to different trans-
lations.

o Different figures only. Timings and currents are
computed by averaging only the ¢; and ¢; that are
numerically different.

¢ Complete uniform. Timings and currents are
computed averaging all the values t; and c;.
This choice neglects the semantics of instructions,
assuming a uniform distribution of instructions
within an instruction class.

o Complete weighted. Timings and currents are
computed by averaging all the values ¢; and ¢;,
weighted with their relative frequencies obtained
from an analysis of a sufficiently large set of bench-
marks. The previous case, as mentioned, ignores
the semantics of the instructions. This hypothe-
sis can be removed considering the fact that some
values are more likely to be used than others. The
measured relative frequency of each instruction is
thus considered an estimate of its probability.

Experiments performed on a large set of benchmarks
have led to the results summarized in table II. The
table reports the relative errors obtained by apply-
ing the four approaches described. The comparison
of the results shows that the two best methods are
the complete uniform and the complete weighted, the

TABLE 1II
RELATIVE ERRORS
| Method | Error |
Different figures only 7.21%
Different translations only | 4.31%
Complete uniform 3.14%
Complete weighted 2.71%

latter being slightly more accurate.

C. Source-level model

At source-level, the degree of detail available is lim-
ited but even a rough power estimate may be very
helpful to the designer. At this level of abstraction the
current drawn by the microprocessor during the exe-
cution of an assembly instruction can be considered
constant. Under this assumption, a power character-
ization can be derived by calculating the time needed
to complete the execution of a given code. The model
outlined in the following addresses this problem.
The time T'(I) consumed by the complete execution
of a generic instruction I can be expressed as:

T(T) = epi(T) - Tsw (14)
where the function ¢pi(-) denotes the number of clock
cycles and Tgy the clock period. This concept can
be generalized to a process' v introducing the new
function cpp(-):

T(y) = epp(7) - Tsw (15)
The two functions cpi(-) and cpp(-) are acronyms of
Clock—cycles Per Instruction and Clock—cycles Per
Process, respectively.

Let P; be a generic microprocessor and ZS; its in-
struction set. Let then P = {P;,P,...,P,} be a
set of p processors supporting instructions with the
same maximum number of operands (typically one,
two or three). The generic instruction set ZS; can
be partitioned into a fixed number ¢ of predefined in-
struction classes ZC; ; performing similar operations,
such as data transfer, load/store, branch, etc. The
instruction classes must satisfy these relations:
18; = U, IC; (16)
IC,',]'I ﬂICz"jz = @\V/jhjz (S [1; k] (17)
Instruction sets of different processors may signifi-
cantly differ: for this reason a specific processor may
have one or more empty instruction classes. Two in-
structions Iy € ZS; and I € 7S, belonging to differ-
ent instruction sets are said to be compatible if and
only if:
EIJ | I € ICl,j NIy € ICQJ (18)
Considering all the p processors in P and their in-
struction sets ZS;, it is possible to define a number

1n this context the term process is used to indicate a generic
part of the source code of an application or algorithm.

k of compatible instruction classes satisfying the fol-
lowing relation:

0
czcj:{ -
i=1 J

These new instruction classes collect all the instruc-
tions of different processors that are compatible in
the sense that all the instructions in the same class
perform equivalent operations. The union of all CZC;
classes can be thought of as a generic instruction set
denoted as CZS or Compatible Instruction Set.

Let CIC; = {I;1;1;2;- .. ; Ij n; } be the j-th compat-
ible instruction class and N; its cardinality. We can
determine two instructions Iy ; and Iz, ; in each CZC;
such that their ¢pi are maximum and minimum, re-
spectively:

if 3| 1Ci; =0

. (19)
otherwise

Iu; =MAXY epi(I;) (20)

Inj =MINZ, cpi(ln) (21)
The two instructions Iy; and Ip; represent the
bounding cases for the j-th instruction class. Con-
sider now a generic instruction I executed in cpi(I)
clock cycles. If I belongs to the j-th compatible in-
struction class then an upper—bound to its execution
times is cpi(I;;7) and, similarly, a lower-bound is
epi(I,). I I does not belong to any of the com-
patible instruction classes, then there exists no sin-
gle instruction in the compatible instruction set that
can perform the same operation. Its functionality
must thus be obtained by combining more than one
instruction in CZS.
The upper and lower bounds for the instruction I €
CZS can thus be formally defined introducing the fol-
lowing two functions:
epimaz(I) = epi(Iy3) | I € CIC; (22)

epimin(T) = epi(I,5) | T € CIC; (23)
Thus far, only single instructions have been consid-
ered while the microprocessor architecture has been
neglected. In particular, up to now we did not
consider the number of available registers, which is
known to strongly influence the timing properties of
the software. To account for the different number of
registers available on different architectures the tech-
nique described in the following has been adopted.
Consider the source code v,,. of a process v, two ideal
microprocessors P, and P, identical with respect to
all their characteristics except the number of regis-
ters. Let the microprocessor P» have 2 register and
P, have an unlimited number of registers, pre-loaded
with all necessary data. The source code, compiled
for the two microprocessors, will result in two differ-
ent assembler codes:

Ty =[I; Ia2; -5 To,an) (24)
Foo = [100,1; IOO’Q; ceey Ioo,Moo] (25)

composed of My and My, instructions, respectively.
On this basis it is possible to define two bounding
values for the timing of the process v as two functions:

Mo

cppmaz(y) = Zcpimax(b,s) (26)
s=1
Moo

cppmin(y) = Zcpimin([oo,s) (27)
s=1

These conditions are referred to as worst—case and
best—case, respectively. The same source code .,
compiled on an actual processor P; € P, results in
an assembler code I'; = [L; 15 Li2; -..; I;m;] whose
actual timing is given by:

M;
epp(y) = Y epi(lis) (28)

s=1
An estimate cppest(T';) of cpp(T;) of the timing of
process v compiled for the generic processor P; can

be obtained as:

cPPest(7) = cppmin(v)® - cppmaz (7)1~ (29)
The value of a depends on a number of factors: the
specific process, the compiler used, the compilation
options, etc. To derive a good estimate of this pa-
rameter, benchmarking is necessary. Let «, be the
value corresponding to the process 7, and consider
different frameworks fsw € Fsw (compiler, options,
etc.). An estimate aes , Of @, can be obtained by

minimizing the square error:
=Y [wp(n) = ppest(w)]’ (30)

fswE€Fsw
The results of benchmarking can then be combined

to give the overall estimate a5 of a according to the
following, simple, equation:

N.
1 vy
Olest = F : Zaest,r (31)
T or=1

where N, is the number of processes considered.
Benchmarking has been performed on a large set of
etherogeneous source codes, yielding a = 0.75.

IV. POwWER ESTIMATION FLOW

The models described in the previous section have

been implemented in a complete power estimation

flow. The flow operates at all the three levels of ab-

straction and allows different estimation paths, as de-

picted in figure 2.

In the figure, solid arrows represent power estima-

tion processes and are performed at a specific level of

abstraction (source, VIS or assembly), while dashed

arrows indicate back—annotation processes.

To obtain a power characterization of the source code,

three different paths are possible:

o Fast. An estimate is derived directly from the
source code, based on the model described in Sec-
tion III-C. The accuracy that can be expected is

source VI S code assenbl y

]
]
]

code

4_

I
4_

I
-

I

estimted [[—= = =
figures || = — p—
back = . =
annotated || — | k...... = |r
figures I — L =

Fig. 2. The estimation flow

within a 15-20% error and the estimation time is
less than a second.

o Intermediate. The source code must first be
compiled to VIS then estimation is performed ac-
cording to the model described in Section III-B.
The power figures at VIS level can be finally back—
annotated to the source code. The accuracy is
within a 3-6% error and the time necessary for
the complete process (compilation, estimation and
back—annotation) is 1-5 seconds.

e Accurate. This path allows a very accurate esti-
mate but requires compiling the source code into
VIS and then mapping the VIS code to target as-
sembly. On the assembly code an estimation can
be performed based on the model described in Sec-
tion ITI-A. Data collected at assembly level can be
back-annotated to the VIS and finally up to the
source code. The accuracy obtained with this pro-
cedure is within 1%.

The computation times reported refer to a source

code of approximately 100 lines and errors are cal-

culated with respect to the results obtained with a

power aware instruction—set simulator.

V. RESULTS AND CONCLUSIONS

The models and the flow presented in this paper have
been applied to a wide variety of examples and to an
industrial application leading to the results summa-
rized in tables IIT and IV.

The largest software considered is a commercial 16-
channel link controller ILC16 developed at Italtel
R&D Labs. The source code, written in OCCAM?2,
is 2840 lines long and is composed of 54 procedures.
This controller makes extensive use of concurrency
and blocking unidirectional point—to—point commu-
nication with rendez-vous semantics. The OCCAM?2
language has been selected because it naturally allows
the definition sequentiality as well as concurrency at
process level and provides an abstract communication

paradigm based on blocking channels. The source
code has been compiled for two target processors:
Motorola MC68000 and Arm Ltd. ARM7TDMI in
Thumb (low—power) mode [6]. The resulting assem-
bly codes are roughly 89000 and 75000 lines long. The
flow has been run on a single—processor Sun Enter-
prise 250 under Solaris 7.

TABLE III
TIMING, CURRENT AND ENERGY ESTIMATES FOR ILC16

| Processor | Assembly | VIS | Source |
S 5.98 6.15 7.08

ARM7 mA 11.36 11.35 10.99
mJ 224.48 | 230.65 256.77

S 16.99 18.13 19.04

MC68K mA 13.85 13.50 13.20
mJ 776.52 | 807.69 829.38

TABLE IV

RUN TIMES (S) FOR THE ILC16 APPLICATION

| Processor | Accurate | Intermediate | Fast |

ARM7 37.57 22.07 3.91
MC68K 53.17 29.96 4.12

The time figures reported in table III refer to a run
with typical input data. The presented methodol-
ogy still neglects some dynamic effects such as cache
misses and pipeline stalls/refills. These problems are
currently under investigation and some refinements
to the source-level model are being studied. Nev-
ertheless, the results obtained are encouraging and
the accuracy achieved is acceptable, especially when
a preliminary exploration of different software solu-
tions is requested.

REFERENCES

[1] E. Macii, M. Pedram, F. Somenzi, ”High-Level Power
Modeling, FEstimation, and Optimization,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits
and Systems, Vol. 17, No. 11, 1998.

[2] P.W.Ong and R.H.Yan, "Power-conscious software de-
sign: a framework for modeling software on hardware,”
Proc. of 1994 IEEE Symposium on Low Power Electronic,
pp- 36-37, San Diego, CA, Oct. 1994.

[3] V. Tiwari, S. Malik and A. Wolfe, ”Power Analysis of
Embedded Software: o First Step towards Software Power
Minimization,” IEEE Transactions on VLSI Systems,
Vol. 2, No. 4, pp. 437-445, Dec. 1994.

[4] V. Tiwari and M.T.-C. Lee, ”"Power analysis of a 32-bit
Embedded Microcontroller,” VLSI Design Journal, 1996.

[5] C. Brandolese, W. Fornaciari, F. Salice, D. Sciuto "An
Energy Estimation Model for 32-bit Microprocessors,”
DAC2000, Los Angeles, CA, June 2000.

[6] PEOPLE ESPRIT project n.26769, Deliverable D1.2.1.

[7] Online documentation of the PEOPLE ESPRIT Project
hitp://wwuw.cefriel.it/Eda/Projects/

