
Fast Software-Level Power Estimation for Design Space Exploration

Carlo Brandolese §* , William Fornaciari §* , Fabio Salice §* , Donatella Sciuto §
§ Politecnico di Milano, DEI, Piazza L. Da Vinci, 32, 20133 Milano (Italy),

* CEFRIEL, via Fucini, 2, 20133 Milano (Italy)

Abstract

Aim of the proposed methodology is to perform design
space exploration at a high-level of abstraction based on
high-level estimations of different parameters. In particu-
lar, this paper presents a methodology for static and dy-
namic estimation of the power consumption of the soft-
ware components. This analysis is based on a fast soft-
ware compilation strategy that allows a fast re-targeting
over different microprocessors. The paper focuses on the
description of the overall power assessment flow and its
application on an industrial application.

1. Introduction

The importance of the power constraints during the de-
sign of embedded systems has continuously increased in
the past years, due to technological trends toward high-
level integration and increasing operating frequencies,
combined with the growing demand of portable systems.
So far, only a few co-design approaches have considered
power consumption as a comprehensive system-level met-
ric [1] [2] [3] [4].

According to [5], the methods to estimate the software
power consumption can be grouped in three classes: a
gate-level processor simulation [6], an architectural-level
processor description and instruction- level models. The
gate-level simulation provides the most accurate results at
the cost of extremely time demanding simulations. Fur-
thermore, due to the lack of information of the processor
gate-level description, this methodology is rarely viable.
Architectural-level power estimation is less precise but
much faster than gate-level estimation [7]. This approach
requires a coarser grain model of the processor (ALU,
register file, etc.) and the knowledge of the relations be-
tween the instructions being executed and the functional
units activated. Instruction-level power estimates are typi-
cally based on stochastic data modeling of the current
drawn by the processor for each instruction. Such method-
ologies have been proposed in [2], [3] and [4].

The goal of this paper is to describe a system-level
power estimation methodology for software components
suitable for the typical architectures of HW/SW embedded
systems. Such a strategy provides the capability of explor-
ing the architectural design space to early retarget architec-
tural design choices avoiding complete redesigns. Differ-
ent metrics have been defined and implemented [8] [9]
[10], both statically and dynamically computed. In this
paper we focus on the important aspect of software power
estimation. The basic idea is to provide a methodology
allowing the designer to explore different alternative target
microprocessors, for which a software compilation flow is
provided, along with a fast, but accurate, power estima-
tion, given the base cost of the power consumption of the
assembly-level instructions. This allows verification of the
degree of acceptability of a given partitioning in terms of
power budget, in addition to performance and cost. The
proposed metric has been implemented in the TOSCA co-
design framework for control-dominated embedded sys-
tems [11] [12]. It is built on the internal high-level
OCCAM2 model. This formalism has a well funded se-
mantic, derived from process algebra, which allows defini-
tion of concurrent, communicating processes [13]. Moving
down to the implementation, software-bound parts of the
specification are compiled into a pseudo-assembly retarge-
table intermediate language, called VIS (Virtual Instruction
Set) [11] [16].

The use of OCCAM2 as the description language does
not affect the generality of the proposed approach. The
power analysis methodology is composed of four main
phases:

1. Compilation: the OCCAM2 model is first translated in
VIS and then in the target assembler.

2. Static power estimation: for each assembler instruc-
tion, the average current absorption and the execution
time are calculated.

3. Back-annotation: assembler-level data are reported to
VIS and OCCAM2 levels.

4. Dynamic power analysis: static currents and timing
figures are combined with profiling results.

Different levels of accuracy are provided during the
compilation flow, depending on the level of abstraction.

The proposed approach combines the advantages of static
and dynamic analysis: the dynamic behavior accounted for
by means of profiling data, while reliable static power
consumption figures are computed by moving down into
the software compilation steps and then back-annotating
the obtained information to the upper levels. The
back-annotation phase allows identifying the major com-
ponents of power consumption at the system level, thus
giving the designer the awareness of the consequences of
partitioning and target microprocessor alternatives. This is
one of the main advantages of the proposed methodology,
whose importance is steadily increasing [14] [15].

The paper is organized as follows. Section 2 details the
software compilation; in section 3, the three levels of the
power estimation process are described; in section 4 a por-
tion of an industrial application example is discussed, and
the different transformations, formats and back-annotation
results of estimations are reported. Finally, conclusions are
drawn in section 5, with an outline on future research.

2. The software compilation

The power analysis operates at three different descrip-
tion levels (Figure 1): the high-level OCCAM2 system
description language, the intermediate pseudo-assembly
VIS level, and the target processor assembler level. The
software-bound portion of the system specification, de-
scribed in OCCAM2, is compiled into the intermediate
VIS code, which is in turn mapped to the target assembly
language. The OCCAM2 syntax allows an easy definition
of a formal system representation based on process alge-
bra: in fact OCCAM2 supports both parallel and sequen-
tial execution of processes and a synchronization mecha-
nism based on channels [13]. Timing and performance
constraints have been introduced within the TOSCA
framework, by extending the OCCAM2 syntax [11]. The
basic assumption for the analysis is that power and timing
characterization of the target system architecture are given
through two technology files:

• Processor Technology File: The file contains the ba-
sic power consumption figures for each instruction
and each addressing mode provided by the processor
instruction set and a characterization of in-
ter-instruction effects.

• Memory Technology File: The file contains power
consumption data of the read/write operations for each
level of the memory hierarchy (on-processor and off-
processor).

The rest of this section describes the phases composing
the TOSCA power estimation flow (Figure 1).

The software compilation process moves in the forward
direction, from the high-level description to the low-level
one, whilst the back-annotation process moves in the op-
posite, backward, direction. The compilation process is
structured in two different phases: the OCCAM2-to-VIS

compilation and the VIS-to-assembler mapping. Similarly,
the back-annotation process is split in the assembler-to-
VIS and VIS-to-OCCAM2 phases, whose purpose is to an-
notate the power figures on the functional system model.
The flow described thus far provides a static power esti-
mation. Static figures can be combined with profiling re-
sults to obtain more significant dynamic estimates.

2.1 The VIS language

The introduction of the intermediate VIS language en-
ables the proposed methodology to be independent of the
target processor. The VIS is close to the assembler but still
preserves a good generality. Its twofold goal is to provide
an instruction set allowing both the analysis of the charac-
teristics of a broad range of possible target processors and
low-level optimizations that usually cannot be easily per-
formed on the source code. Other important features of the
VIS language are portability, resources independence
(code generation should abstract as much as possible from
the available resources) and simulatability [16].

Design Entry

Compilation & Linking

Mapping

VIS

OCCAM2

ASSEMBLER

LEVEL 0
Estimation

Annotated OCCAM2

Annotated VIS

Annotated ASSEMBLER

Back-Annotation

Back-Annotation Libraries

LEVEL 1
Estimation

LEVEL 2
Annotation

LEVEL 0
Profiling

LEVEL 1
Profiling

Figure 1. The power estimation design flow.

The architecture of the virtual VIS machine, based on a
load/store model, is composed of a single execution unit
without pipelining, a user defined number of gen-
eral-purpose registers (GPRs) and some special-purpose
registers (SPRs).

The currently used memory model has no cache mem-
ory and a single addressing space for both data and code;
I/O registers are memory mapped. The VIS architecture
allows arithmetic/logic operations among all GPRs.

The most common addressing modes are supported
(immediate, direct, indirect, indexed). The HW/SW and
SW/SW communication, based on the rendez-vous proto-
col, is implemented using:

• Channel State Table: collects the information on the
state of channels and processes involved.

• System API: a set of basic system routines.

From the architectural point of view, no significant dif-
ferences exist between HW/SW and SW/SW communica-
tion since each channel is mapped to a different memory
location.

2.2 The OCCAM to VIS compilation

The basic features of the OCCAM2 to VIS compiler are
extensibility and modularity. The former guarantees a
compiler structure as flexible as possible with respect to
future extensions and improvements while the latter allows
to easily keep under control the single compilation passes.

Concerning the VIS memory management, two differ-
ent approaches can be adopted: the static or the semi-
dynamic allocation. In the first approach, all data segments
are allocated statically at link-time and a memory table is
created to associate each procedure with the base, stored in
the base pointer (BP), of the corresponding data segment.
In the second case, the entries of the memory table are
either dynamically computed or looked up through API
calls each time a procedure is invoked. If an entry of the
memory table is valid, i.e. the corresponding procedure is
still running, the entry is used as it is, if not, it is computed
again. The parallelism of the OCCAM2 language requires
passing the parameters to procedures by value-result.

Procedures are compiled separately and then linked to-
gether. To this purpose, a set of directives has been added
to the VIS language. The compilation phase consists of
several passes performing the following, independent,
basic operations:

1. Variables and temporaries analysis. The amount of
memory required for variables and temporaries is
computed and allocated.

2. Addressing mode selection and register allocation.
The VIS is translated into an internal formalism to de-
couple operating code selection from register binding.

3. VIS Generation. The model is translated in VIS.
4. Scheduling. Additional code is generated to conform

the execution to the original OCCAM2 semantics.
Furthermore, some back-end directives are added to
guide linking and mapping.

5. Linking. The compiled code of the procedures is
linked into a stand-alone, simulatable VIS code.

2.3 The VIS to target assembler mapping

The mapping phase translates the VIS code, generated
for a number of registers corresponding to those available
on the selected class of microprocessors, into a specific
assembler code. The mapper is constituted by a kernel,
which has been designed to be computationally efficient,
and a set of binary libraries to allow dealing with different
assemblers. Each VIS instruction is expanded into a se-
quence of the specific assembler instructions. The map-
ping may be driven by a user-defined cost function aimed
at locally optimizing a number of figures, like execution
time, code area, power consumption or a combination of
these. This allows an effective exploration of the solution
space. The generated assembler code can still be optimized

due to the fact that the VIS to assembler translation is per-
formed on a local basis. Currently, the available mapping
libraries target the Motorola MC68000 and the ARM Ltd.
ARM7TDMI in Thumb (low-power) mode.

3. The Power Estimation Methodology

The power estimation methodology consists of three
annotation phases and two back-annotation steps. Each
power annotation process applies to a specific level of
abstraction of the model and uses the corresponding librar-
ies. On the other hand, the back annotation process propa-
gates the information, collected with annotation, to higher
levels of abstraction. In the following sections the different
phases composing the complete methodology are detailed.

3.1 The Software Power Estimation

The methodology for estimation of power consumption
operates at OCCAM2, VIS, and target assembler levels.
All data required are collected into the Processor Tech-
nology File and Memory Technology File. The methodol-
ogy requires that the OCCAM2 code is compiled into VIS
code, limiting the family of the target processors to be
used, and then the VIS code is mapped to the target assem-
bler. In this context the term family means a set of proces-
sor architectures with the same number of general purpose
registers.

LEVEL 2 Power Annotation. The lowest level of ab-
straction for the software implementation of an OCCAM2
model description is its translation into the target micro-
processor assembler. The power consumption calculation
performed at this level of abstraction is referred to as
LEVEL 2 power annotation and needs a detailed knowl-
edge of the power and timing characteristics of the specific
processor and memory subsystem. The LEVEL 2 annota-
tion is performed by matching each instruction of the
compiled and mapped assembler code against its power
dissipation value in the specific technology file and, fi-
nally, taking into account inter-instruction effects [2].

LEVEL 1 Power Estimation. One level of abstraction
above the target assembler code is the VIS code, generated
for a number of registers suitable for the family of micro-
processors envisaged for the application. The power
evaluation performed at this level is referred to as LEVEL
1 power estimation. A power consumption parametric
model characterizes each VIS instruction. The definition of
the analytical parametric model of each VIS instruction
requires a detailed knowledge of the compilation and
mapping phases. In our approach, the compiler allows full
control of the compilation process. Furthermore, a set of
compiled, mapped and back-annotated benchmarks has

been selected for microprocessor-specific parameters ex-
traction. By means of the model and the parameters avail-
able, LEVEL 1 estimation can be performed in a similar
way to that outlined for LEVEL 2 annotation, the main
difference being that the basic power consumption figures
are computed rather than looked up in the technology files.

LEVEL 0 Power Estimation. At the OCCAM2 level, the
power assessment is achieved through a back-annotation
of the power consumption figures calculated at the VIS
level. The VIS-to-OCCAM2 back-annotation technique
slightly differs from that adopted for the assembler-to-VIS
phase for the following reasons. First, at the OCCAM2
level, the overhead due to scheduling (implemented as API
calls) is not explicit: its contribution is hidden in the se-
mantics of the container processes. To obtain realistic
power estimation, the scheduling cost has to be adequately
distributed among the container process itself and its sub-
processes. Second, the translation of OCCAM2 into VIS
introduces an additional amount of code for memory and
auxiliary data structures initialization and maintenance.
Again these contributions are not logically related to spe-
cific OCCAM2 statements. The cost of these operations
has been taken into account. The result of the back-
annotation is a source OCCAM2 description in which
every single line is annotated with a static estimation of
the power consumption. To obtain a dynamic power char-
acterization of the code, software profiling is necessary.

3.2 Software profiling for power analysis

The power analysis carried out so far is static. Dynamic
analysis is mandatory to increase the accuracy and signifi-
cance of the final estimates, taking into account the influ-
ence of input patterns on the overall power consumption.

Software profiling can be performed at two levels. At
LEVEL 0 profiling is purely functional while at LEVEL 1
it is more structural since the details of the VIS representa-
tion are already accounted for.

For LEVEL 0 profiling, the OCCAM2 source code is
simulated by using the in-house developed OSTE simula-
tor [12]. The API calls and scheduling overhead are ne-
glected at this level. The profiling carried out at this level
results in a limited accuracy, but it requires short execu-
tion times.

For LEVEL 1 profiling, the linked VIS code is simu-
lated by using an instruction set simulator developed on
purpose. Profiling at this level results in a higher accuracy
with respect to the LEVEL 0, at the cost of longer execu-
tion times.

3.3 Software back-annotation

The back-annotation process occurs at two levels: as-
sembler-to-VIS and VIS-to-OCCAM2.

The basic idea behind both levels is to keep track, dur-
ing the forward flow from the OCCAM2 specification
down to the target assembler code, of the links connecting
instructions between the different abstraction levels. In
general, a single instruction of a higher level language
translates into many instructions of a lower level one.

The back-annotation process can start either at assem-
bler or at VIS level. The only assumption made here is that
each line of the assembler code has already been annotated
with area, timing and power values. The assembler-to-VIS
back-annotation is performed by scanning the assembler
code, adding up annotated values coming from the same
line of the VIS code and associating the collected informa-
tion to the corresponding VIS line. The back-annotation
from VIS to OCCAM2 is performed in a likewise manner.

Inter-instruction effects are considered at the assembly
level, since they are strongly processor dependent, and
suitably propagated backward at the upper levels of ab-
straction.

4. Application Example

The proposed methodology has been applied to the
ILC16 component, commercialized by Italtel and modeled
in OCCAM2. This design has been selected because it was
the test vehicle for system-level design space exploration
during the SEED Esprit project [12].

The ILC16 is a data-link controller for sixteen asyn-
chronous/synchronous data streams based on the HDLC
protocol. From a functional point of view, the ILC16 is
characterized by a set of communication links, on which
data are received and transmitted, and by a control unit
managing links and the external environment interaction.
Data are transmitted/received according to the HDLC pro-
tocol and they are stored in a system memory. In particu-
lar, ILC16 is constituted by 5 macro-modules: the Buffer
Description Manager (ESRAM control module), the RISC
(device microcontroller), the Link Interface (links-RISC
interface), the Bus Interface (ILC16-External Bus Inter-
face) and 16 RX/TX Links. Figure 2 reports an example of
the software synthesis flow applied to a module (CRC
computation) of the ILC16 device. During the compilation
from the OCCAM2 source code to the target assembler
through the VIS-level, the correspondence among the
statements at the different description levels is maintained.
The back-annotation of energy and timing data at the VIS
level can be easily performed by adding the contributions
associated with the different target assembler statements
corresponding to the same VIS instruction. A similar back-
annotation process can be applied at OCCAM2 level. In
particular, figure 2 shows the different representations,
files and steps involved in both the compilation and power
estimation process. The vir.ref file specifies, for each VIS
instruction, the corresponding OCCAM2 statement in the
source file by using line identifiers. Similarly the asm.ref

file relates the target assembler file asm with the VIS code,
stored in the file vis, originating it. The file asm.sa con-
tains actual data for each instruction of the target micro-
processor (in this example the Motorola MC68000) in
terms of average current and number of clock cycles.
Similarly, the file vis.sba collects data for each instruction
of the VIS code. The total clock cycles are calculated add-
ing up the contributions of assembler instructions associ-
ated with the same VIS line, while the average current is
obtained dividing by the total clock cycles the sum of total
currents of assembler instructions associated with the same
VIS line. Finally, the file occam.sba is obtained in a like-
wise manner.

As an example, consider line 36 of the OCCAM2
source code (figure 2). Its translation is spread over lines
125-129 of the VIS. The total number of clock cycles is
12+12+4+8+10=42 and the corresponding average current
is (505×12+505×12+314×4+290×8+400×10)/42 =469.

The complete flow has been tested on the ILC16
OCCAM2 specification. The dimensions of the files (in
terms of line count) are summarized in table 1.

File occam vis asm
Lines 2.380 45.154 87.332

Table 1. ILC16 design: file sizes.

The computational time required for the complete proc-
essing has been 129 seconds on a Sun Ultra 1 workstation.

5. Concluding Remarks

The paper discussed a methodology to estimate the
contribution of software in the power budget of mixed
hardware/software embedded systems. The most relevant
features of the proposed approach are summarized in the
following:

• it is integrated into a more general co-design envi-
ronment for control-dominated embedded systems;

• it addresses both static and dynamic estimation of
power consumption;

• it defines power evaluation metrics for software, ap-
plicable for hardware/software partitioning;

• it is independent of the system specification language
and of the target processor; thus it is re-targetable to-
wards several input formalisms and commercial mi-
croprocessors.

Current effort is in the direction of extending the set of
supported assembler instruction sets, thus allowing a lar-
ger set of microprocessors for embedded applications to be
supported.

PROC c o mp u t e CRC (BYT E CRCHi ; BYT E CRCL o w; VAL BYT E d a t a)
. . . .
 IF
 (tem pCRC _HI)
 My CRC_ LOW := M yCRC _LOW + r emain der
 TRUE
 SK IP
 I F
 (te mpDat a >< tem pCRC _LOW)
 PA R
 MyCR C_LO W := (My CRC_ LOW >< ge nera tor_ LSB)
 MyCR C_HI := (MyC RC_H I >< gene rato r_MS B)
 TRUE
 SK IP
. . . .
:

 %BL OCKST ART Ci f - - - -
I NST _ 1 0 5 CMP. B + 1 1 (BP) # 0 - -
 Be q I NST _ 1 1 2 - - - -
I NST _ 1 0 4 ADD. B # 1 2 8 + 1 0 (BP) - -
 MOVE. B # 2 - - + 2 4 (BP)
 %BL OCKEND Ci f - - - -
 %BL OCKST ART Ci f - - - -
I NST _ 1 1 2 MOVE. B + 1 3 (BP) - - R0
 MOVE. B + 1 2 (BP) - - R1
 XOR. B R1 R0 - -
 CMP. B R0 # 0 - -
 Bn e I NST _ 1 1 5 - - - -
 BRA I NST _ 9 3 - - - -
I NST _ 1 1 5 XOR. B + 1 0 (BP) # 8 - -
 XOR. B + 9 (BP) # 1 3 2 - -
 MOVE. B # 2 - - + 3 3 (BP)
 BRA I NST _ 1 0 6 - - - -
 %BL OCKEND Ci f - - - -
. . . .

I NST _ 1 0 5 CMP. B # 0 , 1 1 (A0)
 Be q I NST _ 1 1 2
I NST _ 1 0 4 ADD. B # 1 2 8 , 1 0 (A0)
 MOVE. B # 2 , 2 4 (A0)
I NST _ 1 1 2 MOVE. B 1 3 (A0) , D0
 MOVE. B 1 2 (A0) , D1
 XOR. B D1 , D0
 CMP. B # 0 , D0
 Bn e I NST _ 1 1 5
 BRA I NST _ 9 3
I NST _ 1 1 5 XOR. B # 8 , 1 0 (A0)
 XOR. B # 1 3 2 , 9 (A0)
 MOVE. B # 2 , 3 3 (A0)
 BRA I NST _ 1 0 6
. . . .

 0 c l k – 0 mA
1 0 c l k - 3 1 5 mA
1 0 c l k - 4 0 0 mA
1 5 c l k - 4 1 5 mA
1 0 c l k – 4 0 5 ma
 0 c l k - 0 mA
 0 c l k - 0 mA
1 2 c l k - 5 0 5 mA
1 2 c l k - 5 0 5 mA
 4 c l k – 3 1 4 mA
 8 c l k – 2 9 0 mA
1 0 c l k - 4 0 0 mA
1 0 c l k - 4 0 0 mA
1 3 c l k – 4 6 0 mA
1 3 c l k – 4 6 0 mA
1 0 c l k – 4 0 5 mA
1 0 c l k - 4 0 0 mA
0 c l k - 0 mA
. . .

1 0 c l k - 3 1 5 mA
1 0 c l k - 4 0 0 mA
1 5 c l k - 4 1 5 mA
1 0 c l k – 4 0 5 mA
1 2 c l k - 5 0 5 mA
1 2 c l k - 5 0 5 mA
 4 c l k – 3 1 4 mA
 8 c l k – 2 9 0 mA
1 0 c l k - 4 0 0 mA
1 0 c l k - 4 0 0 mA
1 3 c l k – 4 6 0 mA
1 3 c l k – 4 6 0 mA
1 0 c l k – 4 0 5 mA
1 0 c l k - 4 0 0 mA
. . . .

0 0 1
. . .
0 3 0
0 3 1
0 3 2
0 3 3
0 3 4
0 3 5
0 3 6
0 3 7
0 3 8
0 3 9
0 4 0
0 4 1
. . .
0 4 7

1 1 8
1 1 9
1 2 0
1 2 1
1 2 2
1 2 3
1 2 4
1 2 5
1 2 6
1 2 7
1 2 8
1 2 9
1 3 0
1 3 1
1 3 2
1 3 3
1 3 4
1 3 5
. . .

0 0 0 3 0
0 0 0 3 1
0 0 0 3 1
0 0 0 3 2
0 0 0 3 0
0 0 0 3 0
0 0 0 3 5
0 0 0 3 6
0 0 0 3 6
0 0 0 3 6
0 0 0 3 6
0 0 0 3 6
0 0 0 3 5
0 0 0 3 8
0 0 0 3 9
0 0 0 3 5
0 0 0 3 5
0 0 0 3 5
. . .

1 2 7
1 2 8
1 2 9
1 3 0
1 3 1
1 3 2
1 3 3
1 3 4
1 3 5
1 3 6
1 3 7
1 3 8
1 3 9
1 4 0
. . .

0 0 1 1 9
0 0 1 2 0
0 0 1 2 1
0 0 1 2 2
0 0 1 2 5
0 0 1 2 6
0 0 1 2 7
0 0 1 2 8
0 0 1 2 9
0 0 1 3 0
0 0 1 3 1
0 0 1 3 2
0 0 1 3 3
0 0 1 3 4
. . .

. . .

. . .
 1 0 c l k – 4 0 5 mA
 2 0 c l k - 3 5 7 mA
 1 5 c l k - 4 1 5 mA
 0 c l k - 0 mA
 0 c l k - 0 mA
 3 0 c l k - 4 0 2 mA
 4 2 c l k - 4 6 9 mA
 0 c l k - 0 mA
 1 3 c l k – 4 6 0 mA
 1 3 c l k – 4 6 0 mA
 0 c l k - 0 mA
 0 c l k - 0 mA
. . .
. . .

a sm

v is

o cca m

v is. ref

a sm. ref asm. sa

vis. sba

occa m.s ba

C o m p ila tio n

M a p p in g B a c k a n n o ta tio n

P o w e r
E s tim a te

B a c k a n n o ta tio n

Figure 2. Example of the software synthesis flow applied to the CRC module of the ILC16 device.

6. References

[1] E.Macii, M.Pedram, F.Somenzi, "High-Level Power Model-
ing, Estimation and Optimization," DAC-34: ACM/IEEE
Design Automation Conference, Anheim, CA, June 1997.

[2] M.T.C.Lee, V.Tiwari, S.Malik, and M.Fujita, “Power
Analysis and Minimization Techniques for Embedded DSP
Software,” IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, Vol. 5, No. 1, pp. 123-135, March 1997.

[3] V.Tiwari, S.Malik, and A.Wolfe, “Compilation techniques
for low energy: An overview,” Proceedings of Symposium
on Low Power Electronics, San Diego, Oct. 1994, pp.38-39.

[4] M.T.C.Lee and V.Tiwari, “A memory allocation technique
for low-energy embedded DSP software,” Proceedings of
Int. Symposium on Low Power Electronics, San Jose, CA,
Oct. 1995, pp. 24-25.

[5] K.Roy and M.C.Johnson, “Software Design for Low
Power,” Low Power Design in Deep Submicron Electronics,
NATO ASI Series, Series E: Applied Sciences, Vol. 337,
Kluwer Academic Publisher, 1997, pp. 433-460.

[6] T.Chou and K.Roy, “Accurate Estimation of Power Dissipa-
tion in CMOS Sequential Circuits,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 1996.

[7] T.Sato, Y.Ootaguro, M.Nagmatsu and H.Tago, “Evaluation
of Architecture-Level Power Estimation for CMOS RISC
Processors,” 1995 Symposium on Low-Power Electronics,
pp. 44-45, October 1995.

[8] A.Allara, C.Brandolese, W.Fornaciari, F.Salice and
D.Sciuto, “System-Level Performance Estimation Strategy
for Sw and Hw,” IEEE-ICCD’98 Int. Conference on Com-
puter Design: VLSI in Computers & Processors, Austin,
Texas, October 5-7, 1998, pp.48-53.

[9] W.Fornaciari, P.Gubian, D.Sciuto and C.Silvano, “Power
Estimation of Embedded Systems: A Hardware/Software
Co-design Approach,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol.6, n.2, June, 1998. pp.
266-275.

[10] A.Balboni, W.Fornaciari and D.Sciuto, “Partitioning of Hw-
Sw Embedded Systems: a Metrics-Based Approach,” Inte-
grated Computer-Aided Engineering, J.Wiley Interscience
Journal, IOS press, vol. 5, n.1, 1998, pp.39-55.

[11] A.Balboni, W.Fornaciari, and D.Sciuto, “TOSCA: A Prag-
matic Approach to Co-Design Automation of Control
Dominated Systems,” Hardware/Software Co-design,
NATO ASI Series, Series E: Applied Sciences, Vol. 310,
pp. 265-294, Kluwer Academic Publisher, 1996.

 [12] SEED (Software-hardware Exploration, a European Dem-
onstration project) project:

 www.cefriel.it/projects/seed/mainmenu.html

[13] C.A.R.Hoare, “OCCAM2 Reference Manual” , Prentice
Hall, Hempstead, Hertfordshire, 1998.

[14] J.Staunstrup and W.Wolf, “Hardware/Software Co-Design:
Principles and Practice,” Kluwer Academic Publisher, Oc-
tober, 1997.

[15] F.Balarin et Al., “Hardware-Software Co-Design of Em-
bedded Systems: The POLIS approach,” Kluwer Academic
Publishers, 1997.

[16] A.Balboni, W. Fornaciari and D.Sciuto, “Co-Synthesis and
Co-simulation of Control Dominated Embedded Systems,”
Int. Journal of Design Automation for Embedded Systems,
Vol. 1, No. 3, Kluwer Academic Publisher, Norwell, MA,
Jul. 1996.

