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Abstract 

Aim of the proposed methodology is to perform design 
space exploration at a high-level of abstraction based on 
high-level estimations of different parameters. In particu-
lar, this paper presents a methodology for static and dy-
namic estimation of the power consumption of the soft-
ware components. This analysis is based on a fast soft-
ware compilation strategy that allows a fast re-targeting 
over different microprocessors. The paper focuses on the 
description of the overall power assessment flow and its 
application on an industrial application. 

1. Introduction 

The importance of the power constraints during the de-
sign of embedded systems has continuously increased in 
the past years, due to technological trends toward high-
level integration and increasing operating frequencies, 
combined with the growing demand of portable systems. 
So far, only a few co-design approaches have considered 
power consumption as a comprehensive system-level met-
ric [1] [2] [3] [4]. 

According to [5], the methods to estimate the software 
power consumption can be grouped in three classes: a 
gate-level processor simulation [6], an architectural-level 
processor description and instruction- level models. The 
gate-level simulation provides the most accurate results at 
the cost of extremely time demanding simulations. Fur-
thermore, due to the lack of information of the processor 
gate-level description, this methodology is rarely viable. 
Architectural-level power estimation is less precise but 
much faster than gate-level estimation [7]. This approach 
requires a coarser grain model of the processor (ALU, 
register file, etc.) and the knowledge of the relations be-
tween the instructions being executed and the functional 
units activated. Instruction-level power estimates are typi-
cally based on stochastic data modeling of the current 
drawn by the processor for each instruction. Such method-
ologies have been proposed in [2], [3] and [4]. 

The goal of this paper is to describe a system-level 
power estimation methodology for software components 
suitable for the typical architectures of HW/SW embedded 
systems. Such a strategy provides the capability of explor-
ing the architectural design space to early retarget architec-
tural design choices avoiding complete redesigns. Differ-
ent metrics have been defined and implemented [8] [9] 
[10], both statically and dynamically computed. In this 
paper we focus on the important aspect of software power 
estimation. The basic idea is to provide a methodology 
allowing the designer to explore different alternative target 
microprocessors, for which a software compilation flow is 
provided, along with a fast, but accurate, power estima-
tion, given the base cost of the power consumption of the 
assembly-level instructions. This allows verification of the 
degree of acceptability of a given partitioning in terms of 
power budget, in addition to performance and cost. The 
proposed metric has been implemented in the TOSCA co-
design framework for control-dominated embedded sys-
tems [11] [12]. It is built on the internal high-level 
OCCAM2 model. This formalism has a well funded se-
mantic, derived from process algebra, which allows defini-
tion of concurrent, communicating processes [13]. Moving 
down to the implementation, software-bound parts of the 
specification are compiled into a pseudo-assembly retarge-
table intermediate language, called VIS (Virtual Instruction 
Set) [11] [16].  

The use of OCCAM2 as the description language does 
not affect the generality of the proposed approach. The 
power analysis methodology is composed of four main 
phases: 

1. Compilation: the OCCAM2 model is first translated in 
VIS and then in the target assembler. 

2. Static power estimation: for each assembler instruc-
tion, the average current absorption and the execution 
time are calculated. 

3. Back-annotation: assembler-level data are reported to 
VIS and OCCAM2 levels. 

4. Dynamic power analysis: static currents and timing 
figures are combined with profiling results. 

Different levels of accuracy are provided during the 
compilation flow, depending on the level of abstraction. 



The proposed approach combines the advantages of static 
and dynamic analysis: the dynamic behavior accounted for 
by means of profiling data, while reliable static power 
consumption figures are computed by moving down into 
the software compilation steps and then back-annotating 
the obtained information to the upper levels. The 
back-annotation phase allows identifying the major com-
ponents of power consumption at the system level, thus 
giving the designer the awareness of the consequences of 
partitioning and target microprocessor alternatives. This is 
one of the main advantages of the proposed methodology, 
whose importance is steadily increasing [14] [15]. 

The paper is organized as follows. Section 2 details the 
software compilation; in section 3, the three levels of the 
power estimation process are described; in section 4 a por-
tion of an industrial application example is discussed, and 
the different transformations, formats and back-annotation 
results of estimations are reported. Finally, conclusions are 
drawn in section 5, with an outline on future research. 

2. The software compilation 

The power analysis operates at three different descrip-
tion levels (Figure 1): the high-level OCCAM2 system 
description language, the intermediate pseudo-assembly 
VIS level, and the target processor assembler level. The 
software-bound portion of the system specification, de-
scribed in OCCAM2, is compiled into the intermediate 
VIS code, which is in turn mapped to the target assembly 
language. The OCCAM2 syntax allows an easy definition 
of a formal system representation based on process alge-
bra: in fact OCCAM2 supports both parallel and sequen-
tial execution of processes and a synchronization mecha-
nism based on channels [13]. Timing and performance 
constraints have been introduced within the TOSCA 
framework, by extending the OCCAM2 syntax [11]. The 
basic assumption for the analysis is that power and timing 
characterization of the target system architecture are given 
through two technology files: 

• Processor Technology File: The file contains the ba-
sic power consumption figures for each instruction 
and each addressing mode provided by the processor 
instruction set and a characterization of in-
ter-instruction effects. 

• Memory Technology File: The file contains power 
consumption data of the read/write operations for each 
level of the memory hierarchy (on-processor and off-
processor).  

The rest of this section describes the phases composing 
the TOSCA power estimation flow (Figure 1).   

The software compilation process moves in the forward 
direction, from the high-level description to the low-level 
one, whilst the back-annotation process moves in the op-
posite, backward, direction. The compilation process is 
structured in two different phases: the OCCAM2-to-VIS 

compilation and the VIS-to-assembler mapping. Similarly, 
the back-annotation process is split in the assembler-to-
VIS and VIS-to-OCCAM2 phases, whose purpose is to an-
notate the power figures on the functional system model. 
The flow described thus far provides a static power esti-
mation. Static figures can be combined with profiling re-
sults to obtain more significant dynamic estimates. 

2.1 The VIS language 

The introduction of the intermediate VIS language en-
ables the proposed methodology to be independent of the 
target processor. The VIS is close to the assembler but still 
preserves a good generality. Its twofold goal is to provide 
an instruction set allowing both the analysis of the charac-
teristics of a broad range of possible target processors and 
low-level optimizations that usually cannot be easily per-
formed on the source code. Other important features of the 
VIS language are portability, resources independence 
(code generation should abstract as much as possible from 
the available resources) and simulatability [16]. 
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Figure 1. The power estimation design  flow. 

The architecture of the virtual VIS machine, based on a 
load/store model, is composed of a single execution unit 
without pipelining, a user defined number of gen-
eral-purpose registers (GPRs) and some special-purpose 
registers (SPRs).  

The currently used memory model has no cache mem-
ory and a single addressing space for both data and code; 
I/O registers are memory mapped. The VIS architecture 
allows arithmetic/logic operations among all GPRs.  

The most common addressing modes are supported 
(immediate, direct, indirect, indexed). The HW/SW and 
SW/SW communication, based on the rendez-vous proto-
col, is implemented using: 

• Channel State Table: collects the information on the 
state of channels and processes involved. 

• System API: a set of basic system routines. 

From the architectural point of view, no significant dif-
ferences exist between HW/SW and SW/SW communica-
tion since each channel is mapped to a different memory 
location. 



2.2 The OCCAM to VIS compilation 

The basic features of the OCCAM2 to VIS compiler are 
extensibility and modularity. The former guarantees a 
compiler structure as flexible as possible with respect to 
future extensions and improvements while the latter allows 
to easily keep under control the single compilation passes.  

Concerning the VIS memory management, two differ-
ent approaches can be adopted: the static or the semi-
dynamic allocation. In the first approach, all data segments 
are allocated statically at link-time and a memory table is 
created to associate each procedure with the base, stored in 
the base pointer (BP), of the corresponding data segment. 
In the second case, the entries of the memory table are 
either dynamically computed or looked up through API 
calls each time a procedure is invoked. If an entry of the 
memory table is valid, i.e. the corresponding procedure is 
still running, the entry is used as it is, if not, it is computed 
again. The parallelism of the OCCAM2 language requires 
passing the parameters to procedures by value-result.  

Procedures are compiled separately and then linked to-
gether. To this purpose, a set of directives has been added 
to the VIS language. The compilation phase consists of 
several passes performing the following, independent, 
basic operations: 

1. Variables and temporaries analysis. The amount of 
memory required for variables and temporaries is 
computed and allocated. 

2. Addressing mode selection and register allocation. 
The VIS is translated into an internal formalism to de-
couple operating code selection from register binding.  

3. VIS Generation. The model is translated in VIS.  
4. Scheduling. Additional code is generated to conform 

the execution to the original OCCAM2 semantics. 
Furthermore, some back-end directives are added to 
guide linking and mapping. 

5. Linking. The compiled code of the procedures is 
linked into a stand-alone, simulatable VIS code. 

2.3 The VIS to target assembler mapping 

The mapping phase translates the VIS code, generated 
for a number of registers corresponding to those available 
on the selected class of microprocessors, into a specific 
assembler code. The mapper is constituted by a kernel, 
which has been designed to be computationally efficient, 
and a set of binary libraries to allow dealing with different 
assemblers. Each VIS instruction is expanded into a se-
quence of the specific assembler instructions. The map-
ping may be driven by a user-defined cost function aimed 
at locally optimizing a number of figures, like execution 
time, code area, power consumption or a combination of 
these. This allows an effective exploration of the solution 
space. The generated assembler code can still be optimized 

due to the fact that the VIS to assembler translation is per-
formed on a local basis. Currently, the available mapping 
libraries target the Motorola MC68000 and the ARM Ltd. 
ARM7TDMI in Thumb (low-power) mode. 

3. The Power Estimation Methodology 

The power estimation methodology consists of three 
annotation phases and two back-annotation steps. Each 
power annotation process applies to a specific level of 
abstraction of the model and uses the corresponding librar-
ies. On the other hand, the back annotation process propa-
gates the information, collected with annotation, to higher 
levels of abstraction. In the following sections the different 
phases composing the complete methodology are detailed. 

3.1 The Software Power Estimation  

The methodology for estimation of power consumption 
operates at OCCAM2, VIS, and target assembler levels. 
All data required are collected into the Processor Tech-
nology File and Memory Technology File. The methodol-
ogy requires that the OCCAM2 code is compiled into VIS 
code, limiting the family of the target processors to be 
used, and then the VIS code is mapped to the target assem-
bler. In this context the term family means a set of proces-
sor architectures with the same number of general purpose 
registers. 

LEVEL 2 Power Annotation. The lowest level of ab-
straction for the software implementation of an OCCAM2 
model description is its translation into the target micro-
processor assembler. The power consumption calculation 
performed at this level of abstraction is referred to as 
LEVEL 2 power annotation and needs a detailed knowl-
edge of the power and timing characteristics of the specific 
processor and memory subsystem. The LEVEL 2 annota-
tion is performed by matching each instruction of the 
compiled and mapped assembler code against its power 
dissipation value in the specific technology file and, fi-
nally, taking into account inter-instruction effects [2]. 

LEVEL 1 Power Estimation. One level of abstraction 
above the target assembler code is the VIS code, generated 
for a number of registers suitable for the family of micro-
processors envisaged for the application. The power 
evaluation performed at this level is referred to as LEVEL 
1 power estimation. A power consumption parametric 
model characterizes each VIS instruction. The definition of 
the analytical parametric model of each VIS instruction 
requires a detailed knowledge of the compilation and 
mapping phases. In our approach, the compiler allows full 
control of the compilation process. Furthermore, a set of 
compiled, mapped and back-annotated benchmarks has 



been selected for microprocessor-specific parameters ex-
traction. By means of the model and the parameters avail-
able, LEVEL 1 estimation can be performed in a similar 
way to that outlined for LEVEL 2 annotation, the main 
difference being that the basic power consumption figures 
are computed rather than looked up in the technology files. 

LEVEL 0 Power Estimation. At the OCCAM2 level, the 
power assessment is achieved through a back-annotation 
of the power consumption figures calculated at the VIS 
level. The VIS-to-OCCAM2 back-annotation technique 
slightly differs from that adopted for the assembler-to-VIS 
phase for the following reasons. First, at the OCCAM2 
level, the overhead due to scheduling (implemented as API 
calls) is not explicit: its contribution is hidden in the se-
mantics of the container processes. To obtain realistic 
power estimation, the scheduling cost has to be adequately 
distributed among the container process itself and its sub-
processes. Second, the translation of OCCAM2 into VIS 
introduces an additional amount of code for memory and 
auxiliary data structures initialization and maintenance. 
Again these contributions are not logically related to spe-
cific OCCAM2 statements. The cost of these operations 
has been taken into account. The result of the back-
annotation is a source OCCAM2 description in which 
every single line is annotated with a static estimation of 
the power consumption. To obtain a dynamic power char-
acterization of the code, software profiling is necessary. 

3.2 Software profiling for power analysis 

The power analysis carried out so far is static. Dynamic 
analysis is mandatory to increase the accuracy and signifi-
cance of the final estimates, taking into account the influ-
ence of input patterns on the overall power consumption.  

Software profiling can be performed at two levels. At 
LEVEL 0 profiling is purely functional while at LEVEL 1 
it is more structural since the details of the VIS representa-
tion are already accounted for.  

For LEVEL 0 profiling, the OCCAM2 source code is 
simulated by using the in-house developed OSTE simula-
tor [12]. The API calls and scheduling overhead are ne-
glected at this level. The profiling carried out at this level 
results in a limited accuracy, but it requires short execu-
tion times.  

For LEVEL 1 profiling, the linked VIS code is simu-
lated by using an instruction set simulator developed on 
purpose. Profiling at this level results in a higher accuracy 
with respect to the LEVEL 0, at the cost of longer execu-
tion times. 

3.3 Software back-annotation 

The back-annotation process occurs at two levels: as-
sembler-to-VIS and VIS-to-OCCAM2. 

The basic idea behind both levels is to keep track, dur-
ing the forward flow from the OCCAM2 specification 
down to the target assembler code, of the links connecting 
instructions between the different abstraction levels. In 
general, a single instruction of a higher level language 
translates into many instructions of a lower level one. 

The back-annotation process can start either at assem-
bler or at VIS level. The only assumption made here is that 
each line of the assembler code has already been annotated 
with area, timing and power values. The assembler-to-VIS 
back-annotation is performed by scanning the assembler 
code, adding up annotated values coming from the same 
line of the VIS code and associating the collected informa-
tion to the corresponding VIS line. The back-annotation 
from VIS to OCCAM2 is performed in a likewise manner.  

Inter-instruction effects are considered at the assembly 
level, since they are strongly processor dependent, and 
suitably propagated backward at the upper levels of ab-
straction. 

4. Application Example 

The proposed methodology has been applied to the 
ILC16 component, commercialized by Italtel and modeled 
in OCCAM2. This design has been selected because it was 
the test vehicle for system-level design space exploration 
during the SEED Esprit project [12]. 

The ILC16 is a data-link controller for sixteen asyn-
chronous/synchronous data streams based on the HDLC 
protocol. From a functional point of view, the ILC16 is 
characterized by a set of communication links, on which 
data are received and transmitted, and by a control unit 
managing links and the external environment interaction. 
Data are transmitted/received according to the HDLC pro-
tocol and they are stored in a system memory. In particu-
lar, ILC16 is constituted by 5 macro-modules: the Buffer 
Description Manager (ESRAM control module), the RISC 
(device microcontroller), the Link Interface (links-RISC 
interface), the Bus Interface (ILC16-External Bus Inter-
face) and 16 RX/TX Links. Figure 2 reports an example of 
the software synthesis flow applied to a module (CRC 
computation) of the ILC16 device. During the compilation 
from the OCCAM2 source code to the target assembler 
through the VIS-level, the correspondence among the 
statements at the different description levels is maintained. 
The back-annotation of energy and timing data at the VIS 
level can be easily performed by adding the contributions 
associated with the different target assembler statements 
corresponding to the same VIS instruction. A similar back-
annotation process can be applied at OCCAM2 level. In 
particular, figure 2 shows the different representations, 
files and steps involved in both the compilation and power 
estimation process. The vir.ref file specifies, for each VIS 
instruction, the corresponding OCCAM2 statement in the 
source file by using line identifiers. Similarly the asm.ref 



file relates the target assembler file asm with the VIS code, 
stored in the file vis, originating it. The file asm.sa con-
tains actual data for each instruction of the target micro-
processor (in this example the Motorola MC68000) in 
terms of average current and number of clock cycles. 
Similarly, the file vis.sba collects data for each instruction 
of the VIS code. The total clock cycles are calculated add-
ing up the contributions of assembler instructions associ-
ated with the same VIS line, while the average current is 
obtained dividing by the total clock cycles the sum of total 
currents of assembler instructions associated with the same 
VIS line. Finally, the file occam.sba is obtained in a like-
wise manner.  

As an example, consider line 36 of the OCCAM2 
source code (figure 2). Its translation is spread over lines 
125-129 of the VIS. The total number of clock cycles is 
12+12+4+8+10=42 and the corresponding average current 
is (505×12+505×12+314×4+290×8+400×10)/42 =469.  

The complete flow has been tested on the ILC16 
OCCAM2 specification. The dimensions of the files (in 
terms of line count) are summarized in table 1.  

File occam vis asm 
Lines 2.380 45.154 87.332 

Table 1. ILC16 design: file sizes. 

The computational time required for the complete proc-
essing has been 129 seconds on a Sun Ultra 1 workstation. 

5. Concluding Remarks 

The paper discussed a methodology to estimate the 
contribution of software in the power budget of mixed 
hardware/software embedded systems. The most relevant 
features of the proposed approach are summarized in the 
following: 

• it is integrated into a more general co-design envi-
ronment for control-dominated embedded systems; 

• it addresses both static and dynamic estimation of 
power consumption; 

• it defines power evaluation metrics for software, ap-
plicable for hardware/software partitioning; 

• it is independent of the system specification language 
and of the target processor; thus it is re-targetable to-
wards several input formalisms and commercial mi-
croprocessors. 

Current effort is in the direction of extending the set of 
supported assembler instruction sets, thus allowing a lar-
ger set of microprocessors for embedded applications to be 
supported.

 
PROC c o mp u t e CRC ( BYT E CRCHi ;  BYT E CRCL o w;  VAL  BYT E d a t a )  
. . . .  
                  IF     
          (tem pCRC _HI)     
            My CRC_ LOW := M yCRC _LOW  + r emain der  
          TRUE      
            SK IP     
        I F     
          (te mpDat a ><  tem pCRC _LOW )   
            PA R     
              MyCR C_LO W :=  (My CRC_ LOW >< ge nera tor_ LSB)  
              MyCR C_HI  := (MyC RC_H I ><  gene rato r_MS B)  
          TRUE       
            SK IP      
. . . .  
:  

          %BL OCKST ART   Ci f        - -         - -  
I NST _ 1 0 5   CMP. B        + 1 1 ( BP)    # 0         - -  
          Be q           I NST _ 1 1 2   - -         - -  
I NST _ 1 0 4   ADD. B        # 1 2 8       + 1 0 ( BP)    - -  
          MOVE. B       # 2         - -         + 2 4 ( BP)  
          %BL OCKEND    Ci f        - -         - -  
          %BL OCKST ART   Ci f        - -         - -  
I NST _ 1 1 2   MOVE. B       + 1 3 ( BP)    - -         R0  
          MOVE. B       + 1 2 ( BP)    - -         R1  
          XOR. B        R1         R0         - -  
          CMP. B        R0         # 0         - -  
          Bn e           I NST _ 1 1 5   - -         - -  
          BRA          I NST _ 9 3    - -         - -  
I NST _ 1 1 5   XOR. B        + 1 0 ( BP)    # 8         - -  
          XOR. B        + 9 ( BP)     # 1 3 2       - -  
          MOVE. B       # 2         - -         + 3 3 ( BP)  
          BRA          I NST _ 1 0 6   - -         - -  
          %BL OCKEND    Ci f        - -         - -  
. . . .  

I NST _ 1 0 5   CMP. B  # 0 , 1 1 ( A0 )  
          Be q     I NST _ 1 1 2  
I NST _ 1 0 4   ADD. B  # 1 2 8 , 1 0 ( A0 )  
          MOVE. B # 2 , 2 4 ( A0 )  
I NST _ 1 1 2   MOVE. B 1 3 ( A0 ) , D0  
          MOVE. B 1 2 ( A0 ) , D1  
          XOR. B  D1 , D0  
          CMP. B  # 0 , D0  
          Bn e     I NST _ 1 1 5  
          BRA    I NST _ 9 3  
I NST _ 1 1 5   XOR. B  # 8 , 1 0 ( A0 )  
          XOR. B  # 1 3 2 , 9 ( A0 )  
          MOVE. B # 2 , 3 3 ( A0 )  
          BRA    I NST _ 1 0 6  
. . . .  

 0  c l k  –    0  mA 
1 0  c l k  -  3 1 5  mA 
1 0  c l k  -  4 0 0  mA 
1 5  c l k  -  4 1 5  mA 
1 0  c l k  –  4 0 5  ma  
 0  c l k  -    0  mA 
 0  c l k  -    0  mA 
1 2  c l k  -  5 0 5  mA 
1 2  c l k  -  5 0 5  mA 
 4  c l k  –  3 1 4  mA 
 8  c l k  –  2 9 0  mA 
1 0  c l k  -  4 0 0  mA 
1 0  c l k  -  4 0 0  mA 
1 3  c l k  –  4 6 0  mA 
1 3  c l k  –  4 6 0  mA 
1 0  c l k  –  4 0 5  mA 
1 0  c l k  -  4 0 0  mA 
0  c l k  -    0  mA 
. . .  

1 0  c l k  -  3 1 5  mA 
1 0  c l k  -  4 0 0  mA 
1 5  c l k  -  4 1 5  mA 
1 0  c l k  –  4 0 5  mA 
1 2  c l k  -  5 0 5  mA 
1 2  c l k  -  5 0 5  mA 
 4  c l k  –  3 1 4  mA 
 8  c l k  –  2 9 0  mA 
1 0  c l k  -  4 0 0  mA 
1 0  c l k  -  4 0 0  mA 
1 3  c l k  –  4 6 0  mA 
1 3  c l k  –  4 6 0  mA 
1 0  c l k  –  4 0 5  mA 
1 0  c l k  -  4 0 0  mA 
. . . .  

0 0 1  
. . .  
0 3 0  
0 3 1  
0 3 2  
0 3 3  
0 3 4  
0 3 5  
0 3 6  
0 3 7  
0 3 8  
0 3 9  
0 4 0  
0 4 1  
. . .  
0 4 7  

1 1 8  
1 1 9  
1 2 0  
1 2 1  
1 2 2  
1 2 3  
1 2 4  
1 2 5  
1 2 6  
1 2 7  
1 2 8  
1 2 9  
1 3 0  
1 3 1  
1 3 2  
1 3 3  
1 3 4  
1 3 5  
. . .  

0 0 0 3 0  
0 0 0 3 1  
0 0 0 3 1  
0 0 0 3 2  
0 0 0 3 0  
0 0 0 3 0  
0 0 0 3 5  
0 0 0 3 6  
0 0 0 3 6  
0 0 0 3 6  
0 0 0 3 6  
0 0 0 3 6  
0 0 0 3 5  
0 0 0 3 8  
0 0 0 3 9  
0 0 0 3 5  
0 0 0 3 5  
0 0 0 3 5  
. . .  

1 2 7  
1 2 8  
1 2 9  
1 3 0  
1 3 1  
1 3 2  
1 3 3  
1 3 4  
1 3 5  
1 3 6  
1 3 7  
1 3 8  
1 3 9  
1 4 0  
. . .  

0 0 1 1 9  
0 0 1 2 0  
0 0 1 2 1  
0 0 1 2 2  
0 0 1 2 5  
0 0 1 2 6  
0 0 1 2 7  
0 0 1 2 8  
0 0 1 2 9  
0 0 1 3 0  
0 0 1 3 1  
0 0 1 3 2  
0 0 1 3 3  
0 0 1 3 4  
. . .  

. . .  

. . .  
 1 0  c l k  –  4 0 5  mA 
 2 0  c l k  -  3 5 7  mA 
 1 5  c l k  -  4 1 5  mA 
  0  c l k  -    0  mA 
  0  c l k  -    0  mA 
 3 0  c l k  -  4 0 2  mA 
 4 2  c l k  -  4 6 9  mA 
  0  c l k  -    0  mA 
 1 3  c l k  –  4 6 0  mA 
 1 3  c l k  –  4 6 0  mA 
  0  c l k  -    0  mA 
  0  c l k  -    0  mA 
. . .  
. . .  

a sm 

v is 

o cca m 

v is. ref  

a sm. ref  asm. sa 

vis. sba  

occa m.s ba 

C o m p ila tio n  

M a p p in g  B a c k a n n o ta tio n  

P o w e r  
E s tim a te  

B a c k a n n o ta tio n  

 

Figure 2. Example of the software synthesis flow applied to the CRC module of the ILC16 device.  
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