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Abstract 
 

The specification on power consumption of a digital 
system is extremely important due to the growing 
relevance of the market of portable devices and must be 
taken into account since the early phases of a complex 
System-on-Chip design.  

In this paper some guidelines are provided for the 
integration of the information on power consumption in 
the executable model of parameterized cores, with 
particular attention to the AMBA AHB bus. This will give 
important information for the analysis and choice between 
different design architectures driven by functional, timing 
and power constraints of the System-on-Chip. 
 
 
1. Introduction 
 

The increasing demand of complex mobile systems, 
which has been observed during the last years in the 
worldwide market, led the designers to take into account a 
new objective in the design of complex digital systems: 
the minimization of power consumption.  

The high diffusion of systems like laptop and palmtop 
computers, cellular telephones, wireless modems and 
portable videogames is one of the most important reasons 
that feed the need of a low-power design. These systems 
take the energy to work from a battery whose duration is a 
quality design parameter and so it can have a deep impact 
on the market success. Furthermore the cost and the 
weight of batteries directly contribute to the cost and 
weight of the final product. Therefore a company should 
consider low-power design as an investment to increase its 
market segment. 

The need for a minimization of power consumption of 
a system is enforced also by some thermal considerations: 
a big portion of the energy requested by a device from the 
power supply is converted into heat. In this way heat 
dissipation systems and cooling techniques become 
necessary for the correct and safe operation of the device 
and for its reliability. It has been proven that an increase 
of 10 °C in the working temperature of an electronic 

device causes a 100% increase in the failure rate. If it is 
possible to decrease the power dissipation it is also 
possible to reduce costs for expensive cooling and 
complex packages. 

Emerging policies that work for a low environmental 
impact of electronics systems also encourage low-power 
design. In the last years some companies activated 
interesting programs, like the Energy Star by the 
Environmental Protection Agency (EPA), to establish 
rules, in terms of energy and dissipated power, to 
determine if a product is energy-efficient.  

The first necessary step to make towards low-power 
design is the dissipated power estimation of the system 
under development. This kind of analysis should be 
performed since the first phases of the design when some 
good ideas on power dissipation can drive the choice 
between different architectures, with the requested 
functional and timing specifications, on the base of the 
maximum achievable power optimization. This is also 
evidenced in the MEDEA+ Design Automation Roadmap 
that outlines the future requirements for the European 
industry [1]. 

This paper addresses the question of power analysis 
for a design modeled at system-level and some guidelines 
are given to introduce power consumption information in 
the executable model of parameterized cores. As an 
example this methodology was applied to the C++ 
description of the Advanced Microcontroller Bus 
Architecture (AMBA) Advanced High-performance Bus 
(AHB) by ARM. 
 
2. Power analysis and SoCs 
 

The high diffusion of complex portable systems is 
possible thanks to the steady growing integration 
capability reachable on a silicon chip. In this way the 
demand, and the possibility, to build embedded systems 
with increasing performances imply a proportional growth 
in the system complexity, area occupation, working clock 
frequencies and power consumption. 

System-level design and intellectual property (IP) 
modeling is the key to fast SoC innovation with the 



capability to quickly try out different design alternatives, 
to confirm the best possible architecture, HW/SW 
partition and performance parameters, including power 
consumption, early in the design process. To innovate 
quickly, system-level design provides a high level of 
abstraction, very fast simulation speed and allows a high 
degree of IP reuse. A possibility to implement an efficient 
system-level design is the use of object-oriented 
programming languages like C++, which is the base of 
SystemC for example. One goal of the EDA community is 
the integration of power analysis and optimization 
techniques into IP modeling methodologies. This is an 
important design reuse aspect that is getting increasing 
relevance in the IP qualification process, whose aim is to 
establish objective and standardized criteria to check the 
quality of an intellectual property not only in terms of its 
functionality.  

There are many tools for power estimation and 
optimization that work very well at lower levels of 
abstraction and give accurate results from RTL to circuit-
level, but at higher levels there is still a lot of work and 
research to do [2-3]. The process of system-level power 
estimation does not have to lead necessarily to a high 
degree of absolute accuracy, difficult to reach at this level 
of abstraction; the goal is to be able to obtain an early, 
“cheap” indication of the “hot-spots” of the design, the 
most critical circuit blocks under the energetic point of 
view. Optimization efforts will concentrate on these parts 
during the following development stages to obtain the best 
results in terms of power consumption. 
 
3. IP characterization 
 

System-level power analysis implies a first stage for 
IP characterization to obtain an executable model that, 
during a simulation, should provide, beside functional, 
timing and performance data, information about the 
complete system power consumption. 

At system-level a core can be seen as a functional unit 
executing a sequence of instructions or processes without 
any information on their real successive hardware or 
software implementation. In this work the word 
“instruction” is used to indicate an action that, together 
with others, covers the entire set of core behaviors. It is 
important that all these instructions are functionally non-
overlapping. 

The purpose of the presented methodology is to be 
able to assign to every instruction a relative or absolute 
value, more or less accurate, of the energy requested for 
its execution as expressed in [4-5]. Given the functional 
specification of the core, it should be possible to identify 
different instruction sets. For example several granularity 
levels can be considered: 
- a low granularity implies a lot of instructions: the time 

required for their characterization will be reasonably 

high but it will be for sure possible to obtain accurate 
results; 

- a high granularity implies few instructions: the time 
required for their characterization will be reasonably 
low but in general it will be difficult to obtain accurate 
results. 

For these reasons the instruction set choice can be 
done at different levels, also depending on the degree of 
knowledge of the final implementation of the system, 
trying to reach the best trade-off between: 
- generality and flexibility of the methodology: it is 

important to develop an analysis approach that could be 
reused for different IP typologies, in order to avoid to 
write each time a new power model from scratch; 

- results accuracy: it strongly depends on the way the 
model is written (SystemC [6], VHDL, RTL or gate-
level description) and on the way the system will be 
implemented; 

- characterization time and simulation speed: the addition 
of power analysis in the simulation of a digital block 
implies some human and machine time necessary to 
determine and use the parameters and the model that 
characterize the power dissipation of the system to be 
developed. 

Once the instruction set has been identified, it is 
necessary to characterize each instruction in terms of 
dissipated power, or better energy requested for its 
execution For this purpose it is necessary to create some 
macromodels starting from the knowledge of a possible 
implementation or however trying to complete the model 
with the maximum number of low-level details. It could 
be necessary to run lower-level simulations and in this 
sense it is very important to provide a complete set of 
testbenches to be able to observe all the different activity 
states of the system. 

The input parameters of the macromodels can belong 
to two different typologies: 
- IP typical parameters like data and address bus width, 

the dimensions of memory buffers or the frequency of 
the different clock domains; 

- characteristics of the input/output data involved in the 
instruction execution like the switching-activity, the 
probability of a signal or the Hamming distance between 
two successive data. 

For the instructions characterization it is required an 
instrumentation phase for the system model, consisting in 
the addition of some code to allow: 
- probing and storage of the chosen variables and data 

observed during the simulation; 
- the possible processing of these data to obtain the 

required statistical or probabilistic quantities; 
- the use of IP parameters and particular data, 

dynamically extracted from the simulation, to get power 
dissipation with the execution of the previously built 
power macromodels. 



4. System-level power analysis 
 

When every instruction has been characterized with its 
own energy model, it is necessary to develop a further 
model for the computation of the whole energy requested 
during a system-level simulation.  

The idea is to create, in a first stage, the functional 
model of the core and to add in a second moment the code 
dedicated to power analysis; of course this code does not 
have to modify the system behavior and it should be 
simply bypassed when it is requested to verify only the 
functionality at the maximum simulation speed. 
Furthermore the code that performs power analysis does 
not have to be included in the successive synthesis process 
of the model, unless it is necessary to develop a dynamic 
power management for a run-time energy optimization of 
the system. 

The added code will use some internal variables of the 
model to recognize the present state of the behavior 
during a functional simulation and to identify the correct 
mode for power analysis. The simulation of a complete 
SoC, that uses system-level IP models, can be several 
hundreds times faster than an RTL simulation, so in a 
small time it is possible to evaluate hundreds of different 
configurations and architectures in order to reach the 
desired trade-offs in terms of different parameters like 
speed, throughput and power consumption. 

One way to create the executable specification of a 
SoC is to use SystemC library and simulation kernel; 
different approaches can be used to add information about 
power dissipation of a digital system using this particular 
tool. According to its underlying methodology, a digital 
system can be represented as a set of communicating 
modules and the basic computation element of a module is 
the process. This means that core power dissipation is 
strictly related to process execution. 

It could be possible to characterize each process in 
terms of energy so that a process is considered as a single, 
atomic instruction. In this way a private model of power 
analysis is implemented. This kind of approach can 
produce very accurate results especially if the written code 
is easily synthesizable or the macromodel of a possible 
implementation is already known. The price to pay for 
accuracy is the low level of the intrumenting code that 
turns out to be little reusable, highly intrusive and with a 
deep impact on simulation speed. 

If this cost is too high, it is possible to gain speed and 
generality of the method, by adding a particular process to 
those already present in the module; this process, that can 
be also a more complicated FSM, works as a system 
activity monitor with the purpose to generate the 
requested energy information when particular events 
occur. A local dissipation model is implemented, less 
intrusive, whose accuracy and CPU load depends on the 
complexity of the model represented in the added FSM. 

 
 

Figure 1 – Different possible power models 
 

The highest degree of generality is reachable if it is 
possible to implement the power analysis in a further 
specific module: communicating properly with the other 
modules it can characterize the energetic behavior of the 
entire system. In this case specific communication 
protocols and interfaces should be defined to guarantee 
the highest level of reuse, the smallest reduction of the 
simulation speed and the desired accuracy in terms of 
power dissipation. In this way a global, very general 
model of power analysis is implemented that gives the 
possibility to reach the best trade-off using all the 
different timing, performance and energy parameters that 
characterize the core. These different power models are 
briefly represented in Fig. 1. 
 
5. AMBA AHB bus power analysis 
 

As stated above, SystemC library and simulation 
kernel was used for the development of the system-level 
bus model together with a library, IPsim [7-8], that 
provides most SoC modeling concepts; it is developed by 
STMicroelectronics and one important feature is to allow 
a simple and efficient use of complex busses like the 
AMBA bus by ARM [9]. 

The AMBA protocol defines a standard for on-chip 
communication and it is an efficient design tool for the 
development of high-performance embedded systems. 
AMBA specification aim at satisfying four important 
requirements: 
- to allow the right-first-time development of embedded 

controllers with different CPU or DSP cores (multiple 
masters); 

- to be technology-independent and to allow a high 
reusability of different blocks; 

- to encourage a modular system design to preserve the 
best possible CPU’s independence; 

- to facilitate the testing phase. 



AMBA specification defines three different bus 
topologies: the AHB, the Advanced System Bus (ASB) 
and the Advanced Peripheral Bus (APB). An AMBA-
based architecture typically consists of a high-
performance system bus (AHB or ASB), to sustain the 
external memory bandwidth, on which the CPU, on-chip 
memory and other DMA devices reside. Also located on 
the high-performance bus is a bridge to the lower 
bandwidth APB, where most of the system peripheral 
devices are located. 

In this work the AHB was used, the last generation of 
AMBA bus, targeted for high-level performances. A 
particular testbench was created to verify the functionality 
and the behavior of the bus model: it is made of two 
master modules, a simple default master and three slave 
modules connected through the AMBA AHB bus. The 
two master modules execute WRITE-READ non-
interruptible sequences and IDLE commands, for a 
random number of times; only in this period a bus 
handover can occur. This kind of testbench allows the 
exploration of only a part of the AHB protocol, but in this 
way it is possible to simplify the bus architecture and to 
shorten the design stage dedicated to power consumption 
macromodeling. This limitation does not preclude the 
effectiveness of the presented methodology; in fact more 
complete and complex bus models simply require a longer 
period for the characterization. The approach used for the 
system-level analysis of power consumption in the 
AMBA AHB bus is described in detail in the next 
paragraphs. 
 
5.1. AHB bus structural decomposition 
 

The AMBA AHB bus can be decomposed in the 
following main blocks represented in Fig. 2: one arbiter, a 
decoder and some multiplexing logic for read and write 
operations. Each block has been characterized to obtain a 
dynamic energy requirement model, using a “low-level” 
description. 
 

 
 

Figure 2 - AMBA AHB bus structure 
 

For example to characterize the decoder a simple one-
hot decoding behavior has been chosen and it was 
synthesized only with NOT and AND gates. The desired 
macromodel is the following, supposing that the decoder 
has nO≥2 outputs (i.e. the number of slave modules 
connected to the bus) and defining HDIN the Hamming 
distance between two consecutive inputs: 
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where VDD is the voltage swing between the logic levels 
‘0’ and ‘1’, CPD is the equivalent capacitance of one node, 
nI is the first integer number greater than log2(nO-1), 
HDOUT is ‘1’ if HDIN≥1 and CO is the capacitance 
associated to each output node. This macromodel briefly 
expresses the dynamic energy requirement of a parametric 
decoder as a function of the number of slaves and the 
input data activity. It has been supposed to have a gate-
level description of the system or at least an easy 
synthesizable version.  

A similar macromodel was derived for a generic 
multiplexer: 
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where w is the width, expressed in bit, of the data to be 
multiplexed, n is the number of inputs, HDIN and HDSEL 
are respectively the Hamming distance between two 
consecutive data and selection inputs. A simple FSM was 
created to model the energy requirement of a simplified 
version of the arbiter.  

All these models were validated using the software 
SIS, an interactive tool for synthesis and optimization of 
sequential circuits developed by the University of 
California at Berkeley [10]. 
 
5.2. AHB bus behavioral decomposition 
 

An instruction set has been identified to cover the 
functionality of the testbench. Each instruction has been 
characterized to extract an energy model on the base of 
the specific usage of the previously determined sub-
blocks. In particular four main activity modes were 
identified: IDLE, READ, WRITE and IDLE with bus 
handover; the instruction set is made of all the permissible 
transitions between one of these states and the others. 
 
5.3. Preliminary instrumentation 
 

In the preliminary model instrumentation phase, a 
specialized object class was added for the dynamic 
monitoring and the storage of the activity of the I/O 
signals of the different blocks: 
 



class Activity 
{ 
 ... 
 N_uint bit_change_count(...) 
 N_uint store_activity(...) 
 
 // Masters signals activity storage: 
 ... 
 // Slaves signals activity storage: 
 ... 
} 
 

At every bus event a particular bus function, 
get_activity, monitors the value of every bus signal and 
updates the structures of one object of the class Activity 
using the methods bit_change_count and store_activity. 
 
5.4. Power finite-state machine 
 

Then a power_FSM was created with all main states 
and the related transition functions or instructions. This is 
the FSM: 
 
void power_FSM() 
{ 
 switch (state)  
 { 
  case IDLE: //instructions & energy computation 
   ... // IDLE_IDLE 
   ... // IDLE_IDLE_HO 
   ... // IDLE_WRITE 
  case IDLE_HO: 
   ... // IDLE_HO_IDLE_HO 
   ... // IDLE_HO_IDLE 
   ... // IDLE_HO_WRITE 
  case READ:    
   ... // READ_WRITE 
   ... // READ_IDLE 
   ... // READ_IDLE_HO 
  case WRITE:  
   ... // WRITE_READ 
  default: 
 } 
 // energy value output in a data file 
 ... 
} 
 

During the compilation of the model, it is sufficient to 
define a variable POWERTEST to include the power 
analysis in the executable specification; otherwise the 
added code is ignored by the compiler to avoid loss of 
efficiency in terms of speed of the system-level functional 
simulation. 
 
6. Simulations and results 
 

The entire system was simulated using the SystemC 
2.0 simulator. An analysis was conducted over the 
selected instruction set to carry out some energy 
information for a possible future power optimization of 
the system. In Tab. 1 the average and the total energy for 
the executed instructions are reported during a 50 µs 

simulation while the system was working at a clock 
frequency of 100 MHz. 

From this table it is possible to see that there is not a 
relevant difference in the average energy requirement of 
each instruction; but the important point to figure out is 
that the 87.31 % of the entire energy required for the 
execution of this particular testbench is due to data 
transfer instructions with no bus handover and only the 
12.69 % of the energy is due to bus arbitration. This 
means that possible optimization efforts, regarding this 
particular system configuration and application, should 
better concentrate on the AHB data-path rather than on the 
arbitration logic; this will give the best results in terms of 
power consumption reduction. 
 

Instruction 
Average 
energy 

 

Total energy  
per instruction  

 

IDLE_HO_IDLE_HO 14.7 pJ 96.5 µJ 11.49 % 
IDLE_HO_WRITE 16.7 pJ 0.5 µJ 0.06 % 
READ_WRITE 19.8 pJ 417.7 µJ 49.75 % 
READ_IDLE_HO 22.4 pJ 9.6 µJ 1.14 % 
WRITE_READ 14.7 pJ 315.3 µJ 37.56 % 

 

Total simulation energy 839.6µJ 100 % 
 

Table 1 -  Instructions energy analysis 
 

These considerations could be verified with an other 
simulation where it was possible to analyze the power 
consumption of the different AHB sub-blocks that were 
previously characterized in terms of energy requirements. 

The next figures show the power dissipation of the 
AMBA AHB bus analyzed during the first 4 µs of this 
simulation. In particular in Fig. 3 is reported the total 
AHB power consumption, in Fig. 4 is reported the arbiter 
power consumption and in Fig. 5 is reported the power 
dissipated by the multiplexer that sends data and control 
signals from the masters side to the slaves side. 
 

 
 

Figure 3 – Total AHB power consumption 
 



 
 

Figure 4 – Arbiter power consumption 
 

 
 

Figure 5 – M2S multiplexer power consumption 
 

It is evident from these two last figures the different 
amount of power dissipated in two of the principal AHB 
sub-blocks; this is also graphically represented in the 
following Fig. 6: 
 

 
 

Figure 6 – AHB sub-blocks power contribution 
 

In this figure M2S, DEC, ARB and S2M represents 
respectively the power contribution of the masters-to-
slaves data/control multiplexer, the address decoder, the 
arbiter and the slaves-to-masters data/control multiplexer. 
At the moment the price to pay for the application of this 
analysis methodology to a system-level executable 
specification is a doubling in the simulation time. 
 

7. Conclusion 
 

In this paper a methodology was presented for the 
analysis of the power dissipated in digital blocks 
described at system-level; in particular SystemC and 
IPsim were used to create the executable specification of 
the AMBA AHB bus. This kind of analysis was applied to 
get information about the power dissipated by this bus 
typology during a system-level simulation. The presented 
methodology is still object of study and research with the 
purpose to gain more efficiency in terms of better result 
accuracy, generality of application, smaller impact on the 
existing code of the models and on the simulation speed. 
This methodology allows the designer to easy explore 
different system architectures taking into account the 
power dimension, a key aspect in modern embedded 
system design. In this way it is possible to take important 
decisions in the early phases of the design promoting a 
good result for the final physical implementation in terms 
of cost, performances and reliability. 
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