
System-Level Power Analysis Methodology Applied to the AMBA AHB Bus

M. Caldari*, M. Conti*, M. Coppola**, P. Crippa*, S. Orcioni*, L. Pieralisi*, C. Turchetti*

* University of Ancona, via Brecce Bianche, I-60131, Ancona, Italy
** STMicroelectronics, Grenoble, France

Abstract

The specification on power consumption of a digital
system is extremely important due to the growing
relevance of the market of portable devices and must be
taken into account since the early phases of a complex
System-on-Chip design.

In this paper some guidelines are provided for the
integration of the information on power consumption in
the executable model of parameterized cores, with
particular attention to the AMBA AHB bus. This will give
important information for the analysis and choice between
different design architectures driven by functional, timing
and power constraints of the System-on-Chip.

1. Introduction

The increasing demand of complex mobile systems,
which has been observed during the last years in the
worldwide market, led the designers to take into account a
new objective in the design of complex digital systems:
the minimization of power consumption.

The high diffusion of systems like laptop and palmtop
computers, cellular telephones, wireless modems and
portable videogames is one of the most important reasons
that feed the need of a low-power design. These systems
take the energy to work from a battery whose duration is a
quality design parameter and so it can have a deep impact
on the market success. Furthermore the cost and the
weight of batteries directly contribute to the cost and
weight of the final product. Therefore a company should
consider low-power design as an investment to increase its
market segment.

The need for a minimization of power consumption of
a system is enforced also by some thermal considerations:
a big portion of the energy requested by a device from the
power supply is converted into heat. In this way heat
dissipation systems and cooling techniques become
necessary for the correct and safe operation of the device
and for its reliability. It has been proven that an increase
of 10 °C in the working temperature of an electronic

device causes a 100% increase in the failure rate. If it is
possible to decrease the power dissipation it is also
possible to reduce costs for expensive cooling and
complex packages.

Emerging policies that work for a low environmental
impact of electronics systems also encourage low-power
design. In the last years some companies activated
interesting programs, like the Energy Star by the
Environmental Protection Agency (EPA), to establish
rules, in terms of energy and dissipated power, to
determine if a product is energy-efficient.

The first necessary step to make towards low-power
design is the dissipated power estimation of the system
under development. This kind of analysis should be
performed since the first phases of the design when some
good ideas on power dissipation can drive the choice
between different architectures, with the requested
functional and timing specifications, on the base of the
maximum achievable power optimization. This is also
evidenced in the MEDEA+ Design Automation Roadmap
that outlines the future requirements for the European
industry [1].

This paper addresses the question of power analysis
for a design modeled at system-level and some guidelines
are given to introduce power consumption information in
the executable model of parameterized cores. As an
example this methodology was applied to the C++
description of the Advanced Microcontroller Bus
Architecture (AMBA) Advanced High-performance Bus
(AHB) by ARM.

2. Power analysis and SoCs

The high diffusion of complex portable systems is
possible thanks to the steady growing integration
capability reachable on a silicon chip. In this way the
demand, and the possibility, to build embedded systems
with increasing performances imply a proportional growth
in the system complexity, area occupation, working clock
frequencies and power consumption.

System-level design and intellectual property (IP)
modeling is the key to fast SoC innovation with the

capability to quickly try out different design alternatives,
to confirm the best possible architecture, HW/SW
partition and performance parameters, including power
consumption, early in the design process. To innovate
quickly, system-level design provides a high level of
abstraction, very fast simulation speed and allows a high
degree of IP reuse. A possibility to implement an efficient
system-level design is the use of object-oriented
programming languages like C++, which is the base of
SystemC for example. One goal of the EDA community is
the integration of power analysis and optimization
techniques into IP modeling methodologies. This is an
important design reuse aspect that is getting increasing
relevance in the IP qualification process, whose aim is to
establish objective and standardized criteria to check the
quality of an intellectual property not only in terms of its
functionality.

There are many tools for power estimation and
optimization that work very well at lower levels of
abstraction and give accurate results from RTL to circuit-
level, but at higher levels there is still a lot of work and
research to do [2-3]. The process of system-level power
estimation does not have to lead necessarily to a high
degree of absolute accuracy, difficult to reach at this level
of abstraction; the goal is to be able to obtain an early,
“cheap” indication of the “hot-spots” of the design, the
most critical circuit blocks under the energetic point of
view. Optimization efforts will concentrate on these parts
during the following development stages to obtain the best
results in terms of power consumption.

3. IP characterization

System-level power analysis implies a first stage for
IP characterization to obtain an executable model that,
during a simulation, should provide, beside functional,
timing and performance data, information about the
complete system power consumption.

At system-level a core can be seen as a functional unit
executing a sequence of instructions or processes without
any information on their real successive hardware or
software implementation. In this work the word
“instruction” is used to indicate an action that, together
with others, covers the entire set of core behaviors. It is
important that all these instructions are functionally non-
overlapping.

The purpose of the presented methodology is to be
able to assign to every instruction a relative or absolute
value, more or less accurate, of the energy requested for
its execution as expressed in [4-5]. Given the functional
specification of the core, it should be possible to identify
different instruction sets. For example several granularity
levels can be considered:
- a low granularity implies a lot of instructions: the time

required for their characterization will be reasonably

high but it will be for sure possible to obtain accurate
results;

- a high granularity implies few instructions: the time
required for their characterization will be reasonably
low but in general it will be difficult to obtain accurate
results.

For these reasons the instruction set choice can be
done at different levels, also depending on the degree of
knowledge of the final implementation of the system,
trying to reach the best trade-off between:
- generality and flexibility of the methodology: it is

important to develop an analysis approach that could be
reused for different IP typologies, in order to avoid to
write each time a new power model from scratch;

- results accuracy: it strongly depends on the way the
model is written (SystemC [6], VHDL, RTL or gate-
level description) and on the way the system will be
implemented;

- characterization time and simulation speed: the addition
of power analysis in the simulation of a digital block
implies some human and machine time necessary to
determine and use the parameters and the model that
characterize the power dissipation of the system to be
developed.

Once the instruction set has been identified, it is
necessary to characterize each instruction in terms of
dissipated power, or better energy requested for its
execution For this purpose it is necessary to create some
macromodels starting from the knowledge of a possible
implementation or however trying to complete the model
with the maximum number of low-level details. It could
be necessary to run lower-level simulations and in this
sense it is very important to provide a complete set of
testbenches to be able to observe all the different activity
states of the system.

The input parameters of the macromodels can belong
to two different typologies:
- IP typical parameters like data and address bus width,

the dimensions of memory buffers or the frequency of
the different clock domains;

- characteristics of the input/output data involved in the
instruction execution like the switching-activity, the
probability of a signal or the Hamming distance between
two successive data.

For the instructions characterization it is required an
instrumentation phase for the system model, consisting in
the addition of some code to allow:
- probing and storage of the chosen variables and data

observed during the simulation;
- the possible processing of these data to obtain the

required statistical or probabilistic quantities;
- the use of IP parameters and particular data,

dynamically extracted from the simulation, to get power
dissipation with the execution of the previously built
power macromodels.

4. System-level power analysis

When every instruction has been characterized with its
own energy model, it is necessary to develop a further
model for the computation of the whole energy requested
during a system-level simulation.

The idea is to create, in a first stage, the functional
model of the core and to add in a second moment the code
dedicated to power analysis; of course this code does not
have to modify the system behavior and it should be
simply bypassed when it is requested to verify only the
functionality at the maximum simulation speed.
Furthermore the code that performs power analysis does
not have to be included in the successive synthesis process
of the model, unless it is necessary to develop a dynamic
power management for a run-time energy optimization of
the system.

The added code will use some internal variables of the
model to recognize the present state of the behavior
during a functional simulation and to identify the correct
mode for power analysis. The simulation of a complete
SoC, that uses system-level IP models, can be several
hundreds times faster than an RTL simulation, so in a
small time it is possible to evaluate hundreds of different
configurations and architectures in order to reach the
desired trade-offs in terms of different parameters like
speed, throughput and power consumption.

One way to create the executable specification of a
SoC is to use SystemC library and simulation kernel;
different approaches can be used to add information about
power dissipation of a digital system using this particular
tool. According to its underlying methodology, a digital
system can be represented as a set of communicating
modules and the basic computation element of a module is
the process. This means that core power dissipation is
strictly related to process execution.

It could be possible to characterize each process in
terms of energy so that a process is considered as a single,
atomic instruction. In this way a private model of power
analysis is implemented. This kind of approach can
produce very accurate results especially if the written code
is easily synthesizable or the macromodel of a possible
implementation is already known. The price to pay for
accuracy is the low level of the intrumenting code that
turns out to be little reusable, highly intrusive and with a
deep impact on simulation speed.

If this cost is too high, it is possible to gain speed and
generality of the method, by adding a particular process to
those already present in the module; this process, that can
be also a more complicated FSM, works as a system
activity monitor with the purpose to generate the
requested energy information when particular events
occur. A local dissipation model is implemented, less
intrusive, whose accuracy and CPU load depends on the
complexity of the model represented in the added FSM.

Figure 1 – Different possible power models

The highest degree of generality is reachable if it is
possible to implement the power analysis in a further
specific module: communicating properly with the other
modules it can characterize the energetic behavior of the
entire system. In this case specific communication
protocols and interfaces should be defined to guarantee
the highest level of reuse, the smallest reduction of the
simulation speed and the desired accuracy in terms of
power dissipation. In this way a global, very general
model of power analysis is implemented that gives the
possibility to reach the best trade-off using all the
different timing, performance and energy parameters that
characterize the core. These different power models are
briefly represented in Fig. 1.

5. AMBA AHB bus power analysis

As stated above, SystemC library and simulation
kernel was used for the development of the system-level
bus model together with a library, IPsim [7-8], that
provides most SoC modeling concepts; it is developed by
STMicroelectronics and one important feature is to allow
a simple and efficient use of complex busses like the
AMBA bus by ARM [9].

The AMBA protocol defines a standard for on-chip
communication and it is an efficient design tool for the
development of high-performance embedded systems.
AMBA specification aim at satisfying four important
requirements:
- to allow the right-first-time development of embedded

controllers with different CPU or DSP cores (multiple
masters);

- to be technology-independent and to allow a high
reusability of different blocks;

- to encourage a modular system design to preserve the
best possible CPU’s independence;

- to facilitate the testing phase.

AMBA specification defines three different bus
topologies: the AHB, the Advanced System Bus (ASB)
and the Advanced Peripheral Bus (APB). An AMBA-
based architecture typically consists of a high-
performance system bus (AHB or ASB), to sustain the
external memory bandwidth, on which the CPU, on-chip
memory and other DMA devices reside. Also located on
the high-performance bus is a bridge to the lower
bandwidth APB, where most of the system peripheral
devices are located.

In this work the AHB was used, the last generation of
AMBA bus, targeted for high-level performances. A
particular testbench was created to verify the functionality
and the behavior of the bus model: it is made of two
master modules, a simple default master and three slave
modules connected through the AMBA AHB bus. The
two master modules execute WRITE-READ non-
interruptible sequences and IDLE commands, for a
random number of times; only in this period a bus
handover can occur. This kind of testbench allows the
exploration of only a part of the AHB protocol, but in this
way it is possible to simplify the bus architecture and to
shorten the design stage dedicated to power consumption
macromodeling. This limitation does not preclude the
effectiveness of the presented methodology; in fact more
complete and complex bus models simply require a longer
period for the characterization. The approach used for the
system-level analysis of power consumption in the
AMBA AHB bus is described in detail in the next
paragraphs.

5.1. AHB bus structural decomposition

The AMBA AHB bus can be decomposed in the
following main blocks represented in Fig. 2: one arbiter, a
decoder and some multiplexing logic for read and write
operations. Each block has been characterized to obtain a
dynamic energy requirement model, using a “low-level”
description.

Figure 2 - AMBA AHB bus structure

For example to characterize the decoder a simple one-
hot decoding behavior has been chosen and it was
synthesized only with NOT and AND gates. The desired
macromodel is the following, supposing that the decoder
has nO≥2 outputs (i.e. the number of slave modules
connected to the bus) and defining HDIN the Hamming
distance between two consecutive inputs:

()),(2
4

2

INOOOUTINPDOI
DD

DEC HDnfCHDHDCnnVE =⋅⋅+⋅⋅⋅=

where VDD is the voltage swing between the logic levels
‘0’ and ‘1’, CPD is the equivalent capacitance of one node,
nI is the first integer number greater than log2(nO-1),
HDOUT is ‘1’ if HDIN≥1 and CO is the capacitance
associated to each output node. This macromodel briefly
expresses the dynamic energy requirement of a parametric
decoder as a function of the number of slaves and the
input data activity. It has been supposed to have a gate-
level description of the system or at least an easy
synthesizable version.

A similar macromodel was derived for a generic
multiplexer:

),,,(SELINMUX HDHDnwfE =

where w is the width, expressed in bit, of the data to be
multiplexed, n is the number of inputs, HDIN and HDSEL
are respectively the Hamming distance between two
consecutive data and selection inputs. A simple FSM was
created to model the energy requirement of a simplified
version of the arbiter.

All these models were validated using the software
SIS, an interactive tool for synthesis and optimization of
sequential circuits developed by the University of
California at Berkeley [10].

5.2. AHB bus behavioral decomposition

An instruction set has been identified to cover the
functionality of the testbench. Each instruction has been
characterized to extract an energy model on the base of
the specific usage of the previously determined sub-
blocks. In particular four main activity modes were
identified: IDLE, READ, WRITE and IDLE with bus
handover; the instruction set is made of all the permissible
transitions between one of these states and the others.

5.3. Preliminary instrumentation

In the preliminary model instrumentation phase, a
specialized object class was added for the dynamic
monitoring and the storage of the activity of the I/O
signals of the different blocks:

class Activity
{
 ...
 N_uint bit_change_count(...)
 N_uint store_activity(...)

 // Masters signals activity storage:
 ...
 // Slaves signals activity storage:
 ...
}

At every bus event a particular bus function,
get_activity, monitors the value of every bus signal and
updates the structures of one object of the class Activity
using the methods bit_change_count and store_activity.

5.4. Power finite-state machine

Then a power_FSM was created with all main states
and the related transition functions or instructions. This is
the FSM:

void power_FSM()
{
 switch (state)
 {
 case IDLE: //instructions & energy computation
 ... // IDLE_IDLE
 ... // IDLE_IDLE_HO
 ... // IDLE_WRITE
 case IDLE_HO:
 ... // IDLE_HO_IDLE_HO
 ... // IDLE_HO_IDLE
 ... // IDLE_HO_WRITE
 case READ:
 ... // READ_WRITE
 ... // READ_IDLE
 ... // READ_IDLE_HO
 case WRITE:
 ... // WRITE_READ
 default:
 }
 // energy value output in a data file
 ...
}

During the compilation of the model, it is sufficient to
define a variable POWERTEST to include the power
analysis in the executable specification; otherwise the
added code is ignored by the compiler to avoid loss of
efficiency in terms of speed of the system-level functional
simulation.

6. Simulations and results

The entire system was simulated using the SystemC
2.0 simulator. An analysis was conducted over the
selected instruction set to carry out some energy
information for a possible future power optimization of
the system. In Tab. 1 the average and the total energy for
the executed instructions are reported during a 50 µs

simulation while the system was working at a clock
frequency of 100 MHz.

From this table it is possible to see that there is not a
relevant difference in the average energy requirement of
each instruction; but the important point to figure out is
that the 87.31 % of the entire energy required for the
execution of this particular testbench is due to data
transfer instructions with no bus handover and only the
12.69 % of the energy is due to bus arbitration. This
means that possible optimization efforts, regarding this
particular system configuration and application, should
better concentrate on the AHB data-path rather than on the
arbitration logic; this will give the best results in terms of
power consumption reduction.

Instruction
Average
energy

Total energy
per instruction

IDLE_HO_IDLE_HO 14.7 pJ 96.5 µJ 11.49 %
IDLE_HO_WRITE 16.7 pJ 0.5 µJ 0.06 %
READ_WRITE 19.8 pJ 417.7 µJ 49.75 %
READ_IDLE_HO 22.4 pJ 9.6 µJ 1.14 %
WRITE_READ 14.7 pJ 315.3 µJ 37.56 %

Total simulation energy 839.6µJ 100 %

Table 1 - Instructions energy analysis

These considerations could be verified with an other
simulation where it was possible to analyze the power
consumption of the different AHB sub-blocks that were
previously characterized in terms of energy requirements.

The next figures show the power dissipation of the
AMBA AHB bus analyzed during the first 4 µs of this
simulation. In particular in Fig. 3 is reported the total
AHB power consumption, in Fig. 4 is reported the arbiter
power consumption and in Fig. 5 is reported the power
dissipated by the multiplexer that sends data and control
signals from the masters side to the slaves side.

Figure 3 – Total AHB power consumption

Figure 4 – Arbiter power consumption

Figure 5 – M2S multiplexer power consumption

It is evident from these two last figures the different
amount of power dissipated in two of the principal AHB
sub-blocks; this is also graphically represented in the
following Fig. 6:

Figure 6 – AHB sub-blocks power contribution

In this figure M2S, DEC, ARB and S2M represents
respectively the power contribution of the masters-to-
slaves data/control multiplexer, the address decoder, the
arbiter and the slaves-to-masters data/control multiplexer.
At the moment the price to pay for the application of this
analysis methodology to a system-level executable
specification is a doubling in the simulation time.

7. Conclusion

In this paper a methodology was presented for the
analysis of the power dissipated in digital blocks
described at system-level; in particular SystemC and
IPsim were used to create the executable specification of
the AMBA AHB bus. This kind of analysis was applied to
get information about the power dissipated by this bus
typology during a system-level simulation. The presented
methodology is still object of study and research with the
purpose to gain more efficiency in terms of better result
accuracy, generality of application, smaller impact on the
existing code of the models and on the simulation speed.
This methodology allows the designer to easy explore
different system architectures taking into account the
power dimension, a key aspect in modern embedded
system design. In this way it is possible to take important
decisions in the early phases of the design promoting a
good result for the final physical implementation in terms
of cost, performances and reliability.

Acknowledgments

This research has been sponsored in part by EU MEDEA+.

References

[1] MEDEA+ Design Automation Roadmap, March 2002,

www.medeaplus.org/webpublic/edaroadmap_merci.htm.
[2] M. Nemani, and F. N. Najm, “Towards a high-level power

estimation capability,” IEEE Trans. CAD, vol. 15, no. 6,
pp. 588–598, June 1996.

[3] A. Stammermann, L. Kruse, W. Nebel, A. Pratsch, E.
Schmidt, M. Sculte, and A. Schulz, “System level
optimization and design space exploration for low power,”
in Proc. International Symposium on System Synthesis,
Montreal, Quebec, Canada, pp. 142–146, Sept. 30 – Oct. 3
2001.

[4] T. Givargis, F. Vahid, and J. Henkel, “Instruction based
system level power evaluation of system-on-a-chip
peripheral cores,” in Proc. International Symposium on
System Synthesis, Madrid, Spain, pp. 163–171, Sept. 2000.

[5] M. Caldari, M. Conti, P. Crippa, G. Nuzzo, S. Orcioni, and
C. Turchetti, “Instruction based power consumption
estimation methodology,” in Proc. International
Conference on Electronics, Circuits and Systems,
Dubrovnik, Croatia, pp. 721–724, Sept. 2002.

[6] SystemC: SystemC documentation at www.systemc.org.
[7] M. Coppola, S. Curaba, M. Grammatikakis, and G.

Maruccia, “IPSIM reference manual,” ver. 2.8, Oct. 2001,
STMicroelectronics internal report.

[8] M. Caldari, M. Conti, M. Coppola, M. Giuliodori, and C.
Turchetti, “C++ based System-On-Chip Design,” IEEE
Canadian Journal of Electrical and Computer
Engineering, vol. 26, no. 3/4, July/Oct. 2001, pp. 115–123.

[9] ARM: “AMBA specification,” rev. 2, May 1999.
[10] E. M. Sentovich, et al., “SIS: a system for sequential

analysis,” University of California, Berkeley, May 1992.

http://www.medeaplus.org/webpublic/edaroadmap_merci.htm
http://www.systemc.org/

	Main Page
	DF'03
	Front Matter
	Table of Contents
	Author Index

