
Library Functions Timing Characterization
for Source-Level Analysis

C. Brandolese, W. Fornaciari, F. Salice, D. Sciuto
Politecnico di Milano, Piazza L. da Vinci, 32 – 20133 Milano, Italy

Abstract

Execution time estimation of software at source-level
is nowadays a crucial phase of the system design flow,
especially for portable devices and real-time systems.
From a source-level perspective, a call to an external
library function is a black-box: only the binary code
of such functions is, in fact, available. This paper
proposes a methodology for library functions analysis
within a source-level estimation framework.

1. Introduction

The problem of timing estimation deserves special
attention for real-time applications, especially when it
focuses on the analysis of software performed at a high
level of abstraction. In a generic program1, different
sources contribute to the overall execution time:

Algorithms are specific to the program under analy-
sis and are written by the user. All the source-level
information is available for such portions.

Library functions appear as calls to external func-
tions, generally collected into libraries. For these,
only the function name and the number and type
of the arguments is visible at source-level.

System calls appear in the form of library function
calls, the function simply being a wrapper around
a software interrupt routine.

At source-level, thus, both library and system calls are
black-boxes and nothing can be inferred by inspect-
ing the source code. In most cases, libraries are pre-
compiled binaries and, therefore, source-level analysis
is unfeasible. This work proposes a methodology to
face this problem, which is crucial to design real-time
applications. To the best of the authors’ knowledge,
no previous study has systematically approached this
topic under a wide and practical perspective.

1The language considered in this paper is C.

2. Problem definition

The wide semantic spectrum provided by program-
ming languages makes the function cost vary dramat-
ically and irregularly with respect to the input data.
The only information available for any software library
are the object code and the function prototype found
in the library’s header files. Library function calls are
considered as holes in the user source code: wherever
call is present, in fact, the analysis should temporar-
ily switch to assembly-level, estimate the cost and in-
clude the result in the overall cost of the program. The
goal of the proposed methodology is to avoid such an
abstraction-level switching by providing a mathemati-
cal model of the library function to be used statically.
This requires each function to be pre-characterized by
means of a dynamic analysis aimed at extracting the
dependence of the function cost on some relevant prop-
erties of the input data. To this purpose, the function
under analysis must be fed with proper data, actually
executed on a host machine and its behavior analyzed.
The critical point of such a flow is the automatic gener-
ation of input data since the necessary information to
do that can only be provided by the user. The knowl-
edge a programmer has on the functions he uses in his
application can be split in three kinds of information:

Function interface. The function name, the number
and the type of each parameter. This information
is found in the header files.

Data semantics. The semantic meaning of the data
passed to the function, i.e. the way the function
interprets input data. Such knowledge cannot be
inferred from the function interface or object code.

Function semantics. The algorithm implemented.
This information is irrelevant to our purpose.

The only information on a function that can be auto-
matically derived is, thus, the C type of its arguments
but this is not sufficient since the same C type can
have different meanings within a program. For exam-
ple, the C type char* (referred to as formal type in
the following) can represent a C string, an array of
characters or a pointer to a single character. The user

1

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

must thus describe what is the semantics of each pa-
rameter (referred to as sematic type in the following),
according to its actual usage. In addition, the user
must quantitatively describe the statistical properties
of the data that the function will operate on in its ap-
plication. When the semantic type and the statistical
properties of each argument have been defined, the cost
of the function can be automatically estimated [1]. To
actually perform the estimate, a C program, the stub,
is synthesized. Such a program executes the function
under test a given number of times using as input the
data generated based on the semantic and statistical
information provided by the user. All the executions
are traced, and the traces analyzed to compute the es-
timated timing. This produces a lumped model of the
cost, that can be conveniently used at source level. The
complete analysis flow is sketched in figure 1.

Prototype

Semantic type
description

Binary trace

Stub

Modelanalysis

trace

generation

stub Semantic

database
types

Source

Technology
library

Catalog

Figure 1. Function cost modelling flow

3. Experimental results

The proposed methodology has been implemented
and applied to the Standard C Library [4]. The charac-
terization has been organized in four steps: 1) function
grouping based on the type of arguments; 2) semantic
type definitions; 3) Dynamic analysis and collection of
statistical data; 4) Post-analysis. The flow has been
run on a Intel Pentium III workstation at 933 MHz
with 512 MB of main memory, under Linux Mandrake
8.0. The full characterization process for 65 functions
required 3,5 hours and approximately 168 MB of disk
space. The resulting density functions have then been
classified into four groups according to their shape,
ranging from very simple to apparently chaotic behav-
iors (see Figure 2). Functions belonging to the first
three groups have then been post-processed in order
to extract, whenever possible, a relation between the
data density function (input) and the execution time
density (output). Out of the 65 functions considered,
59 showed a sufficiently regular behavior to be mod-
elled in closed form (Dirac’s δ, Uniform, Exponential
and Gaussian). The function models have then been
used within a source-level estimation flow in order to
provide timing figures to the library function calls that
would have been otherwise “holes” since no source code

300 320 340 360 380 400

Execution time (clock cycles)

0

20

40

60

80

100

Fr
eq

ue
nc

y
(%

)

600 700 800 900 1000 1100

Execution time (clock cycles)

0

2

4

6

8

10

Fr
eq

ue
nc

y
(%

)

__sin() strlen()

0 100 200 300 400 500

Execution time (clock cycles)

0

5

10

15

20

25

Fr
eq

ue
nc

y
(%

)

440 460 480 500 520 540 560 580

Execution time (clock cycles)

0

5

10

15

20

25

30

Fr
eq

ue
nc

y
(%

)

strchr() __atanh()

Figure 2. Sample function timing densities

for them is available. The source-level model and es-
timation flow used to validate the results obtained for
function characterization is the PEOPLE toolset [3, 2].
Table 1 reports the timing results obtained with the
source-level estimation flow, both with and without the
additional cost of the function calls.

w/o Library w/ Library
Source Actual Est. Err. Est. Err.

bsort 90.726.800 67.110.733 −26.0% 86.515.586 −4.6%
newton 4.093.049 1.202.695 −70.6% 3.714.181 −9.3%
poly 863.228 180.323 −79.1% 847.879 −1.8%
linsrch 940.101 660.121 −29.8% 1.039.492 10.6%

Overall — — 51.4% — 6.6%

Table 1. Suorce-level estimation results

4. Conclusions

The paper presented a methodology for timing es-
timation of library functions within the more abstract
context of source-level analysis of programs. Prelimi-
nary results are also presented to confirm the viability
of the the proposed approach in the context of timing
analysis of real-time software and the accuracy pro-
vided by the toolset and the underlying models.

References

[1] L. Ceresoli. Time and Power Characterization of Soft-
ware Libraries. Report 02.059, Cefriel, Milan, 2002.

[2] M. Dadomo. Estimation of the Energy/Timing Charac-
teristics of Source-Level C Code. Report 02.002, Cefriel,
Milan, 2002.

[3] PEOPLE. Power Estimation for Fast Exploration of
Embedded Systems. Esprit-ESD project N. 26769.

[4] P. Plauger. The Standard C Library. Prentice Hall,
Englewood Cliffs, NJ, USA, 1992.

2

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

