
Parallel Systems

Lecture 3 1

Parallel Systems
- Outline for lecture 3 -

� Caches (a quick review)
� Shared memory multiprocessors

�Memory hierarchies
� Cache coherence
� Snooping protocols

» Invalidation protocols (MSI, MESI)
» Update protocol (Dragon)

� Protocol tradeoffs

Caches

� Caches memories are small, fast buffers that are 
used to temporarily hold 
� Recently used information
� Information that might be needed in the near future

� Principle of locality 
� Programs access a relatively small portion of their address 

space at any instant of time
� Temporal locality (locality in time): If an item is referenced, it 

will tend to be referenced again soon.
� Spatial locality (locality in space): If an item is referenced, 

items whose addresses are close by will tend to be 
referenced soon

� Q1: Where can a block be placed in a cache?
� Q2: How is a block found?
� Q3: What block is replaced on a miss?
� Q4: How are writes handled?

Parallel Systems

Lecture 3 2

Caches
- Block placement -

0 1 5 10 15 20 25 302

Memory

Block no.

0 1 52 3 4 6 7 0 1 52 3 4 6 7
Cache

0 1 52 3 4 6 7

0 1 2 3Set

Fully 
associative

Direct 
mapped

Set
associative

Direct mapped: (block address) MOD (number of blocks in the cache)
Fully associative: Blocks can go anywhere
Set associative: (block address) MOD (number of sets in the cache)

Caches
- Finding blocks -

Address

V Tag Data V Tag Data V Tag Data V Tag Data

= = = =

Hit



Parallel Systems

Lecture 3 3

Caches
- Block replacement and write policies -

� Block replacement
� Direct mapped caches: Block can only go in one place
� Set and fully associative caches: Must choose block to replace

» Random
» Least-recently used

� Write policies
� Write through (store through)

» Data is written to both the cache and to the memory

� Write back (copy back)
» Data is only written to the cache. The modified data is written 

back to memory only when it is replaced.

� Further reading
� Computer Architecture – A Quantitative Approach (Hennessy, 

Patterson)
� Computer Organization and Design (Patterson, Hennessy)

Memory Hierarchies

� Shared cache
� Can be used to connect a small number of 

processors (2-8)
� Interconnect between the processors and the 

shared cache is a critical path
� Mid-80s: connecting a few processors on a 

board
� Today: one strategy for multiprocessors-on-a-

chip

� Bus-based shared memory
� Widely used for small to medium scale

(20-30 processors)
� Scaling limit comes from the limited bandwidth

on the bus

P1

Switch

Cache
(interleaved)

Main Memory
(interleaved)

Pn

P1 Pn

Cache Cache

Memory

Bus

Parallel Systems

Lecture 3 4

Memory Hierarchies [cont.]

� Dancehall approach
� Interconnect is a scalable point-to-

point network rather than a bus
�Memory is divided into many logical 

modules
� All main memory is uniformly far away 

from all processors (UMA)
� Drawback: leads to several “hops” in 

the interconnect

� Distributed memory
� Not symmetric
� Each node has its own local portion of 

the global main memory
�Most attractive approach for scalable 

multiprocessors (>100 processors)

P1 Pn

Cache Cache

Interconnection network

Memory Memory

P1

Cache

Mem

Interconnection network

Pn

Cache

Mem

Memory Hierarchies [cont.]

� Caches reduces the bandwidth demand placed on 
the shared interconnect
� Use of several private caches rises a challenge of cache 

coherence

� Approaches
� Interconnect is visible to all processors => snooping 

technique
� Decentralized interconnect => directory based technique

� Fundamental property of memories
� A set of locations that hold values
� A read should return the latest value written to that location



Parallel Systems

Lecture 3 5

Cache Coherence

� Some definitions
�Memory operations: Single read, write, or read-modify-write 

access to a memory location 
� A memory operation issues when it leaves the processor 

and is presented to the memory system
� A multiprocessor memory system is coherent if

» Operations issued by any process occur in the order in which 
they were issued to the memory system by that process

» The value returned by each read operation is the value written 
by the last write to that location in the serial order

� Two properties follows by the definitions
�Write propagation: writes become visible to other processes
�Write serialization: all writes to a location are seen in the 

same order by all processes

Snooping Protocols
- Basic definitions -

� Coherence is maintained by having all cache 
controllers “snoop” on the bus and monitor the 
transactions

� Key properties of a bus that supports coherence
� All transaction that appear on the bus are visible to all cache 

controllers
� All transactions are visible in the same order

� Simplest approach
� Single level write through caches

» This was the approach used in the first commercial bus-based 
SMP’s

� Coherence protocols
� Invalidation-based 
� Update-based

Parallel Systems

Lecture 3 6

Snooping Protocols
- Basic definitions [cont.]-

� Snoopy protocols ties together bus transactions and 
the state transition diagram associated with a cache 
block

� Bus transactions
� arbitration, command (read&write), and data transfer

� State transition diagram
� Each cache block has a state associated with it, along with 

the tag and data (e.g., valid or invalid)
� State changes is the same for all blocks and all caches, but 

the current state of a block in different caches may be 
different

� Two inputs to cache controller
» Memory requests issued by the processor

» The bus snooper informs about bus transactions

Snooping Protocols 
- A two-state write-through invalidation protocol -

� Notation “A / B” means
� If transaction A is observed, then 

transaction B is generated

� Write-through
�Writes are serialized by the order in 

which they appear on the shared bus
� Drawback: Every store consumes 

bandwidth on the shared bus
=> Poor scalability

V

I

PrWr / BusWr

PrRd / -
PrWr / BusWr

PrRd / 
BusRd

BusWr / -



Parallel Systems

Lecture 3 7

Snooping Protocols
- A three-state write-back invalidation protocol -

� Write-back caches
� Processors can write in their local caches without any bus transactions
� Actions on a write miss

» Read block from memory
» Update block
» Retain block in modified (dirty) state so it can be written back to 

memory upon replacement

� Owner: The cache must supply the data upon a request for that block
� Exclusive copy: This is the only cache with a valid copy of the block
� States used: MSI

» Modified (M)
� Only this cache has a valid copy of the block. 

� Main memory may or may not have a valid copy

» Shared (S)
� Block is present in an unmodified state. Other caches may also have 

an copy

» Invalid (I)

Snooping Protocols 
- A three-state write-back invalidation protocol [cont.] -

� Transactions
� Bus Read (BusRd)

» Generated by a PrRd
that misses in the cache

� Bus Read Exclusive 
(BusRdX)

» Generated by a PrWr to 
a block that is 

� Not in the cache, or

� In the cache, but not in 
the modified state

» All other caches are 
invalidated

� Bus Write Back (BusWB)
» Generated by the cache 

controller on a write back

S

I

M

PrRd / -
BusRd / -

PrRd / -
PrWr /-

BusRdX / -

BusRdX / Flush

BusRd / FlushPrWr / BusRdX

PrRd / BusRd

PrWr / BusRdX

Parallel Systems

Lecture 3 8

Snooping Protocols 
- A three-state write-back invalidation protocol [cont.] -

MemoryBusRdSSSP2 reads U

P3 cacheBusRdS-SP1 reads U

MemoryBusRdXM-IP3 writes U

MemoryBusRdS-SP3 reads U

MemoryBusRd--SP1 reads U

Data 
supplied 
by

Bus 
action

State 
in P3

State
in P2

State
in P1

Processor 
action

Example

Snooping Protocols
- A four-state write-back invalidation protocol -

� Four states are used (MESI) - Illinois protocol
�Modified (M)
� Exclusive (E)

» Only this cache has a copy of the block and it is not modified

� Shared (S)
� Invalid (I)

� A new signal must be available on the interconnect
� Shared: Determine (on BusRd) if other caches holds a copy 

of this block 

� Problem with three-state (MSI) protocol: 
� Two bus transactions are generated when the processor 

reads in and modifies a data item (even though there are 
never any sharers)

� Exercise: Write a state transition diagram for the 
MESI protocol. 



Parallel Systems

Lecture 3 9

Snooping Protocols 
- A four-state write-back update protocol -

� Four states
� Exclusive-clean (E)

» Same meaning as in MESI

� Shared-clean (Sc)
» Several caches may have a copy of this block

� Shared-modified (Sm)
» Several caches may have a copy of this block, and it is this 

cache’s responsibility to update the main memory when the 
block is replaced from the cache

�Modified (M)
» Same meaning as in MESI

� Transactions
� No invalid state => two more request types: PrRdMiss, 

PrWrMiss
� New transaction - BusUpd: Broadcast the updated value on 

the bus so that all other caches can update themselves

Snooping Protocols 
- A four-state write-back update protocol [cont.] -

Sm M

E

PrRd / -

Sc
BusRd / -

PrRdMiss / 
BusRd(!S)

PrWr / -

PrRd / -
PrWr / -

PrRdMiss / BusRd(S)

PrWrMiss / BusRd(!S)

PrRd / -
BusUpd / Update

PrWr / BusUpd(!S)

BusRd / Flush

PrWr / BusUpd(!S)
PrRd / -

PrWr / BusUpd(S)
BusRd / Flush

Pr
W

r /
 

Bus
Upd

(S
)

Bus
Upd

/ 

Upd
at

e

PrWrMiss / 
BusRd(S); BusUpd

Parallel Systems

Lecture 3 10

Snooping Protocols 
- A four-state write-back update protocol [cont.] -

P3 cacheBusRdSmScScP2 reads U

--Sm-ScP1 reads U

P3 cacheBusUpdSm-ScP3 writes U

MemoryBusRdSc-ScP3 reads U

MemoryBusRd--EP1 reads U

Data
supplied by

Bus 
action

State
in P3

State
in P2

State
in P1

Processor 
action

Example

Protocol Tradeoffs

� The coherence protocol is a crucial design issue for a 
multiprocessor
� Protocol class (invalidation or update)
� Protocol states and actions
� Protocol decisions interact with other design issues (e.g., 

latency and bandwidth demand on the interconnect)

� Goals:
�Meet a cost-performance target
� Have a well balanced system (no bottlenecks)

� Use simulation results to evaluate effect of protocol 
choices



Parallel Systems

Lecture 3 11

Protocol Tradeoffs
- State transitions per 1000 data references -

To

Fro
m

Barnes-
Hut

902,78
2

0,127700,00100,0013M

0,125397,171200,21300,0029S

0,00100,00020,015300E

0,00100,18560,000100,0201I

0,00350.03620,001100NP

MSEINP

Fro
m

Raytrace

661,010,297000,00010,0559M

0,2898310,9500,37501,1181S

0,01750,363929,0200,8664E

00,3403000,0242I

0,00260,15491,335800NP

MSEINP

Protocol Tradeoffs
- Cache misses -

� Cache misses in uniprocessor context
� Compulsory (cold start) misses

» First reference to a memory block by a processor

� Capacity misses: 
» All blocks that are referenced by a processor during the 

execution of a program do not fit in the cache

� Conflict (collision) misses: 
» Occurs when the collection of blocks referenced by a program 

maps to a single cache set does not fit in the set

� Tradeoff examples
» Conflict misses can be reduced by reducing the block size

» Cold start misses can be reduced by increasing the block size

Parallel Systems

Lecture 3 12

Protocol Tradeoffs
- Cache misses [cont.] -

� Coherence misses: 
� Occurs when blocks of data are shared among multiple 

caches
� True sharing: A data word produced (written) by one 

processor is used (read or written) by another.
» The miss truly communicates newly defined data values

� False sharing: Independent data words accessed by 
different processors happen to be placed in the same 
memory (cache) block

» False sharing is an example of artifactual communication
» Increases with larger block size

Summary

� Memory hierarchies and cache coherence problem
� Cache coherence through snooping protocols

� Invalidation-based protocols
» Simple protocol for write-through caches
» MSI & MESI for write-back caches

� Update-based protocol

� Coherence protocol tradeoffs
� Frequency analysis of state transitions
� Tradeoffs in cache block sizes


