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Battery power management is a key enabling 
technology that is responsive to a number of needs 
outlined in the Concepts for the Objective Force. Power 
management prolongs battery life and reduces logistic 
footprint replenishment demand, leading to systems that 
are sustainable. Power management also leads to 
lightweight systems that are easily deployable.  

Power management is especially important for 
embedded systems, which cannot be physically accessed, 
such as concealed sensors that are deployed in the field 
for surveillance, force protection, and search and rescue 
missions. Battery lifetime is therefore a key 
consideration for such systems. It is also an important 
measure of system performance. If only a single battery 
is available, battery life can be prolonged using low-
power hardware design and software-driven dynamic 
power management. A drawback of these techniques 
however is that they assume the battery subsystem to be 
an ideal source of energy, which implies that the battery 
output voltage remains constant during the discharge 
period and drops abruptly to zero when the battery is 
fully discharged. However, in reality the output voltage 
decreases with time, and when the output voltage falls 
below a pre-determined threshold (usually 80% of the 
nominal voltage), the battery is considered exhausted. 
The total discharge time is defined as the battery 
lifetime. 

Battery discharge can be of two types. The first is 
termed continuous discharge, which implies that energy 
is drawn from the battery continuously without any 
relaxation (period of rest). The second type of discharge 
is termed intermittent discharge, which implies that the 
battery goes through periods of rest between successive 
discharges. The periods of rest allow the battery to 
recover some of its deliverable charge. This property, 
described as a recovery effect, can be explained using 
electrochemical analysis.* 

While it is common for battery vendors to provide 
discharge profile information, closed-form mathematical 

                                                 
‡ This research was supported in part by DARPA and 
Army Research Office under Award No. DAAD19-01-1-
0504. Any opinions, findings, and conclusions or 
recommendations expressed in this publication are those of 
the author(s) and do not necessarily reflect the view of the 
DARPA and ARO agencies. 
 

formulas for the output voltage are typically not 
provided. Furthermore, no recovery profiles are available 
for any of the commercial batteries. We therefore pose 
the following question: how significant is the recovery 
effect for these batteries? If the recovery effect is not 
significant, then we can ignore it for power management 
and concentrate exclusively on the discharge profile. On 
the other hand, if the recovery effect is significant, it 
must be taken into account for power management. This 
question is comprehensively examined in our work by 
experiments. 

Multiple-battery systems offer a number of 
interesting possibilities. One option in such cases is to 
use a second battery only after the first battery is drained. 
The total battery lifetime is in this case simply the sum of 
the lifetimes of the two batteries. A more attractive 
option is to exploit the fact that most batteries can 
recover some of their lost charge during periods of 
relaxation. It is however seldom utilized by embedded 
system power management techniques. Our objective 
here is not to add to the body of knowledge in 
electrochemical analysis, but to leverage this property to 
prolong battery lifetime for an embedded system. 

The recovery effect in batteries opens up the 
possibility of battery scheduling in multiple-battery 
systems. The main idea here is to use multiple batteries 
in an interleaved fashion so as to prolong the combined 
battery life. The first challenge in battery switching 
however is to develop high-level macromodels for 
battery discharge and recovery. These models should 
ideally provide an analytical characterization of 
discharge and recovery as functions of time and battery 
load.  

The physical properties of interest in a battery are 
output voltage and battery capacity. Recent research on 
battery modeling has focused either on low-level 
microscopic effects, or attempted high-level modeling 
using stochastic methods. For the low-level modeling, 
the battery electrochemical process is expressed using 
partial differential equations. Although they take 
recovery effect into account, they are cumbersome. They 
typically rely on numerical simulation and require 
significant computation, which makes them impractical 
for system-level power management. For the high-level 
modeling, some describes battery behavior as a discrete 
Markov process. The effectiveness, however, appears to 
be limited to specific types of applications. A number of 



 

alternative high-level battery models have recently been 
proposed using VHDL or PSPICE. The major drawback 
of these models is that they do not consider the recovery 
effect. As a result, their predictions cannot be used to 
prolong battery life through the use of battery 
scheduling. 

In this work, we postulate analytical high-level 
models to characterize the battery output voltage as a 
function of time for constant load conditions. The models 
are composed of two separate parts on discharge and 
recovery. The models are parameterized by the size of 
the battery load. These models represent a first step 
towards comprehensive battery modeling, and their 
simplicity is expected to facilitate battery scheduling for 
mobile embedded systems. To the best of our 
knowledge, this is the first attempt to develop and 
validate high-level models that take into account the 
system workload, and both the discharge and recovery 
profiles.  
        The macromodels are validated using a simple 
laboratory setup and three representative batteries chosen 
from alkaline, nickel-metal-hydride (NiMH), and 
lithium-ion respectively. It is shown that the proposed 
macromodels are a close fit with actual battery behavior. 
We also investigate the magnitude of the recovery 
strength in each case to determine if it is worthwhile to 
consider battery recovery for system-level power 
management. It is demonstrated that the recovery effect 
is significant and it should be exploited for prolonging 
battery lifetime. Moreover, we compare the behaviors 
between continuous discharge profile and intermittent 
discharge profile. A striking observation is that the 
discharge becomes more aggressive after recovery in the 
intermittent discharge process. As a result, the effect of 
relaxation becomes two-fold. First, the battery 
undoubtedly recovers some capacity, which increases 
lifetime. Second, an idle period in some sense resets the 
next discharge cycle. After the idle cycle, the battery 
discharges at almost the same rate as at the start of the 
previous discharge cycle. On the other hand, in 
continuous discharge, the battery discharge rate 
decreases progressively. The “discharge rate reset”  
phenomenon has a negative impact on battery lifetime. 
To prolong system lifetime, the two-fold impact must be 
carefully examined to determine under what conditions 
the battery lifetime is enhanced most. 
        Based on our proposed models, we further estimate 
the lifetime of dual-battery system under intermittent 
discharge profile. Recovery effect is incorporated as a 
key factor. A mathematical expression of system lifetime 
is obtained. The result can be applied to calculate 
optimal interval length for discharge and recovery to 
maximize the system lifetime. 
        Figure 1 illustrates the experimental discharge 
profile for load resistance 18.3Ω for SCH8500 battery. 
The discharge profile predicted by the macromodel is 
also shown.  We observe that when the output voltage is 

greater than the battery’s nominal voltage Vn, the battery 
is discharged at a rate that matches the analytical model 
extremely well. The analytical model breaks down when 
the output drops below Vn; from this point onwards, the 
battery voltage drops precipitously with time. However, 
since a battery is considered useful only for output 
voltages greater than the threshold, the analytical model 
serves as an effective predictor of battery voltage.  
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Figure 1:  Continuous discharge profile. 

Figure 2 illustrates the recovery effect for the 
Samsung SCH8500 Li-ion battery. We obtained a close 
fit with the experimental data; the postulated recovery 
model matches the experimental results very well.  
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Figure 2: Recovery profile. 

We obtained a similar close match between 
analytical predictions and experimental results for 
intermittent battery discharge, in which periods of 
discharge are interleaved with periods of recovery.  

In summary, we have postulated analytical high-
level models to characterize the battery output 
voltage. We have validated our analytical models 
through laboratory experiments based on the 
alkaline, nickel-metal-hydride (NiMH), and lithium-
ion batteries. These models represent a first step 
towards comprehensive battery modeling, and their 
simplicity is expected to facilitate battery scheduling 
for mobile embedded systems. We have 
demonstrated that the recovery effect is significant 
for the alkaline and the NiMH batteries, and the 
recovery magnitude is comparable to the discharge 
magnitude.  


