Pruning-Based Energy-Optimal Device Scheduling for
Hard Real-Time Systems’

Vishnu Swaminathan and Krishnendu Chakrabarty
Department of Electrical & Computer Engineering
Duke University
Durham, NC 27708, USA

{vishnus krish }@ee.duke.edu

ABSTRACT

Dynamic Power Management (DPM) provides a simple, &l-
egant and flexible method for reducing energy consumption
in embedded real-time systems. However, I/Q-centric DPM
techniques have been studied largely for non-real-time envi-
ronments. We present an offline device scheduling technique
for real-time systems that generates an energy-optimal de-
vice schedule for a given task set while guaranteeing that all
real-time deadlines are met. Our method takes as inputs a
task set and a device-usage list for each task, and it sched-
ules the tasks such that the energy consumed by the set of
I/O devices is minimized. We compare our algorithm to
an exhaustive enumeration method and show tkat the pro-
posed algorithm is very efficient in terms of memory usage
and computation time. We also present case studies to show
that J/O-centric DPM methods can result in significant en-
ergy savings.

1. INTRODUCTION

Energy consumption is now recognized as an important
design parameter for portable and embedded systems. A
number of energy conservation technigues are currently be-
ing used in embedded systems. Several types of idle, standby
and sleep modes are available in many processors. These
modes are used to suspend or shut down the processor un-
der low-load or no-load conditions. Compiler-level opti-
mizations generate restructered machine code that allows
for processor execution units to stay unused for long pe-
viods of time. These unused execution units can be shut
down independent of each other when not in use, resulting

*This research was supported in part by DARPA under grant no.
N66001-001-8946, in part by a graduate fellowship from the North
Carolina Networking Initiative, and in part by DARPA and Army
Research Office under Award No. DAAD19-01-1-0504. Any opin-
jons, findings, and conclusions or recommendations expressed in
this publication are those of the author(s) and do not necessarily
reflect the view of the DARPA and ARO agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted withowt fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, ot republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

CODES'02, May 6-8, 2002, Estes Park, Colorado, USA,

Copyright 2002 ACM 1-38113-542-4/02/0005...85.00.

in extended idle periods for the different processor modules.
Power consumption of the CPU is also directly related to
the clock speed. Many processors use a variable-speed clock
that can be tuned to balance performance with power con-
sumption [8).

Although hardware optimization significantly reduces en-
ergy consumption for embedded systems, even greater en-
ergy savings can be obtained if an intelligent software power
mapagement scheme is used that takes advantage of the
power reduction capabilities of the hardware. The introduc-
tion of the ACP] standard in 1997 has enabled O3-based
power management in several computer systems [1]. Power
management by the OS is commonly referred to as dynamic
power management (DPM).

I/0-centric DPM methods are either timeout-based, pre-
dictive or stochastic. Timeout-based schemes shut down
devices when they have been idle for 2 pre-specified period
of time. The pext request for a device that has been shut
down wakes the device up, whick then processes the request.
Stochastic methods use probability models to predict future
idle periods [4]).

Temporal behavior in real-time systems must be predictabie
to a high degree of accuracy. The consequence of a task miss-
ing a deadline can be disastrous. The critical nature of }/O
device operation often results in devices staying powered
up throughout system operation. Predictive and timeout-
based schemes are therefore unsuitable for use in real-time
systems. The inclusion of deadlines as an added design con-
straint makes DPM for real-time systems difficult-

Most research on real-time DPM techniques has been CPU-
centric {7, 11, 13, 16, 18, 19, 20, 22]. An excellent survey of
CPU-centric DPM is presented in [9]. Recent research also
focuses on joint battery and variable-voltage scheduling in
order to benefit from multiple power-saving strategies [14).
1/Q-centric DPM has been studied extensively for non-real-
time environments [4, 5, 13]. In {13], a device-utilization ma-
trix keeps track of device usage and a processor-utilization
matrix keeps track of processor usage of a given task. When
the utilization of a device falls below a threshold, the device
is put into the sleep state. In (5], devices with multiple sleep
states are considered. Here too, the authors use a predic-
tive scheme to shut down devices based on adaptive learning
trees.

The zbove methods are not viable for real-time systems
due to their inherently probabilistic nature. They assume
there is no penalty associated with a delay in a task’s start
time, In real-time systems, a delay may result in a task

175

missing its deadline. Hence, it is critical to have [/0 devices
powered up and running at the correct times to guarantee
that all application tasks meet their deadlines.

In 21}, the authors have presented the first 1/0-centric
DPM algorithm for hard real-time systems. The online de-
vice scheduling algorithm in [21] takes as inputs a prede-
termined task schedule and the device-usage list for each
task, and geperates a sequence of sleep/working states for
each device such that the energy comsumed by the set of
1/O devices is minimized. An onlire algorithm that runs
in “real-time” must be fast and efficient. Due to its time-
intensive nature, generating an energy-efficient task schedule
{and thereby a device scheduie) on the fly is often infeasi-
ble. With a predetermined task schedule, solving the de-
vice scheduling problem becomes much easier and can be
performed in an online manner. However, using a predeter-
mined task schedule implies that the start times of the tasks
cannot be changed. By allowing task start times to be flexi-
ble, more energy-efficient device schedules can be generated,
albeit offline. Optimal energy schedules can be generated by
allowing both flexible start times and task reordering.

In [10], the authors model mode dependencies for a single
resource and across multiple resources. This information is
captured through the introduction of a mode dependency
graph (MDG). An algorithm that is based on topological
sorting is presented that takes as input a mode dependency
graph and generates a set of valid mode combinations. A
second algorithm then determines a sequence of modes for
each resource such that all timing constraints are met and
max-power requirements are satisfied for 2 given task set.
In constrast, we are interested here in minimizing energy
instead of satisfying max-power constraints. A schedule
generated in {10] need not necessarily be an energy-optimal
schedule for the task set. Furthermore, the work in [10] does
not distinguish between 1/O devices and processors. On the
other hand, the model we assume is that of a set of peri-
odic tasks executing on a single processor. These tasks use
a given set of I/O devices. Given this scenario, the problem
we attempt to solve is to minimize the energy consumed by
the I/O devices.

In this paper, we present an offline DPM algorithm for
hard real-time systems. We refer to the proposed algorithm
as the energy-optimal device scheduler (EDS). For a given
task set, EDS generates an energy-optimal device schedule
by executing two jobs of the same task one after the other.
This results in devices staying powered-down for extended
periods of time.

The rest of the paper is organized as follows, In Section 2
we present a formal statement of our probiem, including
the terminology used in the paper and our assumptions. In
Section 3, we develop the underlying theory. In Section 4,
we describe cur algorithm and in Section 5 we provide ex-
perimental resuits. Finally, in Section 6, we present our
conclusions.

2. NOTATION AND PRELIMINARIES

In this section, we present the formal problem statement,
our notation, and underlying assumptions.

We are given a task set 7= {11, T2,...,Tn} of n periodic
tasks. Associated with each task 7; € T are the following
parameters:

e its release (or arrival) time a;,
e its period p:,

® its deadline d;,
® its execution time ¢;, and

e a device usage list L;, consisting of all the 17O devices
used by 7.
The hyperperiod H of the task set is defined as the least
common multiple of the periods of all tasks. We assume
that the deadline of each task is equal to its period, ie.,
pi = di. Associated with each task set 7 is a job sel J=
{ji.Ja,...,ji} consisting of all the instances of each task
7: €T, arranged in ascending order of arrival time, where
I =3"%_, H/pe. Except for the period, a job inherits all
properties of the task of which it is an instance.
The system also uses a set K = {k, k2,..., kp} of p /O
devices. Each device k; has the following parameters:

* two power states—a low-power sleep state ps;; and a
high-power working state pss.i,

» a transition time from ps; ; to psn.; represented by &,
® a transition time from pss ; to psi,i represented by ¢34,
¢ power consumed during wake-up Py,

» power consumed during shutdown Peg,i,

s power consumed in the working state P i, and

s power consumed in the sleep state B, ;.

We assume that requests can be processed by the de-
vices only in the working state. All I/O devices used by
a job must be powered-up before a task starts execution
due to the real-time nature of the tasks. However, there
are no restrictions on the time instants at which device
states can be switched. FEach job must complete its exe-
cution by its associated deadline. At time ¢ = 0, all devices
are powered up. We assume without loss of generality that
thw =ty = to and Puyi = Py = Fo for all 4. Note that
this assumption does not limit the proposed algorithm in
any way. The assumption only simplifies the presentation;
the algorithm can be used for any set of parameter values.
The power consumed by device k; in the sleep state is less
than the power consumed during transition, which in turn
is less than the power consumed in the working state, ie.,
P, < Po < P, ;. Most real-life devices satisfy this assump-
tion. However, for devices that do not meet this require-
ment (hard disks, for example), one can use the concept of
the breakeven time as explained in [7] to prevent erroneous
device state transitions. Using breakeven times as a metric
to determine when to switch device power states also helps
in handling devices that possess multiple power states. This
is made clearer in the next section. However, in this pa-
per, to simplify the presentation, we only consider devices
with two power states. The execution times ¢1,¢2,...,¢n of
the jobs are all greater than the maximum transition time
to of the devices. The energy consumed by device &; is
Ei = Py itw,i + Ps,its.i + mPolg, where m is the number of
state transitions, £ is the total time spent by device k:
in the working state, ard ¢, ; is the total time spent in the
sleep state.

The problem we address is that of determining a set of
start times for the jobs such that the the energy consumed by
the set of devices 3_7_, F: is minimized while ensuring that
all tasks meet their deadlines. The task schedule provides a
minimum-energy device schedule.

In the following section, we present our approach and the
underlying theory.

176

Task | Armival | Completion Period Device-usage
time time (Deadline) list
n [¢] 1 3 k1
s 1] 2 4 ka
Table 1: A simple task set.

2 jja |33 | dajds (76| g7

a; | 0] 0] 3] 4 6] 8 9

& 1 2 1 2 1 2 1

di | 3| 46181911212

Table 2: List of jobs for Table 1.
3. THEORY

A straightforward approach to determine an energy-optimal
schedule is to exhaustively enumerate all possible schedules
for the job set and then select the one with the minimum
energy. However, such an approach, being extremely time-
and memory-intensive even for smali job sets, is infeasible
in practice.

Instead of exhaustive enumeration, we generate a sched-
ule tree and iteratively prune branches when it can be guar-
anteed that the optimal solution does not lie along those
branches. The schedule tree can be pruned based on two
factors—time and energy. Temporal pruning is performed
when a partial schedule results in a missed deadline deeper
in the tree. This type of pruning is common to both the ex-
haustive enumeration technique and EDS. The second type
of pruning—which we call energy pruning—is the central
idea on which our offiine scheduling algorithm is based. The
remainder of this section explains the energy pruning algo-
rithm. We illustrate this pruning method through the use
of an example.

Table 1 describes a simple task set consisting of two tasks.
While the device-usage lists of the tasks in this example
are nop-overlapping, the pruning algorithm also works for
overlapping device-usage lists. Table 2 lists the instances of
the tasks, arranged in increasing order of arrival. In this
example, we assume a working power of 5 units, a sleep
power of 1 unit, 2 transition power of 3 units and a transition
time of 1 unit.

‘We now explain the generation of the tree and the pruning
algorithm. A vertex v of the tree is represented as a 3-tuple
{i,t,e) where where i is a job 7; and ¢ is a valid start time for
ji- The third element ¢ of the 3-tuple represents the total
energy consumption up to time ¢. An edge z connects two
vertices (3, {,e) and (k,!,m) such that job jx can be success-
fully scheduled at time ! given that job j; has been scheduled
at time £ A path from the root vertex to any intermediate
vertex v has an associated order of jobs that is termed a
partial schedule. A path from the root vertex to a leaf ver-
tex constitutes a complete schedule. A feasible schedule is
a complete schedule in which no job misses its associated
deadline. We note that temporal pruning eliminates all in-
feasible partial schedules. Thus, every complete schedule is
a feasible schedule. We now explain the generation of the
tree in more detail.

The root vertex of the tree is a dummy vertex. It is rep-
resented by the 3-tuple (0,0,0) that represents dummy job
jo scheduled at time ¢ = 0. At ¢t = 0, a total of 0 units of
energy have been consumed by the 1/Q devices. We next
find all jobs that are released at time ¢ = 0. The jobs that
are released at ¢ = 0 for our example are j; and jz. Job ji
can be scheduled to start at times ¢ =0, ¢ =1, and ¢t = 2

/——— Device stays powered up during

—_ J s execution and then shuts down

5 3 1‘/-— Deadline for job j
5 3 W’
T = %

6 f1 2 3 4

-— Deadline for job jz

Time —
Device k; can shut down and
wake up before jz’s start dme

/h'-—— Device & stays poweted up

for 1 time unit before | A ’s start time

T L Deadline for job ;

3_"3 % e Deadline for job Jy

of1 23 4 Time —
Device % can shut down and

wake up before j s start time

Figure 1: Calculation of energy consumption.

100 1.3 LI.]D] 2,00 - 2,18 .2.}0
Figure 2: Partial schedules after 1 scheduled job.

without missing its deadline. We then compute the energy
consumed by all the devices up to times ¢t =0, ¢ = 1, and
t = 2. The energy values are 0, 8 and 10 units, respectively
(Figure 1)*. We therefore draw edges from the dummy root
vertex to vertices (1,0,0), (1,1,8), and (1, 2, 10). Similarly,
job j2 can be scheduled at times ¢t =0,t=1and ¢ = 2 and
the energy values are 0, 8, and 10 units respectively. Thus,
we draw three more edges from the dummy vertex to ver-
tices (2,0,0),(2,1,8) and (2, 2,10). Note that job j» would
miss its deadline if it were scheduled at time ¢ = 3 (since it
has an execution time of 2 units). Therefore, no edge exists
from the dummy node tc node (2, 3,), where ¢ is the energy
consumption up to time ¢t = 3. Figure 2 illustrates the tree
after one job has been scheduled. Each level of depth in the
tree represents one job being successfully scheduled.

We then proceed to the next level. We examine every
vertex at the previous level and determine which jobs can be
scheduled next. By examining node (1, 0,0) at the previous
level, we see that job ji would complete its execution at
time t = 1. The only other job that has been released at
t = 1is job js. Thus, j2 can be scheduled at times ¢t =1
and ¢ = 2 after job §i has been scheduled at ¢ = 0. The
energies for these nodes are computed and edges are drawn
from (1,0,0) to (2,1, 10) and (2, 2, 14). Similarly, examining
vertex (1, 1,8) results in vertex (2, 2, 16) at level 2. The next

l]:’oy assuming that all ¢; > maz {to} and using breakeven times
as the device transition metric, EDS can handle devices with mul-
tiple power states and still generate energy-optimal schedules.

177

[——

______ ' _—— -
Pantial Partia
schedule A schedule B

Figure 3: Partial schedules after 2 scheduled jobs.

vertex at level 1—(1, 2, 10}—results in a missed deadline at
level 2. If job J1 were scheduled at ¢ = 2, it would complete
execution at time ¢ = 3. The earliest time at which j» could
be scheduled is t = 3; however, even if it were scheduled at
¢t = 3, it would miss its deadline. Thus, scheduling 7, at
t = 2 does not result in a feasible schedule. This branch
can hence be pruned. Similarly, the other nodes at level
1 are examined and longer partial schedules are created.
Figure 3 illustrates the schedule tree after two jobs have been
scheduled. The edges that have been crossed out represent
branches that are not considered due to temporal pruning.

At this point, we note that vertices (2,2, 14) and (2, 2,16)
represent the same job (j2) scheduled at the same time
{t = 2). However, the energy consumptions for these two
vertices are different. This observation leads to the foliow-
ing theorem:

THEOREM 1. When two vertices at the same tree depth
representing the same job being scheduled at the same time
can be reached from the root vertex through two different
paths, and the orders of the previously scheduled jobs along
the two partial schedules are identical, then the partiel sched-
ule with higher energy consumption can be eliminated with-
out losing optimality.

Proof: Let us call the two partial schedules at a given depth
Schedule A and Schedule B, with Schedule A having lower
energy consamption than Schedule B. We first note that
Schedule B has higher energy consumption than Schedule A
because one or more devices have been in the powered-up
state for a longer period of time than necessary in Schedule
B. Assume that ¢ jobs have been scheduled, witk job j: being
the last scheduled job. Since we assume that the execution
times of all jobs are greater than the maximum transition
time of the devices, the state of the devices at the end of job
ji will be identical in both partial schedules. By performing
a time translation (mapping the end of job ji’s execution to
time ¢t = (), we observe that the resulting schedule trees are
identical in both partial schedules. However, all schedules in
Schedule B after time translation will have an energy con-
sumption that is greater than their counterparts in Schedule
A by an energy value E;, where £ is the energy difference
between Schedules A and B. Finally, it is easy to see that
the energy consumed during job 7i’s execution in Schedule
A s less than or equal to its execution in Schedule B. This
completes the proof of the theorem. a

The application of this theorem to the above example re-
sults in partial schedule B in Figure 3 being discarded. As
one proceeds deeper down the schedule tree, there are more
vertices such that the partial schedules corresponding to the
paths to them from the root vertex are identical. It is this

sasgd 3750 TR T RO L EY T I I RN 103y

P T LA) T

T
Tnd t-"‘-‘é TH £10.72) T dau
& B B o - & g

RALH

Figure 4: Complete schedule tree.

“redundancy” that allows for the application of Theorem 1,
which consequently results in tremendous savings in mem-
ory while still ensuring that an energy-optimal schedule is
generated. By iteratively performing this sequence of steps
(vertex generation, emergy calculation, vertex comparison
and pruning), we generate the complete schedule tree for
the job set. The complete tree is shown in Figure 4. We
have not shown paths that have been temporally pruned.
The edges that have been crossed out with horizontal slashes
represent energy-pruned branches.

In the following section, we present and explain the EDS
algorithm.

4. THE EDS ALGORITHM

In this section, we present the EDS algorithm in pseu-
docode form and briefly explain its operation.

Figure 5 describes the algorithm in pseudocode form. EDS
takes as input the job set 7. The algorithm generates all
possible minimum energy schedules for the given job set.
The algorithm operates as follows. The time counter ¢ is set
to 0 and the openList is initialized to contain only the root
vertex (0,0,0) (Lines 1 and 2). In lines 3 to 10, every vertex
in the openList is examined and nodes are generated at the
succeeding level. Next, the energy consumptions are com-
puted for each of these newly generated vertices {(Line 11).
Lines 15 to 20 correspond to the pruning technique. For
every pair of replicated vertices, the partial schedules are
checked and the one with the higher energy consumption is
discarded. Finally, the remaining vertices in the currentList
are appended to the openList. The currentList is then re-
set. This process is repeated until all the jobs have been
scheduled, i.e., the depth of the tree equals the total num-
ber of jobs (Lines 25 to 28). Note that several minimum-
energy schedules can exist for a given job set. EDS generates
all possible unique schedules with minimum energy for that
schedule. One final comparison of all these unique schedules
results in the set of schedules with the absolute minimum
energy.

EDS generates optimal energy solutions only for task sets
for which at least one non-preemptive schedule exists. How-
ever, there exist task sets that do not satisfy this require-
ment. Such task sets, though, do not consist entirely of pe-
riodic tasks; instead, they are a mix of periodic and sporadic
tasks. For mixed task sets, we are not aware of any optimal
scheduling algorithm that minimizes 1/0 device energy for
hard real-time systems. EDS is a first step towards a more

178

Procedure OFFLINE(7,!)

J: Job set.

{: Number of jobs.

openList: List of unexpanded vertices.
currensList: List of vertices at the current depth.
£: time counter.

begin

1. Sett=0;3etd=0;

2. Add vertex {0,0) to openList;

3, for each vertex v = {j;, time) in openList {
4 Set t = fime + &;
5. Find set of all jobs 7' released up to time §;
8. for each job j € J* {
7. if 7 has been previously scheduled
8 continue;
9. else {
10. Find all possibie scheduling instants for ;
11. Compute energy for each generated vertex;
12. Add generated vertices to currentList;
13.
14,
15. for each pair of vertices vy, ve in currentList {
16. if 1 = v and
partial schedule(vy) = partial schedule{va) {
17. if Ey1 > Eyo
18. Prune v
19. eize
29. Prune vq;
21.
22
23. Add unpruned veriices in currentlist to openLisy;
24, Clear currentList;
25. Increment d;
26. Ifd=1
27. Terminate.
28. end

Figure 5: Pseudocode description of EDS.

Task ! Execution Period Device list
time (Deadline)
1 1 4 [
T2 3 5 ka

Table 3: Task set 1.

general device scheduling algorithm for mixed workloads.
We next present experimental results and illustrate the
efficiency of our scheduling algorithm.

5. EXPERIMENTAL RESULTS

‘We evaluated EDS for several periodic task sets with vary-
ing hyperperiods and number of jobs. We compare the mem-
ory requirement of the tree with the pruning algorithm to
the memory requirement of the tree without pruning. Mem-
ory requirement is measured in terms of the number of nodes
at every level. We also illustrate the efficiency of the pruning
algorithm by presenting the total number of possible valid
schedules with and without pruning.

Our first task set consists of two tasks with a hyperperiod
of 20. This simple task set is described in Table 3. For
the sake of simplicity, we have assumed that these tasks use
independent devices. We have assumed, also for the sake
of simplicity, that the device characteristics are the same
for both devices. We assume a working power of 5 units, a
transition power of 3 units and a sleep power of 1 unit for
both devices.

The task set in Table 3 results in a job set consisting of 9
jobs, as shown in Table 4.

If all devices are powered up throughout the hyperperiod,

Jr 1z Js | ja |25 I 76 (37 | 78 [Ja
a; | O 0 4 E) 8 10 ;12157 16
e |1 3 1 3 1 3 b 3 1
d; 4 5 8 |10 11271516) 20; 20

Table 4: Job set corresponding to Table 3.

s/ & g |

’
0 20

Time

Figure 6: Optimal task schedule for Table 3.

the energy consumed by the I/0 devices for this task sched-
ule is 200 units. Figure 6 shows an optimal task schedule
generated using EDS. The energy consumption of the opti-
mal task (device) schedule is 134 units, resulting in a 33%
reduction in energy consumption.

We see that minimum energy will be consumed if (i} the
time for which the devices are powered up is minimized, (ii)
the time for which the devices are shutdown is maximized,
and (iii} the number of device transitions is minimized.

The rapid growth in the state space of the exhaustive enu-
meration method is made evident in Table 3. We see that
the number of vertices generated by the exhaustive epumer-
ation technique is enormous, even for a relatively small task
set as in Table 3. In contrast, EDS requires far less memory.
We see that the totzl number of vertices for EDS is 87% less
than that of exhaustive enumeration.

By changing the periods of the tasks in Table 3, we gener-
ated several job sets whose hyperperiods ranged from H =
20 to H = 40 with the number of jobs J ranging from 9 to
13. For job sets larger than this, the exhaustive enumera-
tion method failed due to lack of computer memory. These
experiments were performed on a Sun workstation with 512
MB of RAM and 2 GB of swap space. The resulits are shown
in Table 6. A comparison of the execution times of the two
methods in Table 7.

Finally, we compare EDS to the LEDES algorithm from
[21}. We use an example job set whose details can be found
in [21] (Table 2). The job set consists of eight jobs which
use five 1/ devices. The properties of the devices are de-
scribed in Table 8. This job set consumes 583 units using
LEDES. When compared to the device schedule with all de-
vices powered-up, this is an energy reduction of 50%. Using
EDS, the energy consumption drops to 481 units, resuiting
in an added energy savings of 17%. The increased savings
in energy through the use of EDS arises from the facts that
LEDES (i) takes as input a predetermined task schedule,
and (i) cannot modify task start times in any way. With
EDS, this restriction is relaxed, thereby making it more flex-
ible.

Qur final data set is shown in Table 9. The device param-
eters are described in Table 8. These parameters have been
taken from real-life devices. This task set comsists of six
tasks that are used in a distributed sensor network, which
serves as a typical example of an energy-constrained real-
time system. It consists of a data cache application, a signal
processing task, an RF-modem tasks and a few housekeep-
ing processes. The energy consumption using LEDES is 60
units. With EDS, the energy consumption drops to 43 tnits,
resulting in savings of 25%.

179

Tree depth ¢ [No. of Vertices at depth i] Memory savings
0 pruning Fruning
1 T 7 0%
2 4 3 25%
3 20 13 35%
4 18 7 61%
5 76 23 69%
6 156 40 74%
7 270 33 8T%
8 648 30 92%
S 312 17 94%
[Total 1512 193 | 872% |

Table 5: Percentage memory savings.

[No. of vertices No. of feasible schedules

Job set Exbaustive] Pruned | Exhaustive Pruped

H=20,J=9 1512 238 312 17

H=30,J=11 252631 4110 121016 836
H=35,J=12 | 2,964,093 13818 1,668,673 3024
H=40,F=13 | 23,033,089 43783 14,464,680 8123

H=45,J=14 DNT 84107 DNT 17187
H=55,]=16 DNT 592,091 DNT 112,363
H=60,}J=17 DNT 959,872 DNT 208,741

DNT: Did not terminate after 24 hours

Table 6: Comparison of memory requirements.

6. CONCLUSIONS

In this paper, we have presented a novel offline device
scheduling algorithm that generates energy-optimal sched-
ules for a given periodic task set while also guaranteeing
that no task deadline is missed. We have shown that our
pruning technique results in tremendous memory savings,
thereby allowing us to schedule a large number of jabs in
an efficient manner. The EDS algorithm schedules multiple
instances (jobs) of the same task to execute successively and
thus minimizes the number of device state tramsitions. Qur
results show that DPM for 1/0 devices can provide signifi-
cant epergy savings in real-time systems.

7. REFERENCES

[1) Advanced Configuration and Power Interface (ACPI),
http://unvuy teleport. com/~ acpi.

[2] Analog Devices Multiport Internet Gateway Processor.
hitp:/ /www. analog. comn.

{3] AMD Ethernet Controllers PCNet Family,
http://www.amd. com/products/npd/overview/21135. pdf

[4] L. Benini, A. Bogliolo, G. A. Paleologo, and G. De Micheli,
“Policy optimization for dynamic power management”,
IEEE Trans. CAD, vol. 16, ne. 6, pp. 813-833, June 1999.

[5) E.-Y. Chung, L. Benini and G. De Micheli, “Dynamic
power management using adaptive learning tree”, Proc.
Intl. Conf. CAD, pp. 274-279, 1999.

[6} Fujitsu MHL2300AT Hard Disk Drive.
kttp: //www. fujitsu. jp/hypertext /hdd /drive /overseas/
mii2rzz/mhl2zrz.himl.

[7] C. Hwang and A. C-H. Wa, “A predictive system shutdown
method for energy saving of event-driven computation”,
Proc. Inil. Conf. CAD, pp. 28-32, 1997,

[8] Intel Speedstep technology. hitp://www.intel com

[9] N. K. Jha, “Low power system scheduling and synthesis”,
Proc. fatl. Conf. CAD, pp. 259-263, 2001.

[10] D. Li, P. Chou, and N. Bagherzadeh, “Mode selection and
mode-dependency modeling for power-aware embedded
systems,” Proc. Asia South Pacific Design Autemation
Conference, January 2002. pp. 697-T04.

f11] J. Luo and N. K. Jha, “Power-conscious joint scheduling of
periodic task graphs and aperiodic tasks in distributed

Job set Execution time
Exhaustive EDS
H=20J=9% <Ts <Is
H=30,}=11 2.3s < 1s
H=35,J=12 28.2s 4.6s
H=40,J2:13 7m 155 35.2s
H=45J=14 DNT 2m 29.5s
H=35J=16 | DNT 2h 24m 15s
H=60,J=17 DNT 5h 10m 23.25

DNT: Did not terminate after 24 hours

Table 7: Comparison of execution times.

Device Device Pu.i Pyi |
na.
T ADD (6] | 23W | 50W
[Modem (23] 1W | 625W
P NIC [3] w | 3w
k4 DSP [2] W 46w
ks | RDRAM 7] | 1W | asw

Table 8: Power consumption of various devices.

Task Arrival | Completion | Deadline | Device
time time {Period) list

Data cache 1] 3 33 k1, k2
File write u] 5 35 ky
DSP 0 7 35 -
RF Transmit 0 2 35 k2

Housekeeping 0 7 35 ki, ka3
Memory copy Q 3 35 -

Table 9: A distributed sensor network task set.

real-time embedded systems”, Proc. Intl. Conf. CAD, pp.
357-364, 2000.

{12) C. L. Liu and J. Layland, “Scheduling algorithms for
multiprogramming in a hard real-time environment”,
Journal of the ACM, vol. 20, pp. 46-61, 1973.

[§3} Y-H. Lu, L. Benini and G. De Micheli, “Operating system
directed power reduction”, Prec. Intl Conf. Low-Power
Electronics end Design, pp. 37-42, 2000.

{14] J. Luo and N. K. Jha, “Battery-aware static scheduling for
distributed real-time embedded systems”, Proc. DAC, pp.
444-449, 2001,

[15) P. Pillai and K, G. Shin, “Real-time dynamic voltage
scaling for low-power embedded operating systems”, Proc,
Symp. Operating Systems Principles, pp. 89~102, 2001.

{16] G. Quan and X. Hu, “Energy efficient fixed-priority
scheduling for real-time systems on variable voltage
processors”, Proc. DAC, pp. B28-833, 2001.

[17] RamBus RIMM. hitp://www.rambus.com

[18] Y. Shin, K. Choi and T'. Sakurai, “Power optimization of
real-time embedded systems on variable speed processors”,
Proc. Intl. Conf. CAD, pp. 365-368, 2000.

[19] A. Sinha and A. Chandrakasan, “Energy efBcient real-time
scheduling”, Proc. Intl. Conf. CAD, pp. 458-463, 2001.

{201 V. Swaminathan and K. Chakrabarty, “Investigating the
effect of voltage-switching on [ow-energy task scheduling in
hard real-time systems”, Proc. Asia South Pacific Design
Autornation Conf, pp. 251-254, 2001.

[21] V. Swaminathan, K. Chakrabarty and 5. S. Iyengar,
“Dynamic 1/Q power management for hard real-time
systems”, Proc. intl. Symp. Hordware/Sofiware Co-Design
(CODES), pp. 237-243, 2001.

[22] M. Weiser, B. Welch, A. Demers and S. Shenker,
“Scheduling for reduced CPU energy”, Proc. Symp.
Operating System Design and Implementation, pp. 13-23,
1994,

[23) Zoom Embedded Modem Family,
hitp:/fwww.zoom.com/datasheets/embedded. shimi.

180

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

