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Abstract—In this paper, we describe a software-controlled
approach for adaptively minimizing energy in embedded systems
for real-time multimedia processing. Energy is optimized by
clock speed setting: the software controller dynamically adjusts
processor clock speed to the frame rate (FR) requirements of the
incoming multimedia stream. The speed-setting policy is based
on a system model that correlates clock speed with best case,
average case, and worst case sustainable FRs, accounting for data
dependency in multimedia streams. The technique has been imple-
mented in a energy-efficient MPEG3 real-time decoder algorithm
designed for wearable devices as a case study. The target system is
the Hewlett-Packard SmartBadgeIII prototype system based on
the StrongARM1100 processor. Hardware measurements show
that computational energy can be drastically reduced (up to 40%)
with respect to fixed-frequency operation.

Index Terms—Energy optimization, low-power, multimedia sys-
tems, real-time systems.

I. INTRODUCTION

ONE OF the most critical constraints on portable em-
bedded systems is power consumption, which impacts

battery size, weight, and lifetime, as well as system cost and
reliability. In the design of embedded systems, a micropro-
cessor-based architecture is often a forced choice because of
its flexibility and fast time-to-market. In these architectures,
the central processing unit (CPU) must handle a large fraction
of the computational load imposed by applications and it is a
major contributor to the power budget. In general, CPU energy
consumption depends on the type of workload imposed by
applications. We focus on ultraportable embedded devices
targeted to streaming multimedia applications, such as audio
and video decoding.

To improve energy efficiency, an application can dynamically
reconfigure the system to provide the required services and per-
formance levels without wasting power. Modern hardware com-
ponents provide a large freedom in dynamically adjusting im-
portant power-correlated parameters such as clock frequency
and supply voltage allowing quick adaptation also at runtime.
Hence, it is possible to reduce power consumption by reducing
system speed and supply voltage to the minimum level neces-
sary to match real-time constraints.

It has often been observed [5] that frequency downscaling
reduces power, but does not reduce energy, unless it is coupled
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with supply voltage scaling. Unfortunately, many components
can be operated at different frequencies, but their supply voltage
cannot be changed. Our paper demonstrates that energy can be
saved by frequency scaling, even at a constant supply voltage.

To achieve this target, we first obtain a set of curves that
relate performance with processor frequency for a given
streaming multimedia application (namely, MP3 decoding).
These curves are generally nonlinear because of memory
latency and input–output (I/O) synchronization requirements.
We formulate a policy that controls processor speed to save
power while satisfying real-time constraints. The policy is
application-driven in the sense that the application provides the
information needed to set processor speed based on character-
istics of the incoming stream and on performance-frequency
curves. As opposed to traditional speed-setting policies [11],
which set the clock frequency based on predicted processor
utilization, application-driven speed setting is very robust and
it does not suffer from stability and poor real-time performance
problems.

Application-driven speed setting has been implemented
and applied on MP3 audio decoding running on a Stron-
gARM-based wearable computer. Power consumption
measurements show that our technique saves significant power
(up to 40%) with respect to fixed-frequency operation, while at
the same time satisfying real-time playback constraints.

The remainder of this paper is organized as follows. In
Section II, related work in the research area of system-level
power optimization is surveyed. A description of multimedia
system architecture is introduced in Section III. This is the
context in which we adopt a variable frequency approach to
optimize the energy consumption, as detailed in Section IV.
Section V describes the algorithm that performs frequency
setting, while in Section VI, we analyze how the algorithm
has been implemented in a real multimedia application like
the MPEG3 decoder. Experimental results are reported in
Section VII.

II. RELATED WORK

Several researchers have faced the problem of system-level
power optimization [4]. The opportunities for system-level
power optimization have been enhanced in the last few years
by the availability of power-manageable processors [7], [8],
offering low-power idle states and runtime clock/voltage
settings.

The design of cores with speed- and voltage-setting capabili-
ties has been addressed, among others, by Ishihara and Yasuura
in [17], which presents a model of dynamically variable voltage
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processor. In the same work, they show how this capability can
be exploited in order to minimize energy consumption by a static
voltage scheduling algorithm working under timing constraints.
This work is representative of a class of variable-voltage tech-
niques for system-level power optimization. The basic idea in
these approaches is to schedule the processor voltage in order to
spend the minimum amount of computational power required to
perform the given tasks. Additional hardware is needed to sup-
port this capability (like DC–DC converters). In addition, re-
ducing supply voltage increases circuit delay so that the clock
speed must be accordingly reduced [5], thus, voltage and speed
must be regulated together leading, in the ideal case, to a cubic
reduction of power and quadratic reduction of energy consump-
tion.

Researchers addressed the voltage scheduling problem
mainly from two different perspectives: application-driven [6],
[9], [23] and operating-system level [10], [12], [14], [16], [17],
[19], [21], [25].

Chandrakasanet al. [6] explores dynamic voltage setting
in digital signal processors (DSPs) with variable workloads.
Different from custom DSPs, general-purpose system-on-chips
(SOCs) are not targeted to a particular application; an adaptation
is necessary even with a fixed workload in order to reconfigure
the hardware resources in a power-efficient way. Chandrakasan
et al. demonstrates the effectiveness of decreasing together
speed and voltage with respect to simply shut down the system
in idle periods.

Recently, Sinhaet al.[23] have investigated the idea of appli-
cations that are aware of their power requirements and help the
operating system in taking decisions about resources to be allo-
cated, clock frequency, and supply voltage. The energy model
by which the actual values of voltage and frequency are derived,
however, assumes a linear relationship between clock frequency
of the processor core and execution time of a certain task. This
model is not suitable in the context of real-time processing and,
in general, does not take into account real-life systems bottle-
necks like memory latency. In [9], the authors take a dual ap-
proach: here, the algorithm adapts its requirements to resource
availability. The experimental results show how characteristics
of data to be processed affect power consumption and, hence,
how an adaptive approach can be effective in reducing dissipa-
tion. The same work also shows that a large amount of power
is spent by the processor when in idle state because of limited
network bandwidth or real-time synchronization requirements.

As for operating-system-level power optimization, several
techniques have been developed to dynamically control the
voltage of a system. In this context, variable voltage poses
the problem of scheduling and, from this point of view, we
can distinguish betweenbest effortscheduling andreal-time
scheduling. In the former, the CPU voltage is lowered if a
decrease of the future amount of computation is predicted. The
target is the average reduction of power. Therefore, this method
does not guarantee that all tasks meet their deadlines [10], [25].
In the latter case, the knowledge of the deadline of each task is
exploited to set voltage and speed so that they just meet their
time constraints (just in time computation) [12], [14], [16],
[19], [21]. Some of these algorithms assume static scheduling

[10], [16], [17], i.e., the workload for each task is characterized
at design time, while others are dynamic [12], [14], [19], [21].

Restrictions on the effectiveness of variable voltage arise
because the regulation range is discrete. Moreover, regulation
freedom must deals with technology trends toward lower
voltages. In addition, as already mentioned, variable voltage
requires special hardware and the physical realization of the
required circuitry is quite complex [17]. Most research work
on variable-voltage processing is based on simulations; there-
fore, it does not fully take into account hardware limitations
arising when the the proposed energy management policies
are implemented on a real-life core. Recent experimental
work on variable-voltage techniques for real-time multimedia
processing has demonstrated that simulation results often lead
to optimistic conclusions and that many practical issues still
need to be resolved [11].

An alternative approach to variable-voltage processing is
based on shutdown. In its simplest flavor, this method consists
of a binary decision: whether or not turn off the power supply
of the processor. This can be exploited to save power when it
is not performing useful work.

Power shutdown of a component is a radical solution that
eliminates all sources of power dissipation (including leakage)
[4]. Another advantage is that it is easier to implement with
respect to variable voltage because shutdown capabilities are
available in almost any modern low-power chip; therefore, no
dedicated hardware is required. The drawback with respect to
variable voltage is that shutdown allows only two quantization
level of voltage (on andoff); from this point of view, variable
voltage allows better adaptation to different workloads; hence,
it is more effective [6]. Another drawback is that transition be-
tween inactive and functional state requires time and power;
therefore, it is not effective in most cases to turn off processor
as soon as it becomes idle. For this reason, predictive shut-
down techniques have been proposed based on the assumption
that some knowledge of future input events is available [4].
Paleologoet al. [21] utilize a finite-state stochastic model for
a power-managed system. Shutdown decisions are statistically
made on the basis of the past activity of the system. Other pre-
dictive techniques are presented in [15] and [24].

The approach described in this paper differentiates from both
variable-voltage and shutdown-based techniques and it is based
on speed setting alone with constant voltage supply. Its main
advantage is to allow fine tuning of energy consumption without
the need of a complex external circuitry as in variable voltage.
In the past, it has been conjectured that a similar approach could
not be effective and slowdown would leave energy consumption
unchanged at best. This an artifact of the simplistic assumption
on hardware behavior. Traditionally, it has been assumed that
power consumption scales down with, where is the voltage
and speed scaling factor. In addition, because the execution time
is inversely proportional to, energy depends on the square of
the supply voltage and not on, so is not useful to change only
processor speed in order to save energy unless supply voltage is
scaled down as well.

On the contrary, recent measurements [3], [17], [18] on real
systems have demonstrated that running at less than the max-
imum frequency can be advantageous. In Section III, we provide
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Fig. 1. Streaming multimedia architecture.

a theoretical explanation for this fact, which motivates the adap-
tive algorithmic power optimization strategy presented later in
the paper.

III. M ULTIMEDIA -SYSTEMS ARCHITECTURE

In a processor-based architecture, both hardware and soft-
ware organization impact power optimization. We briefly
describe a multimedia system architecture used as a practical
driver in our study and summarized in Fig. 1.

A. Hardware Architecture

The multimedia system consists of a wearable appliance
(calledsmart badge) and a host computer or a network commu-
nicating with the device. When the wearable appliance performs
streaming processing, the external system is responsible to
provide input data to the device. The communication medium
can be a wireless or a wired link. Since we deal with multi-
media-stream processing, incoming data are in a compressed
form in order to accommodate the bandwidth requirements.
Because output devices like video and audio playback systems
require a raw data input format, a decoding framework is
needed. In most wearable devices, the unit responsible for this
task is a general-purpose microprocessor. The processor core is
often integrated in a an SOC together with several peripherals.

Outside the SOC, other onboard components are needed, such
as external memory and audio or video codecs, which com-
municates with the CPU through I/O channels. Due to the dif-
ferent bandwidth requirement of communication protocols and
between the input and output data, some level of buffering is
necessary. To improve efficiency and parallelism, current SOCs
contain I/O hardware units that can buffer data and manage stan-
dard communication channels (e.g., serial port, parallel port) in
parallel to the CPU. High-bandwidth I/O devices often use a di-
rect memory access (DMA) for enhanced performance.

Since this kind of architecture is targeted to handle a
large range of workload levels, resource-power management
is needed in order to reduce the waste of power when the
workload is less than the maximum that the system is designed
to sustain. Therefore, modern SOC architectures implement
several power management capabilities. For example, we

can adjust the frequency in a range of discrete values or we
can stop the clock for some components at runtime. In most
architectures, frequency can be programmed via software and a
sequence of instructions is available in order to freeze the clock
of a set of hardware components of the SOC. In addition, even
by software, some other systems allow the gating of the power
supply for the CPU core or for the integrated controllers.

B. Software Architecture

The software side of a multimedia system is composed by
a server and a client part. The server functions as remote file
system for the hand-held device because the hand-held has
modest storage capability. When requested, the host starts
sending data to the remote system, which accumulates them
into an input buffer. Since multimedia-stream processing
algorithms must handle variable input and output data rates,
they make use of software buffering when hardware is not
sufficient. Often, input and output channels are driven by a
DMA controller, which transfers incoming data into the main
memory buffer. The rate at which this buffer is filled depends
on the bandwidth of the input channel and it is chosen in
order to support the bit rate, which represents the speed of the
stream’s information transfer. Once the input buffer is full, the
CPU starts to process the input data and sends the results to the
memory output buffer. When this buffer is filled, data are ready
to be transferred by the DMA toward the output channel. The
destination of this data depends on the particular nature of the
multimedia application. Input and output data rate are both key
characteristics of the multimedia stream because they impose
the speed at which the CPU must process the data to ensure that
the output buffer is never empty in order to meet the real-time
constraints.

IV. V ARIABLE FREQUENCY ANDENERGY OPTIMIZATION

In this section, we discuss how energy reduction can be ob-
tained by setting clock frequency even in the absence of an as-
sociated voltage regulation. This is in contrast to the common
assumption that speed setting is effective only when accompa-
nied by an adequate voltage-setting policy. Of course, if voltage
is scaled with frequency, more power can be saved, but the point
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here is that this is not a forced choice. To demonstrate our claim,
we start by looking at the usual expression of dynamic power
consumption

(1)

where
supply voltage;
average switched capacitance;
CPU clock frequency.

Because multimedia streams have a frame-based structure, it is
useful to consider the frame processing time . The energy
consumption in time can be immediately obtained as

(2)

where is the frame processing time. ,
where and are the number of clock cycles necessary to
elaborate a frame and the cycle time, respectively. We have then

(3)

because depends on , i.e., on the
workload. Now, because the CPU must interface with external
hardware, which is slower in general (e.g., off-chip memories),
there are times in which the CPU is idle, so let us now express

as

(4)

We observe now that for a given algorithm (the
number of cycles spent in execution of useful operations) is
independent of the frequency because it is a function of the
data to be processed, while (the number of cycles wasted
with the CPU being idle) can be seen as a function ,
where is one of the available processor frequencies.
is a nondecreasing function of. This is because when a
certain CPU activity has a fixed time duration, e.g., a memory
access or some kind of I/O device access, increasing only the
frequency leads to an increasing of the idle cycles because
useful operations are performed in a shorter time. This happens
every time the CPU is not the speed-limiting element.

By taking into account this dependency, the energy expres-
sion can be rewritten as

(5)

Now, it must be considered that real-time algorithms need to
provide a minimum amount of data output in a given time
depending on the output bandwidth required. For example, in
audio MPEG decoding, this bandwidth depends on the sample
rate of the decoded sound. The output bandwidth is directly pro-
portional to the frame elaboration speed, which can be expressed
as . To meet the real-time constraints, this speed must
be greater than .

The target of power optimization is to reduce acting
on under the constraint

(6)

Speed setting pursues the target of power minimization by de-
creasing so that in (6), decreases while and

are fixed because they affect the output data bandwidth. The
lower bound of , namely, , is fixed by the requirement that
all the useful work be executed in (just-in-time computa-
tion).

Speed-setting effectiveness depends on the workload charac-
teristics and the system’s architecture (both hardware and soft-
ware). It reduces the costs of memory latency in terms of CPU
wait states. Hence, in execution dominated by memory access
(high miss rate) and where memory latency is higher, this tech-
nique is more effective [3]. In addition, from a system-energy
perspective, since the CPU clock often feeds other on-chip com-
ponents, additional system power can be saved by reducing use-
less work on these as well (even if in some cases they implement
power down and gated clock strategies).

We classify these two idle contributions asimplicit idleness
andexplicit idleness. The first identifies CPU idleness dispersed
among useful operations (mainly during memory wait cycles
on cache misses). This term varies with: since memory ac-
cess time is fixed, adjusting the frequency involves variations
in number of wait states in a bus cycle. This happens when (as
usual) the CPU is not the speed-limiting element. The second is
due to coarsely clustered idle cycles. Explicit idleness is quite
common in practice. When the execution time is fixed, as in
the case of real-time constrained algorithms, making a compu-
tation faster involves the need of storing the results of compu-
tation in a buffer waiting for some event external at the CPU.
During that time, the CPU experiences idleness, which can be
eliminated without affecting the algorithm effectiveness by in-
creasing the time spent in useful operations, i.e., by lowering the
CPU frequency. Explicit idleness can be reduced also by putting
the processor in a low-power state while waiting and restoring
the running state when the external event arrives (i.e., an external
interrupt), but in this case, we need to account for the time and
energy overhead needed to shut down and wake up the CPU.

On the other hand, since the frequency cannot be adjusted
continuously, it is hard to completely eliminate CPU idleness.
As an additional concern when evaluating the effectiveness of
a speed-setting policy, the delay and the energy spent to set the
processor speed must be considered. However, in the context of
the proposed algorithm, this penalty is not noticeable because
the appropriate frequency value is chosen at the beginning of
the stream in an application-drive fashion.

V. FREQUENCY-SETTING FRAMEWORK

As previously mentioned, the effectiveness of a speed-setting
policy depends on the hardware characteristics and on the work-
load. Therefore a characterization of the system performance as
a function of clock frequency is needed in order to choose the
speed that guarantees the level of performance required.

Multimedia processing is carried out on a frame-by-frame
basis, every iteration yielding a variable amount of output data.
Since real-time applications must produce a fixed amount of
output data in a given period of time, the frame-processing rate

is an appropriate metric to indicate the level of perfor-
mance supported by the system at a given clock frequency.
The main challenge in modeling the frame rate (FR) as a func-
tion of clock frequency is that it depends on the characteristics of
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TABLE I
FRAME RATE LOOKUP TABLE

Values representFR (f ) in frame/sec at dif-
ferent sample rates (row) and bit rates (column).

the multimedia stream as well. In general, we have ,
where is a parameter representing characteristics of the en-
tire stream, namely, the sample rate sr and the bit rate br, and
represents characteristics of a single frame in the stream (e.g.,
frame size). For MP3 audio, the achievable frame-procesing rate
at a given clock frequency is a strong function of the stream’s
bit rate and sample rate.

For a fixed and , frame-by-frame variations
are quite small, but nonnegligible. To build our performance
model, we analyze several streams atbit rate and sample
rate and we monitor the worst case frame processing time as
well as the best case frame processing time at various frequen-
cies. Then, we define three curves , , ,
representing best case FR (i.e., the FR that could be achieved if
all frames in the stream could be processed at max speed), the
average case FR, and the worst case FR, respectively. By con-
struction, . The three curves
are normalized with respect to , the average FR
achieved when the processor is run at maximum speed. All three
curves are monotonically increasing in frequency. The normal-
ized has maximum value 1.

The same process is repeated for several different values of br
and sr, including all corner cases (i.e., maximum and minimum
br and sr in a range of allowed values). The normalized curves
are plotted on the same plane. We then obtain three nor-
malized curves: theoverall best , theoverall average

, and theoverall worst . The first one is ob-
tained by selecting the largest FR value among all curves
for each frequency point. The second one is obtained by aver-
aging all values of curves at every frequency. The third one
is obtained by selecting the smallest FR value among all
curves for each frequency point. The curves , ,
and are the performance model for the system.

The frequency-setting algorithm exploits the knowledge of
, , and curves, as well as the knowl-

edge of the for each allowed combination of br
and sr. It can be summarized as follows: when stream decoding
begins, the algorithms extracts the br and sr information from
the stream header and looks up the corresponding value of

shown in Table I. Furthermore, given the sr value,
it is possible to determine the average FR that the system
must support to guarantee real-time playback of decompressed
audio by the following equation:

(7)

where is the number of samples per frame.1

Given a requirement, the frequencies , ,
and are computed by intersecting the curves ,

1This number is fixed to 576 for MPEG1 and to 576 for MPEG1 phase2.

, with the horizontal line
representing the normalized FR required and

finding the abscissas of the intersections, as shown in Fig. 3.
Once the normalized FR required is obtained, the algorithm
finds the optimum frequency value by looking in a lookup
table, where the frequency versus FR points are stored (these
points correspond to the FR curves previously described). More
precisely, instead of one, we find three values, namely, ,

, and , that define a range of allowed frequencies for
speed setting.

Running the processor at should be enough to provide
real-time playback, but some buffering is required to accom-
modate frame-decoding rate jitter. Alternatively, it is possible
to run the processor at . At this frequency, real-time per-
formance is guaranteed on a frame-by-frame basis with min-
imal jitter compensation buffering. However, the processor con-
sumes more energy than what is needed most of the time. Fi-
nally, frequency can be used for short periods of time if we
find out that frames are consistently processed faster than the av-
erage rate. Clearly, it is also possible to run the processor faster
than (if is smaller than the maximum processor fre-
quency). This is clearly suboptimal from the energy viewpoint,
but it can be a forced choice in systems where processor time
is not fully dedicated to MP3 decoding. In this case, the perfor-
mance model described above makes it possible to quantify the
fraction of processor time that is made available for other tasks
by clocking the processor at .

It is important to stress that the curves are not linear in
general. This is because the memory system and interfaces do
not speed up like the processor with increasing clock frequency.
Increasing leads to a decrease of the ratio ; there-
fore, the FR does not increase linearly with. The slower the
speed of the external hardware (e.g., memory access time) with
respect to the processor, the flatter the performance curve and
the greater can be the effectiveness of the speed-setting policy.
Other than the hardware characteristics, the shape of the curve
depends on the ratio between the computation time spent inside
the CPU and that spent outside the CPU. Considering the non-
ideality of external memory, this can be expressed also as the
ratio between the external accesses and the total memory ac-
cesses, which in turns is equal to the cache miss rate. It must be
observed that the minimum FR also takes into account the de-
crease in bandwidth caused by the synchronization of the pro-
cessor with the I/O controllers and the external peripherals as
well.

VI. A LGORITHM IMPLEMENTATION

The frequency-setting algorithm and the system characteriza-
tion explained in the previous section has been exploited in the
implementation of an energy efficient streaming multimedia al-
gorithm, namely, an adaptive MPEG3 audio decoder. The target
system is the HP SmartBadgeIII, a prototype of wearable device
based on the StrongARM1100 core [2]. The CPU is integrated
in an SOC that contains several peripheral units and controllers.
In particular, the DMA controller allows the management of
I/O channels relieving the CPU from a great amount of syn-
chronization work. In our case, the target system communicates
with a host PC through a serial link that provides the encoded
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audio samples, which, in the case of the MPEG3 standard, are
grouped in frames. The algorithm starts decoding by looking at
the input buffer waiting for data to be available. When this hap-
pens, it takes a block of frames and decodes it. Then it sends
the results toward an external logic when finished. In our case,
output data are decoded audio samples sent by the integrated se-
rial controller to an external audio chip, which performs digital
to analog conversion and feeds the audio output connector of
the SmartBadgeIII.

The adaptation framework is based on the availability of the
stream characteristics by reading the header of the frames. In
particular, it looks at the beginning of the stream for the sample
rate and bit rate values. Based on this knowledge, the appro-
priate frequency is chosen as described in the previous section.

In StrongARM1100, 12 frequency levels are available by pro-
gramming a phase-locked loop. This can be done by writing a
control word in a memory-mapped register. Other operations
must be done before and after writing into this register. For ex-
ample, it is necessary to change the memory wait states in order
to accommodate the new frequency with the fixed memory ac-
cess time.

VII. EXPERIMENTAL RESULTS

The results presented in this paper were obtained for
the system architecture of the HP SmartBadgeIII prototype
hand-held device, based on the StrongARM SA-1100 em-
bedded core. The embedded application is MPEG-layerIII
audio decoding. Performance and power were obtained using
the simulation tools described in [27], which has been validated
against hardware measurements.

Experimental results in this section can be split in two parts.
In the former, we illustrate the frequency-setting framework and
the energy reduction, which can be obtained on a frame by
frame basis. In the latter, we demonstrate the effectiveness of our
approach by describing the energy consumption results of the
adaptive MPEG3 decoder built using the proposed algorithm.
In that case, energy consumption is related to the decoding of
an entire audio stream. In this case, as we will describe later,
the energy reduction in some cases is much greater because the
speed-setting policy may partially reduce the energy costs of the
I/O synchronization.

A. Frequency-Setting Results

The first plot, in Fig. 2, shows how energy per frame changes
with clock frequency for two MP3 streams with different br
(same sr). The plot is obtained by running MP3 decode at the
maximum FR achieved at a given clock frequency. This can be
slower or faster than the one required for real-time playback.
The purpose of this plot is to show that energy per frame mono-
tonically increases with frequency (contradicting the simplistic
model where energy is constant with variable frequency) be-
cause the processor wastes energy waiting for slow memories
during cache misses.

The actual energy penalty for excessive clock speed is even
larger than what is shown in Fig. 2 because active decoding must
be stopped when the output buffer is full to avoid frame loss.
Even if we stop decoding by forcing the processor in idle state,

Fig. 2. Energy consumption per frame.

Fig. 3. Frequency setting.

power consumption in idle state is nonnull (50 mW). Hence,
idle power is consumed when the processor is idle waiting for
the output frame buffer to empty.

Fig. 3 shows the overall FR versus clock frequency curves,
obtained with the procedure described in the previous section.
All three curves are normalized on theaxis to the
value. This is all the information needed by the speed-setting
algorithm. An FR specification set on theaxis implies three
frequency values, shown on theaxis. Remember that the tree
curves do not depend on sr and br. Hence, they are a charac-
teristic of the MP3 decode algorithm and can be used with any
MP3 stream with the only caveat that the must be
available and it must be prestored in a lookup table for every
possible sr and br.

Finally, Fig. 4 shows the energy penalty paid when running
the processor at a clock frequency larger than . The solid
line shows the energy overhead in the assumption that when the
processor is idle it consumes negligible power. The dashed curve
shows the actual power penalty, which accounts for processor
idle power as well. Notice how the two curves diverge at higher
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Fig. 4. Energy penalty for a 16-kHz 16-b/s audio stream.

frequencies, as the percentage of idle time becomes larger. En-
ergy-per-frame savings of more than 40% are obtained with re-
spect to the trivial policy that clocks the processors always at
maximum speed. As an example, consider an audio stream with

kHz and kb/s. At the maximum frequency
and, hence, without optimization, the energy per frame results
10.989 mJ, as shown in Fig. 2.

In order to apply our algorithm, first the FR required
must be obtained directly by the knowledge of sr. In this case,
from (7) it follows that frame/s. By using the ap-
propriate values of sr and br in lookup table, the corresponding
value of frame/s can be obtained, with

MHz. This value is used to scale the normalized
FR curve shown in Fig. 3. At that point, we find
MHz, MHz as abscissas corresponding to the or-
dinate in the plot of the scaled FR curve obtained above.
In this case, is either equal to or because there
is not an allowed processor value between 85.7 and 106.7 MHz.
Looking at the energy plot of Fig. 4, it can be found that, if we
conservatively choose , the energy per frame results 8.64
mJ. Hence, we obtain 21% of energy reduction. It must be noted
that in this case, is lower than the minimum frequency in-
dicated in the plot of Fig. 4 because the former refers to the best
case FR indicated by the curve in Fig. 3.

B. Adaptive Decoder Results

In the second part of the experimental results, we demonstrate
the effectiveness of our approach by evaluating the total energy
cost of decoding a compressed audio stream (a pop song). To
test the adaptive capability of our algorithm, the same audio
stream with different level of compression and sampling rates
has been provided. For each of these versions, all the three al-
gorithmic power optimization approaches described in the pre-
vious section have been tested. Before describing the results, we
must make clear that since the decoding time is fixed, we deal
with energy and average power consumption with no distinc-
tions. However, we utilize energy spent to decoding a second
of sound as a metric in our numerical results. Energy reduc-
tion is computed as . We

Fig. 5. Energy consumption of speed-optimized algorithm.

TABLE II
ENERGY REDUCTION

Column corresponds to different sample rates in
kilohertz, row-to-bit rate in kilobits per second.

have utilized a three-dimensional plot to show overall energy
behavior of the optimized algorithm with respect to the unopti-
mized one in Fig. 5, while the experimental results are summa-
rized in Table II.

In the - plane, we have represented the points corre-
sponding to different versions of the audio stream, while in

axis, the energy consumption when the policy is applied.
The results show how our algorithm adapts to the workload,
consuming less energy when computational load decrease.
This behavior is in contrast with the one of the unoptimized
algorithm, which consumes less energy when bit rate and
sample rate increase. This behavior is explained considering
that in idle intervals the CPU spends a lot of power polling a
synchronization variable. When the workload is higher, the
CPU spends more time in decoding instructions, which are less
power-expensive. A comparison between the energy consumed
by the adaptive algorithm and the unoptimized one is illustrated
in Figs. 6 and 7 for an audio stream with sample rates of 16
kHz and 24 kHz, respectively. We note the effectiveness of our
policy.

The results of energy reduction are explained by Fig. 8, where
we have reported values for a 16 kHz and a 24 kHz sampled
audio streams. Each line in the graph corresponds to the energy
reduction of the policy applied to audio streams characterized
by different level of compression, but fixed sample rate. The
energy reduction waveforms are decreasing because the effec-
tiveness of the policy decrease as the workload increases. This
is easily explained by considering that the greater the workload,
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Fig. 6. Energy consumption of adaptive versus nonadaptive algorithm (sample
rate: 16 kHz).

Fig. 7. Energy consumption of adaptive versus nonadaptive algorithm (sample
rate: 24 kHz).

Fig. 8. Energy reduction.

the lesser is the chance of performing an adaptation. Further-
more, coarse frequency adjustments are no more negligible in
the case of tight real-time constraints. In addition, the following
considerations can be derived.

1) Left points in the graphic, corresponding to a bit rate of 16
kb/s, show the case of a perfect frequency match. Hence,

Fig. 9. Energy waveform for a 24-kHz sampled 16-kb/s audio stream.

variable frequency policy provides the greatest reduction.
This is because, as stated previously in this paper, running
at a lower frequency leads to energy reduction not only
because of the elimination of useless CPU time, but also
because the reduction of the memory latency costs.

2) Points in the middle present a case of imperfect adap-
tation caused by the impossibility of a continuous
frequency tuning. The effect of frequency mismatch is
twofold. First, useless energy expensive polling intervals
are not completely eliminated. Second, in these intervals,
the CPU runs at frequency higher than optimal, further
increasing the energy consumption.

3) In right points, we have a case of a nearly optimal adapta-
tion. Hence, speed-setting energy reduction does not de-
crease sensitively. In effect, it must be recalled that as the
workload increases, the effectiveness of the speed-setting
policy and, in general, all of the energy management poli-
cies based on the workload adaptation decreases.

From these two plots, it can be seen how variable frequency
shows lower energy reduction at higher sample rate. This is be-
cause of the shape of the energy absorption’s waveform, plotted
in Fig. 9, with no optimization applied. CPU-waiting intervals
are narrow with respect to normal ones and, therefore, little fre-
quency adjustments involve large increase of the their width.
As a consequence, we are not able to make a fine regulation of
speed-setting effects in order to get a just in time computation.

C. Speed Setting and Shutdown—Experimental Results

In some cases, it is possible to overcome the problem of adap-
tation mismatch by the application of a joined speed-setting
shutdown policy. In effect, when the cost of the mismatch is
comparable to the energy that saved by running at the optimal
frequency, it can be effective to set the processor clock to an
higher than optimal value in order to perform the useful opera-
tion in a lesser time and the idleness time interval increases. We
increase this interval of a time necessary to allow the processor
shutdown.

Results of the application of this policy, which we called
mixed, are shown in Fig. 10. Notice that the mixed policy per-
forms better than the pure variable frequency policy when a
large adaptation mismatch arises, as in the case of 32 and 64
kb/s bit rate. On the contrary, when the adaptation is good, such
as in the 16 kHz bit rate case, variable frequency is more ef-
fective because shutdown does not reduce the cost of memory
latency, acting only on the explicit idleness contribution, which
we have described in Section IV.
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Fig. 10. Energy reduction comparison (sample rate: 16 kHz).

VIII. C ONCLUSION AND FUTURE WORK

In this paper, we have introduced an approach for automatic
runtime setting of the optimum processor frequency that
minimizes energy for streaming MP3 audio decoding. The
technique has been applied on an embedded portable appliance
based on the StrongARM SA-1100 core, obtaining sizable
energy-per-frame reduction. Adaptive speed setting is based on
a performance versus clock frequency model that is obtained
by precharacterization once and for all for a given application.
At runtime, FR requirements are obtained by analyzing the
MP3 steam header and then a range of acceptable processor
clock frequencies is automatically determined based on the
performance model.

Future work in this area will focus on speed-setting policies
for embedded applications (such as MPEG2 video), where clock
speed requirements change rapidly even within a single stream.
Variable speed-setting policies that take into account the impact
of input and output buffering also warrants further investigation.
Speed-setting policies that take into account the impact of I/O
buffering in a multitasking environment also warrant further in-
vestigation.
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