
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 1, FEBRUARY 2001 15

Energy-Efficient Design of Battery-Powered
Embedded Systems

TajanaŠimunić, Student Member, IEEE, Luca Benini, Member, IEEE, and Giovanni De Micheli, Fellow, IEEE

Abstract—Energy-efficient design of battery-powered systems
demands optimizations in both hardware and software. We
present a modular approach for enhancing instruction level
simulators with cycle-accurate simulation of energy dissipation
in embedded systems. Our methodology has tightly coupled
component models thus making our approach more accurate.
Performance and energy computed by our simulator are within
a 5% tolerance of hardware measurements on the SmartBadge
[2]. We show how the simulation methodology can be used for
hardware design exploration aimed at enhancing the SmartBadge
with real-time MPEG video feature. In addition, we present
a profiler that relates energy consumption to the source code.
Using the profiler we can quickly and easily redesign the MP3
audio decoder software to run in real time on the SmartBadge
with low energy consumption. Performance increase of 92% and
energy consumption decrease of 77% over the original executable
specification have been achieved.

Index Terms—Low-power design, performance tradeoffs, power
consumption model, system-level.

I. INTRODUCTION

ENERGY consumption is a critical factor in system-level
design of embedded portable appliances. In addition, low

cost with fast time to market are crucial. As a result, typical
portable appliances are built of commodity components and
have a microprocessor-based architecture. Full system evalua-
tion is often done on prototype boards resulting in long design
times. Field programmable gate array (FPGA) hardware emu-
lators are sometimes used for functional debugging but cannot
give accurate estimates of energy consumption or performance.
Performance can be evaluated using instruction-set simulators
(e.g., [1]), but there is limited or no support for energy consump-
tion evaluation.

Ideally, when designing an embedded system built of com-
modity components, a designer would like to explore a limited
number of architectural alternatives and test functionality, en-
ergy consumption, and performance without the need to build a
prototype first. In addition, designers need to optimize software
both during hardware development and once the prototype is
built in order to get the best performance and energy consump-
tion from the system. Embedded software optimization requires
tools for estimating the impact of program transformations on
energy consumption and performance.

Manuscript received August 3, 2000; revised August 31, 2000. This work was
supported in part by the Hewlett Packard Laboratory, ARPA/MARCO GSRC
and the NSF under Grant CCR-9901190.

The authors are with Stanford University, Stanford, CA 94305 USA (e-mail:
tajana@austin.stanford.edu).

Publisher Item Identifier S 1063-8210(01)01786-3.

This work presents a complete solution for all embedded
system design issues discussed above. The distinctive features
of our approach are the following: i) complete system-level and
component energy consumption estimates as well as battery
lifetime estimates; ii) ability to explore multiple architectural
alternatives; and iii) easy estimation of the impact of software
changes both during and after the architectural exploration.
The tool set is integrated within the instruction set simulator
provided by ARM Ltd. [1]. It consists of two components:
a cycle-accurate system-level energy consumption simulator
with battery lifetime estimation and a system profiler that
correlates both energy consumption and performance with
the code. Our tools have been tested on a real-life industrial
application, and have proven to be both accurate (within 5% of
hardware measurements) and highly effective in optimizing the
energy consumption in embedded systems (energy consump-
tion reduced by 77%). In addition, they are very flexible and
easy to adopt to different systems. The tools contain general
models for all typical embedded system components but the
microprocessor. In order to adopt the tools to another processor,
the ARM ISS needs to be replaced by the ISS for the processor
of interest.

The rest of this manuscript is organized as follows. We
discuss related work in Section II. System model and the
methodology for cycle-accurate simulation of energy dissi-
pation are presented in Section III. Section IV shows that the
simulation results of timing and energy dissipation using the
methodology presented are within 5% of the hardware mea-
surements for the Dhrystone test case. Hardware architecture
trade-offs for SmartBadge’s real-time MPEG video decode
design are explored using cycle-accurate energy simulation
in Section V. The profiling support we have developed is
presented in Section VI. A full software design example of
MP3 audio decoder for the SmartBadge that uses our profiler
is shown in Section VII.

II. RELATED WORK

As portable embedded systems have grown in importance
in recent years, so has the need for tools that enable energy
consumption estimation for such systems. CAE support for
embedded system design is still limited. Commercial tools
target mainly functional verification and performance estima-
tion [3]–[6], but provide no support for energy-related cost
metrics.

Processor energy consumption is generally estimated by
instruction-level power analysis, first proposed by Tiwariet al.

1063–8210/01$10.00 © 2001 IEEE

16 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 1, FEBRUARY 2001

[24], [25]. This technique estimates the energy consumed by a
program by summing the energy consumed by the execution
of each instruction. Instruction-by-instruction energy costs,
together with nonideal effects, are precharacterized once for
all for each target processor. An approach proposed recently in
[12] attempts to evaluate the effects of different cache and bus
configurations using linear equations to relate the main cache
characteristics to system performance and energy consumption.
This approach does not account for highly nonlinear behavior in
cache accesses for different cache configurations that are both
data and architecture dependent.

A few research prototype tools that estimate the energy con-
sumption of processor core, caches, and main memory in SOC
design have been proposed [7], [10]. Memory energy consump-
tion is estimated using cost-per-access models. Processor ex-
ecution traces are used to drive memory models, thereby ne-
glecting the nonnegligible impact of a nonideal memory system
on program execution. The final system energy is obtained by
summing over the contribution of each component. The main
limitation of the approaches presented in [7] and [10] is that
the interaction between memory system (or I/O peripherals) and
processor is not modeled.

A more recent approach presented in [11] combines multiple
power estimators into one simulation engine thus enabling de-
tailed simulation of some components, while using high-level
models for others. This approach is able to account for interac-
tion between memory, cache and processor at run time, but at the
cost of potentially long run-times. Longer run-times are caused
by different abstraction levels of various simulators and by the
overhead in communication between different components. The
techniques that enable significant simulation speedup are pre-
sented, but at the cost of the loss of detail in software design
and in the input data trace.

Cycle-accurate register-transfer levelenergyestimation ispre-
sented in [8]. This tool integrates RT level processor simulator
with DineroIII cache simulator and memory model. It is shown
to be within 15% of HSPICE simulations. Unfortunately, this ap-
proach is not practical for component-based designs such as the
one presented in this paper, as it requires knowledge of the in-
ternal design of system components. In addition, it is slower than
our approach as it models at lower abstraction level.

An alternative approach for energy estimation using measure-
ments as a basis for estimation is presented in PowerScope tool
[9]. PowerScope requires two computers to collect the measure-
ment statistics, some changes to the operating system source
code, and a digital multimeter. Although this system enables
accurate code profiling of an existing system, it would be very
difficult to use it for both hardware and software architecture ex-
ploration we present in this paper, as in the early design stages
neither hardware nor operating systems or software are avail-
able for measurements.

Finally, previous approaches do not focus on battery life op-
timization, the ultimate goal of energy optimization for portable
systems. In fact, when the battery subsystem is not considered
in energy estimation significant errors can result [21]. Some an-
alytical estimates of the tradeoff between battery capacity and

delay in digital CMOS systems are presented in [18]. Battery
capacity is strongly dependent on the discharge current as can
be seen from any battery data sheet [22]. Hence, it is important
to accurately model discharge current as a function of time in
an embedded system.

In contrast to previous approaches, in this work memory
models and processor instruction-level simulator are tightly
integrated together with an accurate battery model into cycle-
accurate simulation engine. Estimation results obtained with
our simulator are shown to be within 5% of measured energy
consumption in hardware. In addition, we accurately model
battery discharge current. Since we develop only one simulation
engine, there is no overhead in executing simulators at different
levels of abstraction, or in the interface between them. Thus,
our approach enables fast and accurate architecture exploration
for both energy consumption and performance.

In an industrial environment, the degrees of freedom in
hardware design for embedded portable appliances are often
very limited, but for software a lot more freedom is available.
As a result, a primary requirement for system-level design
methodology is to effectively support code energy consumption
optimization. Several techniques for code optimization have
been presented in the past. A methodology that combines
automated and manual software optimizations focused on
optimizing memory accesses has been presented in [17]. Tiwari
et al. [24], [25] uses instruction-level energy models to develop
compiler-driven energy optimizations such as instruction
reordering, reduction of memory operands, operand swapping
in Booth multipliers, efficient usage of memory banks, and
series of processor specific optimizations. Several other opti-
mizations have been suggested, such as energy efficient register
labeling during the compile phase [19], procedure inlining
and loop unrolling [7], as well as instruction scheduling [27].
Work presented in [20] applies a set of compiler optimizations
concurrently and evaluates the resulting energy consumption
via simulation.

All of the techniques discussed above focus on automated
instruction-level optimizations driven by the compiler. Unfor-
tunately, currently available commercial compilers have lim-
ited capabilities. The improvements gained when using stan-
dard compiler optimizations are marginal compared to writing
energy efficient source code [16]. The largest energy savings
were observed at the interprocedural level that compilers have
not been able to exploit.

Code optimization requires extensive program execution
analysis to identify energy-critical bottlenecks and to provide
feedback on the impact of transformations. Profiling is typically
used to relate performance to the source code for CPU and L1
cache [1]. Leveraging our estimation engine, we implemented
a code profiling tool that gives percentages of time and energy
spent in each procedure for every system component, not only
CPU and L1 cache. Thanks to energy profiling, the programmer
can easily identify the most energy-critical procedures, apply
transformations, and estimate their impact not only on pro-
cessor energy consumption, but also on memory hierarchy and
system busses.

S̆IMUNIĆ et al.: ENERGY-EFFICIENT DESIGN OF BATTERY-POWERED EMBEDDED SYSTEMS 17

Fig. 1. SmartBadge.

Our approach enables complete system-level and component
energy consumption estimates as well as battery lifetime es-
timates. In addition, it provides an ability to quickly explore
multiple architectural alternatives. Finally, it enables software
optimization both during and after architectural exploration
using our energy profiling tool. In the following section we
present the cycle-accurate energy simulator architecture to-
gether with energy consumption models for the components
modeled.

III. SYSTEM MODEL

Typical portable embedded systems have processors, storage,
and peripherals. We use SmartBadge [2] throughout this paper
as a vehicle to illustrate our methodology and to obtain hard-
ware measurements. The SmartBadge, shown in Fig. 1, is an em-
bedded system consisting of the StrongARM-1100 processor,
FLASH, SRAM, sensors, and modem/audio analog front-end
on a PCB board powered by the batteries through a DC–DC
converter. The initial goal in designing the SmartBadge was to
allow a computer or a human user to provide location and envi-
ronmental information to a location server through a heteroge-
neous network. The SmartBadge could be used as a corporate ID
card, attached (or built in) to devices such as PDAs and mobile
telephones, or incorporated in computing systems. The design
goal for the SmartBadge has since been extended to combine lo-
cation awareness and authentication with audio and video sup-
port. We will illustrate how our methodology has been used for
architecture exploration of the new SmartBadge that needed to
support real-time MPEG video decode feature. In addition, we
will show how our profiler and code optimizations can be used
to improve code for MP3 audio decoder.

The system we use in this work to illustrate our methodology,
the SmartBadge, has an ARM processor. As a result, we im-
plemented the energy models as extensions to the cycle-accu-
rate instruction-level simulator for the ARM processor family,
called the ARMmulator [1]. The ARMulator is normally used
for functional and performance validation. Fig. 2 shows the sim-
ulator architecture. The typical sequence of steps needed to set
up system simulation can be summarized as follows: 1) The
designer provides a simple functional model for each system
component other than the processor; 2) The functional model
is annotated with a cycle-accurate performance model; 3) Ap-
plication software (written in C) is cross-compiled and loaded

in specified locations of the system memory model; and 4) The
simulator runs the code and the designer can analyze execution
using a cross-debugger or collecting statistics. A designer inter-
ested in using our methodology would only need to addition-
ally provide cycle-accurate energy models for each component
during step 2) of the simulation setup. Thus, the designer can
obtain power estimates with little incremental effort.

We developed a methodology for enhancing cycle-accurate
simulators with energy models of typical components used in
embedded system design. Each component is characterized with
equivalent capacitance for each of its power states. Energy spent
per cycle is a function of equivalent capacitance, current voltage,
and frequency. The equivalent capacitance allows us to easily
scale energy consumed for each component as frequency or
voltage of operation change. Equivalent capacitances are cal-
culated given the information provided in data sheets.

Internal operation of our simulator proceeds as follows. On
each cycle of execution the ARMulator sends out the infor-
mation about the state of the processor (“cycle type”) and its
address and data busses. Two main classes of processor cycle
types areprocessor active, where active power is consumed, and
processor idle, where idle power is consumed. The processor
idle state represents an off-chip memory request. The number
of cycles that the processor remains idle depends on L2 cache
and memory model access times. L2 cache, when present, is
always accessed before the main memory and so is active on
every memory access request. On L2 cache miss, main memory
is accessed. Memory model accounts for energy spent during
the memory access. The interconnect energy model calculates
energy consumed by the interconnect and pins based on the
number of lines switched during the cycle on the data and ad-
dress busses. The DC–DC converter energy model sums all the
currents consumed each cycle by other system components, ac-
counts for its efficiency loss, and gets the total energy consumed
from the battery. The battery model accounts for battery effi-
ciency losses due to the difference between the rated current and
discharge current computed the current cycle.

The total energy consumed by the system per cycle is the
sum of energies consumed by the processor and L1 cache
(), interconnect and pins (), memory (), L2
cache (), the DC–DC converter () and the efficiency
losses in the battery ()

(1)

The total energy consumed during the execution of the software
on a given hardware architecture is the sum of the energies con-
sumed during the each cycle. Models for energy consumption
and performance estimation of each system component are de-
scribed in the following sections.

A. Processor

The ARM simulator provides a cycle-accurate, instruction-
level model for ARM processors and L1 on-chip cache. The
model was enhanced with energy consumption estimates based
on the information provided by the data sheets. Two power states
are considered: active state in which processor is running with

18 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 1, FEBRUARY 2001

Fig. 2. Simulator architecture.

the on-chip cache, and the state in which the processor is exe-
cuting NOPs while waiting to fill the cache.

Note that in the case of StrongARM processor used in this
work, the data sheet values for current consumption correspond
well to the measured values. Wan [26] extended the StrongARM
processor model with base current costs for each instruction.
The average power consumption for most of the instructions is
200 mW measured at 170 MHz. Load and store instructions re-
quired 260 mW each. Because the difference in energy per in-
struction is minimal, it can be expected that the average power
consumption value from the data sheets is on the same level
of accuracy as the instruction-level model. Thus we can use
data sheet values to derive equivalent capacitances for the Stron-
gARM. Note that for other processors data sheet values would
need to be verified by measurement, as often data sheet values
report the maximum power consumption, instead of typical.

When the processor is executing with the on-chip cache, it
consumes the active power specified in the data sheetmea-
sured at given voltage and frequency of operation . Total
equivalent active capacitance within the processor is
estimated as

(2)

The amount of energy consumed by processor and L1-cache at
specified processor cycle time and CPU core voltage
is

(3)

When there is an on-chip cache miss, the processor stalls and ex-
ecutes NOP instructions which consume less power.

can be estimated from the power consumed during execution of
NOPs at voltage and frequency

(4)

The energy consumed within processor core per cycle while ex-
ecuting NOPs is

(5)

B. Memory and L2 Cache

The processor issues an off-chip memory access when there
is an L1 cache miss. The cache-fill request will either be ser-
viced by the L2 cache if one is present in the design or directly
from the main memory. On L2 cache miss, a request is issued to
the processor to fetch data from the main memory. Data sheets
specify the memory and L2 cache access times and energy con-
sumed during active and idle states of operation.

Memory access time is scaled by the processor cycle
time to obtain the number of cycles the processor has to
wait to serve a request (6). Wait cycles are defined for two
different types of memory accesses: sequential and nonsequen-
tial. Sequential access is at the address immediately following
the address of the previous access. In burst type memory the se-
quential access is normally a fraction of the first nonsequential
access

(6)

Two energy consumption states are defined for each type of
memory: active and idle. Energy consumed per cycle while

S̆IMUNIĆ et al.: ENERGY-EFFICIENT DESIGN OF BATTERY-POWERED EMBEDDED SYSTEMS 19

Fig. 3. DC–DC converter efficiency.

memory is in active state operating at supply voltage is a
function of equivalent active capacitance, voltage of operation
and number of total access cycles ()

(7)

Active memory capacitance can be estimated from the ac-
tive power specified in the data sheet measured at voltage

and frequency

(8)

Multibank memory can be represented as multiple one-bank
memories.

Idle state can be further subdivided into multiple states that
describe modes of operation for different types of memories.
For example, DRAM might have two idle states: refresh and
sleep. The designer specifies the percentage of the time
memory spends in each idle state. Total idle energy per cycle
for memory is

(9)

where is power consumption in idle state. Both RAM and
ROM are represented with the same memory model, but with
different parameters.

The L2 cache access time and energy consumption are treated
the same way as any other memory. L2 cache organization is de-
termined from the numberofbanks, lines perbank,andwords per
line. Line replacement can follow any of the well-known replace-
ment policies. Cache hit rate is strongly dependent on its organi-
zation, which in turn affects the total memory access time and the
energy consumption. Note that we are simulating details of the
L2 cache access and thus know the exact L2 cache miss rate.

C. Interconnect and Pins

The interconnects on the PCB can contribute a large portion
of the off-chip capacitance. Capacitance per unit length of the
interconnect is a parameter in the energy model that can be ob-
tained from the PCB manufacturer. The length of an intercon-
nect can be estimated by the designer based on the approximate
placement of the selected components on the PCB. Pin capaci-
tance values are reported on the data sheets.

For each component the average length of the clock line, data,
and address buses between the processor and the component are
provided as one of the input simulation parameters. Hence, the
designer is free to use any wire-length estimate [14] or mea-
surement. The interconnect lengths used in our simulation of
SmartBadge come from the prototype board layout.

The total capacitance switched during one cycle is shown in
(10). It depends on the capacitance of one interconnect line and
the pins attached to it and the number of lines switched
during the cycle

(10)

The total energy consumed per cycle is a function
of the voltage swing on the lines that switched total capac-
itance switched and the total time to access the memory

(11)

D. DC–DC Converter

DC–DC converter losses can account for a significant frac-
tion of the total energy consumption. Fig. 3 from the datasheets
shows the dependence of efficiency on the DC–DC converter
output current. Total current drawn from the DC–DC converter

20 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 1, FEBRUARY 2001

by the system each cycle is a sum of the currents drawn by
each system component. A component currentis defined by

(12)

where is the energy consumed by the component during
cycle of length at operating voltage .

Total current drawn from the battery can be calculated as

(13)

Efficiency can be estimated using linear interpolation from
the data points derived from the output current versus efficiency
plot in the data sheet. From our experience, a table with 20
points derived from the data sheets gives enough information
for accurate linear estimation of values not directly represented
in the table.

Total energy DC–DC converter draws out of the battery each
cycle is

(14)

The energy consumed by the DC–DC converter is differ-
ence between the energy provided by the battery and
the energy consumed from the DC–DC converter by all other
components,

(15)

E. Battery Model

The main battery characteristic is its rated capacity measured
in megawatt hours. Since total available battery capacity varies
with the discharge rate, manufacturers specify plots in the
datasheets with discharge rate versus battery efficiency similar
to the one shown below.

The discharge rate (or discharge current ratio) is given by

(16)

where , the rated discharge current, is derived from the
battery specification and is the average current drawn by the
DC–DC converter. As a battery cannot respond to instantaneous
changes in current, a first order time constantis defined to
determine the short-term average current drawn from the battery
[23]. Given , and processor cycle time , we can compute

, the number of cycles over which average DC–DC current
is calculated as

(17)

Then, is computed as

cycle (18)

where is the instantaneous current drawn from the bat-
tery. With discharge current ratio, we estimate battery efficiency
using battery efficiency plot such as the one shown in Fig. 4. The

Fig. 4. Battery efficiency.

total energy loss of the battery per cycle is the product
of energy drained from the battery by the system with the effi-
ciency loss ()

(19)

Given the battery capacity model described above, battery es-
timation is performed as follows. First, the designer character-
izes the battery with its rated capacity, the time constant, and the
table of points describing the discharge plot similar to the one
shown in Fig. 4. During each simulation cycle discharge cur-
rent ratio is computed from the rated battery current and average
DC–DC current calculated from the last cycles. Efficiency
is calculated using linear interpolation between the points from
the discharge plot. Total energy drawn from the battery during
the cycle is obtained from (19). Lower efficiency means that less
battery energy remains and thus the battery lifetime is propor-
tionally lower. For example, if battery efficiency is 60% and its
rated capacity is 100 mAhr at 1 V, then the battery would be
drained in 12 min at average DC–DC current of 300 mA. With
efficiency of 100% the battery would last 1 h.

IV. V ALIDATION OF THE SIMULATION METHODOLOGY

We validated the cycle-accurate power simulator by com-
paring the computed energy consumption with measurements
on the SmartBadge prototype implementation. The SmartBadge
prototype consists of the StrongARM-1100 processor, DC–DC
Converter, FLASH, and SRAM on a PCB board. All the com-
ponents except the CPU core are powered through the 3.3 V
supply line. CPU core runs on 1.5 V supply. DC–DC converter
is powered by the 3.5 V supply. DC–DC converter efficiency
table contains 22 points derived from the plot shown in Fig. 3.
Stripline interconnect model is used with 1.6 pF/cm capacitance
calculated based on the PCB board characteristics [13]. Table I
shows other system components. Average current consumed by
the processor’s power supply and the total current drawn from
the battery are measured with digital multimeters. Execution
time is measured using the processor timer.

Industry standard Dhrystone benchmark is used as a vehicle
for methodology verification. Measurements and simulations
have been done for ten different operating frequencies of
SA-1100 and SA-110 processors. Dhrystone test case is run
10 million times, 445 instructions per loop. Simulations ran

S̆IMUNIĆ et al.: ENERGY-EFFICIENT DESIGN OF BATTERY-POWERED EMBEDDED SYSTEMS 21

TABLE I
DHRYSTONETEST CASE SYSTEM DESIGN

on HP Vectra PC with Pentium II MMX 300 MHz processor
and 128 MB of memory. Hardware ran 450 times faster than
the simulations without the energy models. Simulations with
energy models were slightly slower (about 7%). Fig. 5 shows
average processor core and battery currents. Average simulation
current is obtained by dividing the total energy consumed by
the processor core or the battery with their respective supply
voltages and the total execution time.

Simulation results are within 5% of the hardware measure-
ments for the same frequency of operation. The methodology
presented in this paper for cycle-accurate energy consumption
simulation is very accurate and thus can be used for architecture
design exploration in embedded system designs. An example of
such exploration is presented next.

V. EMBEDDED MPEG DECODER SYSTEM DESIGN

EXPLORATION

The primary motivation for the development of cycle-accu-
rate energy consumption simulation methodology is to provide
an easy way for embedded system designers to evaluate mul-
tiple hardware and software architectures with respect to per-
formance and energy consumption constraints. In this section
we will present an application of the simulation methodology to
embedded MPEG video decoder system design exploration. The
MPEG decoder design consists of the processor, the off-chip
memory, the DC–DC converter, output to the LCD display, and
the interface to the source of the MPEG stream. The input and
output portions of the MPEG decoder design will not be consid-
ered at this point. We focus on selection of memory hierarchy
that is most energy efficient.

The characteristics of memory components considered
are shown in Table II. Two different instruction memories
were evaluated—low-power FLASH and power-hungry burst
FLASH. We looked at three different data memories—low-
power SRAM, faster burst SRAM, and very power-hungry
burst SDRAM. Both instruction and data memories are 1 MB
in size. We considered using L2 cache in addition to L1 cache.
Unified L2 cache is 256 Kb, four-way set associative. The
hardware configurations simulated are shown in Table III. The
MPEG video decode sequence we used has 12 frames running
at 30 frames/second, with two I, three P, and seven B-frames.
We found that the results we obtained with a shorter video
sequence matched well the results obtained with the longer
trace.

Fig. 6 shows the amount of time each system component is
active during the MPEG decode and the amount of energy con-
sumed. The original configuration is limited by the bandwidth
of data memory. L2 cache is very fast but also consumes too
much energy. Burst SDRAM design fully solves the memory
bandwidth problem with least energy consumption. Instruction

Fig. 5. Average processor core and battery currents.

TABLE II
MEMORY ARCHITECTURES FORMPEG DESIGN

TABLE III
HARDWARE CONFIGURATIONS

memory constitutes a very small portion of the total energy due
to the relatively large L1 cache in comparison to the MPEG code
size. The DC–DC converter consumes a significant amount of
total energy and thus should be considered in system simula-
tions. We conclude from this example that using faster and more
power-hungry memory can be energy efficient.

22 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 1, FEBRUARY 2001

Fig. 6. Performance and energy consumption for hardware architectures.

Fig. 7. Cycle-accurate energy plot.

The analysis of peak energy consumption and the fine tuning
of the architectures can be done by studying the energy con-
sumption and the memory access patterns over a period of time.
Fig. 7 shows the energy consumption over time of the processor
with burst FLASH and SRAM. Peak energy consumption can
reach twice the average consumption, so the thermal character-
istics of the hardware design, the DC–DC converter, and the bat-
tery have to be specified accordingly.

For best battery utilization, it is important to match the current
consumption of the embedded system to the discharge charac-
teristic of the battery. On the other hand, the more capacity bat-
tery has, the heavier and more expensive it will be. Fig. 8 shows
that the instantaneous battery efficiency varies greatly over time
with MPEG decode running on the hardware described above.

Lower capacity batteries have larger efficiency losses. Fig. 9
shows that the total decrease in battery lifetime when contin-
ually running MPEG algorithm on a battery with lower rated
discharge current can be as high as 16%. The battery’s time con-
stant was set to ms.

The design exploration example presented in this section il-
lustrates how the methodology for cycle-accurate energy con-
sumption simulation can be used to select and fine-tune hard-
ware configuration that gives the best tradeoff between perfor-
mance and energy consumption.

The main limitation of the cycle-accurate energy simulator is
that the impact of code optimizations is not easily evaluated. For
example, in order to evaluate energy efficiency of two different
implementations of a particular portion of software, the designer
would need to obtain cycle-by-cycle plots and then manually
relate cycles to the software portion of interest. The profiling
methodology presented next addresses this limitation.

VI. PROFILING OF SOFTWARE ENERGY CONSUMPTION

The profiler architecture is shown in Fig. 10. The shaded por-
tion represents the extension we made to the cycle-accurate en-
ergy simulator to enable code profiling. Profiling for energy
and performance enables designers to identify those portions
of their source code that need to be further optimized in order
to either decrease energy consumption, increase performance,
or both. Our profiler enables designers to explore multiple dif-
ferent hardware and software architectures, as well as to do sta-
tistical analysis based on the input samples. In this way the de-

S̆IMUNIĆ et al.: ENERGY-EFFICIENT DESIGN OF BATTERY-POWERED EMBEDDED SYSTEMS 23

Fig. 8. Battery efficiency for MPEG decoder.

Fig. 9. Percent decrease in battery lifetime for MPEG decoder.

sign can be optimized for both energy consumption and perfor-
mance based on the expected input data set.

The profiler operates as follows. Source code is compiled
using a compiler for a target processor (e.g., application or op-
erating system code). The output of the compiler is the exe-
cutable that the cycle-accurate simulator executes (represented
in this figure as assembly code that is input into the simulator)
and a map of locations of each procedure in the executable that
a profiler uses to gather statistics (the map is correspondence
of assembly code blocks to procedures in “C” source code). In
order to increase the simulation speed, a user-defined profiling
interval is set so that the profiler gathers statistics only at pre-
determined time increments. Usually an interval of 1s is suf-
ficient. Note that longer intervals will give slightly faster ex-
ecution time, with a loss of accuracy. Very short intervals (on
the other of a few cycles) have larger calculation overhead. For
example, energy consumption calculation gives approximately
10% overhead to standard cycle-accurate performance simula-
tion. Profiling with an interval of 1 s gives negligible overhead
over energy simulation (less then 1%), with still accurate results.

During each cycle of operation, the cycle-accurate energy
consumption simulator calculates the current total execution

time and energy consumption of all system components
as shown in (1). The profiler works concurrently with the
cycle-accurate simulator. It periodically samples the simulation
results (using sample interval specified by the user) and maps
the energy and performance to the function executed using
information gathered at the compile time. Once the simulation
is complete, the results of profiling can be printed out by the
total energy or time spent in each function.

The main advantage of the profiler is that it allows designers
to obtain energy consumption breakdown by procedures in their
source code after running only one simulation. This information
is of critical importance when designing an embedded system,
as it enables designers to quickly identify and address the areas
in the source code that will provide largest overall energy sav-
ings. A good example of profiler usage is shown in Table IV.
The table shows a portion of energy profile for MP3 audio de-
code. The first column gives the name of the top procedure, fol-
lowed by its children. The next column gives the total energy
spent for that procedure. For example, the total energy spent
running the program () is 0.32 mWhr. The final column
gives the amount of energy spent only in that particular proce-
dure. For example, under it is clear that and
its descendants spend the most energy, 0.0671 mWhr. Looking
at the entry for , it is easy to see that the largest
portion of energy is consumed by its child, . There-
fore, the procedures to focus optimization on are
and . Although in this example we showed
source code profile of total battery energy consumption, the pro-
filer can report energy consumption for any system component,
such as SRAM or the interconnect.

The profiler allows for fast and accurate evaluation of
software and hardware architectures. Most importantly, it
gives good guidance to the designer during the design process
without requiring manual intervention. In addition, the profiler
accounts for all embedded system components, not just the
processor and the L1 cache as most general-purpose profilers
do. In the next section we present a real design example that

24 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 1, FEBRUARY 2001

Fig. 10. Profiler architecture.

uses the profiler to guide the implementation of the source
code optimizations described earlier for the MP3 audio decoder
running on the SmartBadge.

VII. OPTIMIZING MP3 AUDIO DECODER

The block diagram of the MPEG Layer III audio decoding
algorithm (MP3) is shown in Fig. 11. It consists of three blocks:
frame unpacking, reconstruction, and inverse mapping. The
first step in decoding is synchronizing the incoming bitstream
and the decoder. Huffman decoding of the subband coefficients
is performed before requantization. Stereo processing, if
applicable, occurs before the inverse mapping which consists
of an inverse modified cosine transform (IMDCT) followed by
a polyphase synthesis filterbank. We obtained the original MP3
audio decoder software from the International Organization for
Standardization [28]. Our design goal was to obtain real-time
performance with low energy consumption while keeping in
full compliance with the MPEG standard.

Given the limited compiler support available [16], our ap-
proach to code optimization is based on manual code rewriting
and optimization guided by our profiler. Code transformations
are applied in layers, starting from a high level of abstraction
and moving down to very detailed and architecture-specific op-
timization. In the next three subsections, we will describe in
detail the three optimization layers, moving from high to low
abstraction. The results of optimizations applied to the MP3 de-
coder will be presented in the last subsection. Note that all the
optimizations presented in the following subsections were per-
formed manually.

A. Algorithmic Optimization

The top layer in the optimization hierarchy targets algorithms.
The original specification is first profiled to identify all compu-
tational kernels, i.e., the procedures where most time and power
are spent. Each computational kernel is then analyzed from a
functional viewpoint. Then, the alternative algorithms for im-
plementing the same functionality are considered and compared

S̆IMUNIĆ et al.: ENERGY-EFFICIENT DESIGN OF BATTERY-POWERED EMBEDDED SYSTEMS 25

TABLE IV
SAMPLE ENERGY PROFILING

with the original one. At this level of abstraction, we consider
only high-level estimators of algorithmic efficiency (such as
number of basic operations).

Our approach to algorithmic optimization in MP3 decoding
has been conservative. First, we focused on just one computa-
tional kernel where a large fraction of run time (and power) was
spent, namely thesubband synthesis. Second, we did not try to
develop new original algorithms but we used previously pub-
lished algorithmic enhancements [29], [30] that are still fully
compliant to the MPEG standard. The new algorithm incorpo-
rates an integer implementation of the scaled Chen discrete co-
sine transform (DCT) instead of a generic DCT in the polyphase
synthesis filterbank. The use of a scaled DCT reduces the DCT
multiply count by 28%.

B. Data Optimization

At a lower level of abstraction than the algorithmic level, we
optimize code by changing the representation of the data ma-
nipulated by the algorithms. The main objective is to match
the characteristics of the target architecture with the processed
data. In our case, the executable specification of the MPEG de-
coder performed most computations using doubles, while the
processor SA-1100 has no hardware floating point support. As
a result, a direct implementation of the decoding algorithm,
even after algorithmic optimization, was unacceptably slow and
power-consuming. Trying to reduce the precision of floating
point computation, such as discussed in [31], would have helped
only marginally as the processor would have to emulate in soft-
ware all the floating point operations.

To overcome this problem, we developed a fixed-precision
library and we implemented all computational kernels of the
algorithm using fixed precision numbers. The number of dec-
imal digits can be set at compile time. The ARM architecture
is designed to support computation with 32-bits integers with
maximum efficiency. Hence, little can be gained by reducing
data size below 32 bits. On the other hand, when multiplying

two 32-bit numbers, the result is a 64-bit number and directly
truncating the result of a multiplication to 32 digits frequently
leads to incorrect results because of overflow. To increase ro-
bustness, 64-bit numbers have been used for fixed-point compu-
tation. This data type is supported by the ARM compiler through
the definition of a integer type. Computing with

integers is less efficient than using 32-bit integers,
but results are accurate and the risk of overflow is minimized.

Data optimization produced significant energy savings and
speedups for almost all computational kernels of MP3 without
any perceivable degradation in quality. The fixed-point library
developed for this purpose contains macros for conversion from
fixed-point to floating point, accuracy adjustment, elementary
function computation.

C. Instruction Flow Optimization

Moving further down in abstraction level, the third layer of
optimizations targets low-level instruction flow. After extensive
profiling, the most critical loops are identified and carefully
analyzed. Source code is then rewritten to make computation
more efficient. Well-known techniques such as loop merging,
unrolling, software pipelining, loop invariant extraction, etc.
[36], [35] have been applied. In the innermost loops, code
can be written directly as inline assembly, to better exploit
specialized instructions.

Instruction flow optimizations have been extensively applied
in the MP3 decoder, obtaining significant speedup. We do
not describe these optimizations in detail because they are
common knowledge in the optimizing compilers literature [36],
[35]. However, in our case most optimizations were performed
manually due to lack of support by the ARM compiler.

A simple example of this class of transformation is the use
of the multiply-accumulate instruction () available in the
ARM SA-1100 core. The inner loops of subband synthesis and
inverse modified cosine transform (the two key computational
kernels of MP3 decoder) contain matrix multiplications which
can be implemented efficiently with multiply-accumulate. In
this case, we forced the ARM compiler to use the instruc-
tion by inlining it in assembly.

D. Results of MP3 Audio Decode Optimization

Table V shows the top three functions in energy consumption
for each code revision we worked on. The original code has a
very large overhead due to floating point emulation, about 80%
of energy consumption. The next largest issue is the redesign of
SubBandSynthesis function that implements the polyphase syn-
thesis filterbank. The details of each optimization type, namely
algorithmic, data, and instruction-level optimizations, have been
presented above.

We will use the SubBandSynthesis function redesign as a ve-
hicle to illustrate the use of our profiler. In the initial stage, we
transferred all critical operations to fixed-point from floating
point. The transfer resolved the issue with floating-point opera-
tions but at the same time increased SubBandSynthesis fraction
of total energy six times. Next we introduced a series of instruc-
tion-level optimizations that resulted in a 30% decrease of Sub-
BandSynthesis fraction of total energy, to 34.32% as shown in

26 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 1, FEBRUARY 2001

Fig. 11. MP3 audio decoder architecture.

TABLE V
PROFILING FORMP3 IMPLEMENTATIONS

TABLE VI
ENERGY FORMP3 IMPLEMENTATIONS

the Table V. In parallel we had decided to try the algorithmic
changes on the current code.

Profiling results in Table V show that the algorithmic opti-
mizations considerably reduced the energy consumption of Sub-
BandSynthesis function—itdoesnotappear in the top three func-
tions, and in fact it is only 3.2% of the total energy consump-
tion.The final step is tocombine thealgorithmicchangeswith the
data and instruction-level changes, resulting in decrease of Sub-
BandSynthesis fraction of energy consumption to 6% of total.

System and component energy consumptions are shown in
Table VI for different revisions of source code optimization.
Positive percentages show energy decrease with respect to
the original code. Table VII shows the same results but for
performance measurements. Positive percentages show perfor-
mance increase. Although the energy savings of algorithmic
versus data and instruction-level optimizations as compared to
original code are comparable, the performance improvement
of data and instruction-level optimizations is significant. Note
that the increase in energy consumption and the decrease
in performance of Flash is due to the increase in code size
with the algorithmic change in SubBandSynthesis procedure.
The total improvement in system performance and energy
consumption more than makes up for the degradation of Flash
performance and energy consumption. Combined optimiza-
tions give real-time performance for MP3 audio decode which
is a primary constraint for this project. In addition, lower
energy consumption enables longer battery life. Note that faster
implementation that is also more energy efficient might imply
higher power consumption, which can be an issue for thermal
design of the device. In the case presented in this paper, it

TABLE VII
PERFORMANCE FORMP3 IMPLEMENTATIONS

TABLE VIII
FIXED-POINT PRECISION AND COMPLIANCE

was critical to get real-time performance with longer battery
lifetime. The average and peak power consumption constraints
are met with our final design.

The final MP3 audio decoder compliance to the MPEG stan-
dard has been tested as a function of precision for fixed-point
computation. We used the compliance test provided by the
MPEG standard [32], [33]. The range of RMS error between
the samples defines the compliance level. Table VIII shows that
results. Clearly, the larger number of precision bits results in
better compliance. In our final MP3 audio decoder we used 27
bits precision.

Using our design tools to guide the software optimization
process, we have been able to increase performance by 92%
while decreasing energy consumption by 77%, with full com-
pliance to the MP3 audio decode standard.

VIII. C ONCLUSION

We developed a methodology for cycle-accurate simulation
of performance and energy consumption in embedded systems.
Accuracy, modularity, and ease of integration with the instruc-
tion-level simulators widely used in industry make this method-
ologyveryapplicable to theembeddedsystemhardwareandsoft-
ware design exploration. Simulation is found to be within 5%
of the hardware measurements for Dhrystone benchmark. We
presented MPEG video decoder embedded system design explo-
rationasanexampleofhowourmethodologycanbeused inprac-
tice to aid in the selection of the best hardware configuration.

We have also developed a tool for profiling energy consump-
tion of software in embedded systems. Profiling results enabled
us to quickly and easily target the redesign the MP3 audio de-
coder software. Our final MP3 audio decoder is fully compliant
with the MPEG standard and runs in real time with low energy

S̆IMUNIĆ et al.: ENERGY-EFFICIENT DESIGN OF BATTERY-POWERED EMBEDDED SYSTEMS 27

consumption. Using our design tools we have been able to in-
crease performance by 92% while decreasing energy consump-
tion by 77%.

ACKNOWLEDGMENT

The authors would like to thank M. Hans for his help with the
MP3 audio. In addition, they would like to thank M. Smith and
M. Mesarina for their help with the SmartBadge.

REFERENCES

[1] Advanced RISC Machines Ltd (ARM),ARM Software Development
Toolkit Version 2.11, 1996.

[2] G. Q. Maguire, M. Smith, and H. W. P. Beadle, “SmartBadges: A wear-
able computer and communication system,” inProc. 6th Int. Workshop
Hardware/Software Codesign, 1998, Invited talk.

[3] CoWare. CoWareN2c[Online]. Available: url:www.coware.com/n2c.
html

[4] Mentor Graphics. [Online]. Available: www.mentor.com/codesign
[5] Synopsys. [Online]. Available: www.synopsys.com/products/hwsw
[6] Cadence. [Online]. Available: www.cadence.com/alta/products
[7] Y. Li and J. Henkel, “A framework for estimating and minimizing energy

dissipation of embedded HW/SW systems,” inProc. Design Automation
Conf., 1998, pp. 188–193.

[8] N. Vijaykrishnan, M. Kandemir, M. Irwin, H. Kim, and W. Ye,
“Energy-driven integrated hardware–software optimizations using
SimplePower,” inProc. 27th Int. Symp. Computer Architecture, 2000,
pp. 24–30.

[9] J. Flinn and M. Satyanarayanan, “PowerScope:A tool for profiling the
energy usage of mobile applications,” inProc. 2nd IEEE Workshop Mo-
bile Computing Systems Applications, 1999, pp. 23–30.

[10] B. Kapoor, “Low power memory architecutres for video applications,”
in Proc. 8th Great Lakes Symp. VLSI, 1998, pp. 2–7.

[11] M. Lajolo, A. Raghunathan, and S. Dey, “Efficient power co-estimation
techniques for SOC design,” inProc. Design, Automation Test Europe
Conf., 2000, pp. 27–34.

[12] T. Givargis, F. Vahid, and J. Henkel, “Fast cache and bus power estima-
tion for parameterized SOC design,” inProc. Design, Automation Test
Europe Conf., 2000, pp. 333–339.

[13] OZ Electronics Manufacturing.PCB Modeling Tools[Online]. Avail-
able: url: www.oem.com.au/manu/pcbmodel.html

[14] A. El Gamal and Z. A. Syed, “A stochastic model for interconnections
in custom integrated circuits,”IEEE Trans. Circuits Syst., vol. CAS-28,
pp. 888–894, Sept. 1981.

[15] T. Simunic, L. Benini, and G. De Micheli, “Cycle-accurate simulation of
energy consumption in embedded systems,” inProc. Design Automation
Conf., 1999, pp. 867–872.

[16] T. Simunic, L. Benini, G. De Micheli, and M. Hans, “Energy-efficient
design of battery-powered embedded systems,” inInt. Symp. Low-Power
Electronics Design, 1999, pp. 212–217.

[17] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, and
A. Vanduoppelle,Custom Memory Management Methodology: Explo-
ration of Memory Organization for Embedded Multimedia System De-
sign. New York: Kluwer, 1998.

[18] M. Pedram and Q. Wu, “Battery-powered digital CMOS design,” in
Proc. Design, Automation Test Europe Conf., 1999, pp. 17–23.

[19] H. Mehta, R. M. Owens, M. J. Irvin, R. Chen, and D. Ghosh, “Tech-
niques for low energy software,” inProc. Int. Symp. Low Power Elec-
tronics Design, 1997, pp. 72–75.

[20] M. Kandemir, N. Vijaykrishnan, M. Irwin, and W. Ye, “Influence of
compiler optimizations on system power,” inProc. 27th Int. Symp. Com-
puter Architecture, 2000, pp. 35–41.

[21] T. Martin and D. Siewiorek, “The impact of battery capacity and memory
bandwidth on CPU speed setting: A case study,” inInt. Symp. Low Power
Electronics Design, 1999, pp. 200–205.

[22] “Commercial NiMH technology evaluation,” inProc. 12th Battery
Conf., 1997, pp. 9–15.

[23] “A PSPICE macromodel for lithium-ion battery systems,” inProc. 12th
Battery Conf., 1997, pp. 215–222.

[24] V. Tiwari, S. Malik, A. Wolfe, and M. Lee, “Instruction level power anal-
ysis and optimization of software,”J. VLSI Signal Processing Syst., vol.
13, no. 2–3, pp. 223–2383, 1996.

[25] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded soft-
ware: A first step toward software power minimization,”IEEE Trans.
VLSI Syst., vol. 2, pp. 437–445, Dec. 1994.

[26] M. Wan, Y. Ichikawa, D. Lidsky, and J. Rabaey, “An energy conscious
methodology for early design exploration of heterogeneous DSPs,” in
Proc. Custom Intergrated Circuit Conf., 1998, pp. 16–22.

[27] H. Tomyiama, T. Ishihara, A. Inoue, and H. Yasuura, “Instruction sched-
uling for power reduction in processor-based system design,”Proc. De-
sign, Automation Test Europe, pp. 23–26, Feb. 1998.

[28] “Coded representation of audio, picture, multimedia and hypermedia in-
formation,” ISO/IEC JTC/SC 29/WG 11, Part 3, May 1993.

[29] M. Hans and V. Bhaskaran, “A compliant MPEG-1 layer II audio de-
coder with 16-bit arithmetic operations,”IEEE Signal Processing Lett.,
vol. 4, May 1997.

[30] M. Hans, “An MPEG audio decoder based on 16-bit integer arithmetic
and SIMD usage,” inProc. 1st IEEE Workshop Multimedia Signal Pro-
cessing, June 1997, pp. 23–29.

[31] J. Tong, D. Nagle, and R. Rutenbar, “Reducing power by optimizing
the necessary precision/range of floating-point arithmetic,”IEEE Trans.
VLSI Syst., vol. 8, pp. 273–286, June 2000.

[32] ISO/IEC JTC 1/SC 29/WG 11 11172-4, “Information tech-
nology—Coding of moving pictures and associated audio for
digital storage media up to 1.5 Mbit/s—Part 4: Compliance testing,”
Int. Org. Standardization, 1995.

[33] ISO/IEC JTC 1/SC 29/WG 11 13818-4, “Information tech-
nology—Generic coding of moving pictures and associated audio:
Conformance,”Int. Org. Standardization, 1996.

[34] M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S. Liao, E. Bugnion,
and M. Lam, “Maximizing multiprocessor performance with the SUIF
compiler,” IEEE Computer, vol. 29, pp. 84–89, Dec. 1996.

[35] D. Bacon, S. Graham, and O. Sharp, “Compiler transformations for
high-performance computing,”ACM Computing Surveys, vol. 26, pp.
345–420, Dec. 1994.

[36] S. Muchnick,Advanced Compiler Design and Implementation. New
York: Morgan Kaufmann, 1997.

[37] Workshop on Code Generation for Embedded Processors in Design Au-
tomation for Embedded Systems, vol. 4, Mar. 1999.

Tajana Šimunić (S’00) received the M.S. degree
in electrical engineering from the University of
Arizona, Tucson. She is currently working toward
the Ph.D. degree in electrical engineering at Stanford
University, Stanford, CA.

She is currently with HP Laboratories on a
part-time basis. Previously, she worked as a Senior
Design Engineer with Altera Corporation. Her
master’s thesis topic was high-speed interconnect
and driver-receiver circuit design. Her current in-
terests include low-power system design, embedded

systems, and wireless system design.

Luca Benini (S’94–M’97) received the B.S. degree
(summa cum laude) in electrical engineering from
the University of Bologna, Italy, in 1991 and the
M.S. and Ph.D. degrees in electrical engineering
from Stanford University, Stanford, CA, in 1994 and
1997, respectively.

Since 1998, he has been an Assistant Professor in
the Department of Electronics and Computer Science
in the University of Bologna. He also holds visiting
researcher positions at Stanford University and the
Hewlett-Packard Laboratories, Palo Alto, CA. His re-

search interests are in all aspects of computer-aided design of digital circuits,
with special emphasis on low-power applications, and in the design of portable
systems. On these topics he has published more than 120 papers in international
journals and conferences, a book, and several book chapters.

Dr. Benini is a member of the organizing commitee of the International Sym-
posium on Low Power Design. He is a member of the technical program com-
mittee for several technical conferences, including the Design and Test in Eu-
rope Conference, International Symposium on Low Power Design, and the Sym-
posiom on Hardware-Software Codesign.

28 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 1, FEBRUARY 2001

Giovanni De Micheli (S’79–M’83–SM’89–F’94) is
Professor of Electrical Engineering, and by courtesy,
of Computer Science at Stanford University. His
research interests include several aspects of design
technologies for integrated circuits and systems,
with particular emphasis on synthesis, system-level
design, hardware/software codesign and low-power
design. He is author of: Synthesis and Optimization
of Digital Circuits, McGraw-Hill, 1994, coauthor
and/or coeditor of four other books and of over 200
technical articles . He is member of the technical

advisory board of several EDA companies, including Magma Design Automa-
tion, Coware and Aplus Design Technologies. He was member of the technical
advisory board of Ambit Design Systems.

Dr. De Micheli is a Fellow of ACM. He received the Golden Jubilee Medal
for outstanding contributions to the IEEE CAS Society in 2000. He received
the 1987 IEEE TRANSACTIONS ONCOMPUTER-AIDED DESIGN/ICAS Best Paper
Award and two Best Paper Awards at the Design Automation Conference,
in 1983 and in 1993. He is Editor-in-Chief of the EEE TRANSACTIONS ON

COMPUTER-AIDED DESIGN/ICAS. He was Vice President (for publications)
of the IEEE CAS Society in 1999-2000 and was the Program Chair and
General Chair of the Design Automation Conference (DAC) in 1996-1997
and 2000, respectively. He was the Program and General Chair of the
International Conference on Computer Design (ICCD) in 1988 and 1989,
respectively. He was also Co-Director of the NATO Advanced Study Institutes
on Hardware/Software Co-Design, held in Tremezzo, Italy, 1995 and on Logic
Synthesis and Silicon Compilation, held in L’Aquila, Italy, 1986.

