FINITE-STATE MACHINE PARTITIONING FOR LOW POWER

Luca Benini, Giovanni De Micheli

Stanford University
Computer Systems Laboratory
Stanford, CA 94305

ABSTRACT

We describe an algorithm for the automatic synthesis of a
network of interacting FSMs starting from a single state-
table specification. The sub-machines in the decomposed
FSM communicate through a set of additional interface sig-
nals. The decomposed implementation has low power dis-
sipation because one single sub-machine is clocked at any
given time and it controls the outputs values while all other
sub-machines are idle. There is full cycle-by-cycle equiva-
lence between the input-output behavior of the decomposed
and undecomposed implementation.

1. INTRODUCTION

The ever increasing integration density of CMOS technol-
ogy has lessened the concern for area usage for VLSI cir-
cuits, giving more importance to timing and power dissipa-
tion constraints. Controllers are often critical for power, be-
cause they are continuously running (while parts of the data
path may be shut down), and for timing because the delay
through the controller may constrain the delay through the
data path.

In this work we propose a procedure for the automatic
synthesis of a network of interacting FSMs starting from a
single state-table specification. The straightforward single-
machine implementation is called undecomposed FSM. We
call decomposed FSM the interacting FSM implementation.
The sub-machines in the decomposed FSM communicate
through a set of additional interface signals. The decom-
posed implementation has low power dissipation because
one single sub-machine is clocked at any given time and it
controls the outputs values while all other sub-machines are
idle: they do not receive the clock signal and dissipate lit-
tle power. When a sub-machine terminates its execution,
it sends an activation signal to another sub-machine which
takes control of the computation, then it de-activates itself.
This transition is characterized by a single cycle for which
both sub-machines are clocked. There is full cycle-by-cycle

This research is partially supported by NSF under contract MIP-
9421129 and by ARPA under contract DABT-63-95-C-0049.

0-7803-4455-3/98/$10.00 © 1998 IEEE

Frederik Vermeulen

IMEC
Kapeldreef 75, B-3001
Leuven, Belgium

1y gogy
© &7
(a) ®) ©)

Figure 1: Definitions of §; and \;

equivalence between the input-output behavior of the de-
composed and undecomposed implementation.

Decomposition for low power has been studied in [2]. In
this work the authors exploit the principle of mutual exclu-
sion between states and formulate decomposition as a state
assignment problem. Our decomposition strategy operates
at a higher level of abstraction. No constraints are enforced
on the state codes of the FSMs since our algorithm is ap-
plied before state assignment. Moreover, our gated clock
architecture is novel and allows us to completely shut down
not only the combinational logic, but also the flip-flops. The
practical effect of these differences that our technique may
have higher area overhead but it can achieve larger power
savings.

2. LOW-POWER INTERACTING FINITE-STATE
MACHINES

Given the state stable or the state transition graph (STG)
of a monolithic FSM we first compute a partition I7(.S) of
its state set S. The elements of P(S) are sets of states,
called blocks. The blocks are mutually disjoint and cover S.
The algorithm for the computation of I7(.S) is described in
the next section. Here we focus on how to decompose in a
power-efficient fashion a monolithic FSM given a partition
I7(9).

Refer to Figure 1. Part (a) shows a transition in the un-
decomposed FSM. Part (b) shows the transition in the de-
composed FSM when its source and destination state both
belong to the same partition block P; (the transition is un-
changed). Part (c) shows the case when the source and des-

II-5

2% 1 0071 20,00

Figure 2: Decomposition of the monolithic FSM

tination state belong to different partition blocks. For each
transition leaving a state sub-set P; in the undecomposed
FSM, the sub-FSM F; associated with P; performs a transi-
tion to its reset state. On the other hand, a transition enter-
ing a sub-set P; from P; # P; corresponds to a transition
exiting the reset state in the sub-FSM F;. A sub-machine
can exit the reset state only upon assertion of a go signal by
another submachine. At any given clock cycle only two sit-
uations are possible: i) one sub-machine is performing state
transitions and all other sub-machines are in reset state, ii)
one sub-machine is transitioning toward its reset state, while
another one is leaving it.

All inputs and outputs of the undecomposed FSM are
inputs and outputs of the sub-machines. The go signals
are new, additional inputs and outputs. If an edge s — 1
of the original machine has head and tail state included in
sub-machine Fj, the edge is replicated in F;, with the same
input and output fields. Edges in the global FSM connect-
ing states which belong to different partitions are associ-
ated with edges representing transitions to and from the re-
set states of the corresponding sub-FSMs. These transitions
are labeled as follows: i) edges toward reset have the same
input field as the original edge, assert an additional output
go = 1 and have the same output field as in the original
transition edge of the undecomposed FSM. ii) Transitions
leaving reset have only one specified input go and all out-
puts set to zero. The outputs of a sub-machine blocked in
reset state are zero.

Example 1 Consider the FSM in Figure 2 (a). We as-
sume that the state partition is II(S) = {P,P,} =
{{st0, st1}, {st2, st3}}. The two sub-machines created by
the decomposition procedure are shown in Figure 2 (b) and
(c). The additional reset states are shaded. P, originates
sub machine (b) and P, originates sub machine (c). Notice
that the “go” signals are shown only on the transitions from
and to the reset states. A sub-machine asserts a “go” signal
only when transitioning to the reset state, in all other cases
the signal has value zero. Similarly, a submachine is sensi-
tive to input “go” signals only when it is in reset state. The
“go” inputs are not observed for all other transitions.

In the interacting FSM system, most of the machines F;
remain in state so ; during a significant number of cycles. If

INPUT]
RESET
Tes
| CLK
CLK ped ' k1 out|
B0s1m2
ckL o m in_resl A
k2
G
. L—in
ROst1, 512 L—res
in_resl dkz out
B30l
in_res2 in_res2 _}

Figure 3: Gated-clock implementation of the interacting
FSMs

we stop their clock while they stay in reset state, we save
power because only a part of the system is active and has
significant switching activity. To be able to stop the clock,
we need to observe the following conditions.

e The condition under which Fj is idle. It is true when
F; reaches the state sq ;. We use the Boolean function
is_in.reset; thatis 1 if F} is in state so,;, 0 otherwise.

e The condition under which we need to resume clock-
ing, even if the sub-FSM is in reset state. This hap-
pens when the sub-FSM machine receives a go signal
and must perform a transition from sg; to any other
state.

We can derive F,;, called activation function (in neg-
ative logic). The clock to F; is halted when F,; = 1.
Namely:

F,, = isin_reset; A (

V

gEF;, pEF;#F;

gop,q) (D

The first term is_in_reset;(s) stops the clock when the ma-
chine reaches sg ;. The second term ensures that clock is not
halted when one of the gop, 4 is asserted and the sub-FSM
must exit the reset state. This activation function allows the
newly activated sub-FSM to have its first active cycle dur-
ing the last cycle of the previously active FSM. The two
sub-FSMs make a transition in the same clock cycle: one is
transitioning to its idle state, and the other from its idle state.
The local clocks of F; and F} are both active. We call tran-
sitions of control the cycles when a sub-FSMs shuts down
and another activates.

Example 2 The gated-clock implementation of the inter-
acting FSMs of Figure 2 is shown in Figure 3. Notice how
the external output is obtained by OR-ing the outputs of the
sub-FSMs. Figure 3 also shows the clock waveforms, the
“in.reset” signals and the “go” signals. Notice that there
is a clock cycle for which both local clocks are enabled.
The waveforms show how sub-FSM 1 is deactivated and

I1-6

out

sub-FSM 2 activates thanks to the assertion of the gos1 st2
signal.,

3. PARTITIONING ALGORITHM

The ideal mode of operation for the interactive FSM circuit
is one of minimum transition of control between different
sub-FSMs. When a sub-FSMs disables itself and another
one takes control, both machines are clocked for one cycle,
the go signals involved in the control transfer change value,
and the clock control circuitry switches as well. As a result,
transitions of control are power consuming and should be
avoided as much as possible.

Minimizing the number of go signals is another impor-
tant objective. The generation of such signals requires ad-
ditional hardware, that increases power dissipation. More-
over, the go signals increase the coupling between sub-
machines, complicating the placement and routing of the
circuit. On the other hand, if we reduce the number of
go signals to zero, i.e. we do not decompose the FSM, no
power savings are achieved.

In summary, we should look for a partition I (S) which
maximizes the locality of the computation and minimizes
the hardware overhead for communications between sub-
FSMs.

We implemented a heuristic partitioning procedure
based on a genetic algorithm [3] (GA) Some properties of
the problem made it well suited for evolutionary optimiza-
tion. First, the solution space is easily representable as a
set of bit-strings: a chromosome is encoded as a set of
[S| blocks of [loganmaz] bits. Each block is associated
to a state and represent the number identifying the partition
block to which the state belongs. The length of the chromo-
some in bytes is |S| - [l0ganmaz | /8. This is a very compact
encoding and if 7,4, is chosen as a power of two, every
chromosome represents a valid solution.

Third, and more importantly, the cost function can be
efficiently evaluated. We define the cost of a partition IT as:

Nytock
C(II)= Y K x Prob(b) 2)
b=1

where Nyjock is the number of partition blocks, K is an ap-
proximate measure of the hardware cost of the implementa-
tion of the sub-machine corresponding to block b (which is
proportional to the number of states in b and on the number
of go signals in its interface) and Prob(b) is the probabil-
ity of the sub-machine to be active. We do not describe the
compotation of C'(II) in detail because of space limitation.
However, it is important to notice that the computation is
O(|E}) where | E| is the number of edges in the STG of the
original machine.

The compact encoding (with no invalid solutions) and
the inexpensive computation of the cost function allow us to

take very large populations (in the order of 10° individuals)
in our GA solver.

4. EXPERIMENTAL RESULTS

Our decompostion tool consists of two modules: the par-
titioner and the netlister. The partitioner reads in the STG
of the undecomposed FSM and finds an optimal partition
II(S). The frame for the genetic algorithm implemented in
the partitioner is provided by the Genesis package [4]. The
netlister reads in the partition I7(.9), the STG of the speci-
fication and produces the decomposed FSM.

Table 1 shows the results on a number of benchmarks,
the first three examples are controllers of data-path small
full-custom chips implemented in a class project. The re-
maining FSMs are standard MCNC benchmarks [5], with
the exception of the last one which is a modified version of
MCNC benchmark 298 (we reduced the number of states
because the commercial tool we used for FSM synthesis
could not optimize the undecomposed implementation with
the memory resources available on our machines).

The differences in area, power and speed between the
partitioned machine and the original unpartitioned design
is given in Table 1 between parentheses in the last three
columns. The average power reduction is 31%. There is
also an increase in speed of 12%. The number of standard
cells increases on average by 48%. The time spent in de-
composition is upper bounded by 9 hours. However we ob-
served that the GA converges quite rapidly (i.e. 90% quality
is reached in 1 to 2 hours for all benchmarks).

Notice also that the increase in area is marked on all the
examples. The main reason for this phenomenon is the over-
head due to additional flip-flops. We specified minimum-
length state encoding in all our experiments. This encoding
style implies that the number of flip-flops in the undecom-
posed machine increases only logarithmically with the num-
ber of states. When the machine is decomposed, the number
of states in each sub-machine is decreased by a factor of two
if the partition is balanced. In this case each sub-machine
has just one flip-flop less than the original machine and the
total number of flip-flops is almost doubled. If the partition
is unbalanced, the number of flip-flop is generally increased
by the flip-flops required in the smaller machine. Obviously
the sequential overhead is larger for N-way partitions, with
N > 2. We could have performed our tests specifying one-
hot encoding. In this case, the sequential overhead would
have been null. However, we feel that the comparison with
minimum-length encoding is fairer towards the undecom-
posed implementation.

II-7

Name Original Partitioned
of # of #of std | power | crit. || # of std power crit.
states | partitions || cells path || cells path
test1 24 4 67 804 3.81 || 118 679 3.01
+76%) | (-16%) | (-21%)
test2 18 3 58 930 2.83 || 89 642 2.98
(+53%) | (-31%) | (-5%)
test6 80 4 252 2115 | 7.09 || 336 1209 5.92
(+33%) (-43%) | (-17%)
bbsse 13 4 112 1146 4.21 145 847 3.60
(+29%) | (=26%) | (-14%)
dk512 | 14 2 61 1138 | 329 || 88 853 2.79
(+44%) | (-25%) | (-15%)
keyb 18 3 157 1688 | 4.15 || 262 1387 4.69
(+67%) | (~18%) | (+13%)
planet | 48 4 360 4967 | 6.76 || 503 3241 5.85
(+40%) | (-35%) | (-13%)
s1488 | 48 4 433 2743 | 6.68 || 642 1717 5.82
+48%) | (-37%) | (-13%)
s820 25 3 191 1717 5.01 || 238 1171 3.83
(+25%) | (=32%) | (~24%)
s832 25 3 211 1889 | 4.61 || 274 1244 3.72
(+30%) | (-34%) | (~19%)
sand 32 4 429 3395 | 7.86 || 471 2554 6.78
(+10%) | (-25%) | (-14%)
scf 112 8 672 3719 | 7.07 || 988 2280 5.36
+47%) | (-39%) | (—24%)
test13 | 166 8 681 7006 | 7.38 || 1610 4124 7.57
(+137%) | (-41%) | (+3%)

Table 1: Power, area and speed of the decomposed implementation versus the undecomposed one

5. REFERENCES

[1] M. Kuo, L. Liu and C Cheng, “Finite-State Machine decom-
position for I/O minimization,” IEEE International Sympo-
sium on Circuits and Systems, pp. 1061-1064, April 1995.

[2] S-H. Chow, Y-Chen Ho et al., “Low-power realization of
Finite-State Machines - A decomposition approach,” ACM
TODAES Vol. 1, No. 3, pp. 315-340, July 1996.

{31 D. Goldberg, Genetic Algorithms in search, optimization and
machine learning, Addison-Wesley, 1989.

[4] 1.). Grefenstette, A user’s guide to GENESIS, 1990,

[5] S. Yang, “Logic synthesis and optimization benchmarks user
guide. Version 3.0,” MCNC Technical Report, 1991.

1I-8

