Synthesis of Low-Power Selectively-Clocked Systems from High-Level

Claudionor Coelho
Department of Computer Science

Specification
L. Benini P. Vuillod G. De Micheli
Computer Systems Laboratory
Stanford University

Stanford CA 94305-9030

Abstract

In this paper we propose a technique for synthesizing
low-power systems from a high-level specification. We an-
alyze the control flow of the specification to detect mutually
exclusive sections of the computation. A selectively-clocked
interconnection of interacting FSMs is automatically gener-
ated and optimized where each FSM controls the execution
of one section of computation. Only one of the interacting
FSMs is active at any given clock cycle, while all the others
are idle and their clock is stopped. Our interacting FSM im-
plementation achieves consistently lower power dissipation
than the functionally equivalent monolithic implementation.
In average 37% power savings are obtained with a 30%
area overhead.

1 Introduction

Power dissipation is an important design constraint and
numerous techniques for automatic synthesis and analysis
of low-power circuits have been proposed in the academic
and commercial environment {2, 3]. With the acceptance
of behavioral synthesis [4, 10, 12, 8, 9] and the appear-
ance of commercial products [6, 7] in this area, a significant
effort has been dedicated to extending low-power synthe-
sis techniques to the behavioral level of abstraction. Early
work focused on the minimization of supply voltage un-
der throughput constraints [16]. Unfortunately, designers
cannot always choose arbitrarily choose the optimal supply
voltage. These methods, albeit very effective, are limited in
scope to full-custom designs and a restricted class of appli-
cations where power supply voltage is a design parameter.

More recently, another class of behavioral synthesis
methodologies for low power has emerged. These tech-
niques are more general in scope, because they do not
require control on the power supply voltage. Power re-
duction is obtained by minimizing the switching activity of

0-8186-7563-2/96 $5.00 © 1996 IEEE

57

University of Minas Gerais (UFMG)
Brazil

the circuit. Resource allocation techniques have been pro-
posed [15, 16] to increase the temporal correlation (thereby
reducing switching) on the inputs of registers and data-path
units. While the approaches presented in [15, 16] optimize
the resource allocation after scheduling, in [14, 18] both
scheduling and resource allocation algorithms are modified
to take into account transition activity. Again, the key idea
is to increase the correlation between data stored in regis-
ters, consumed by operators or transmitted on busses during
successive clock cycles.

Other techniques focus on the reduction of useless
switching activity, by means of selective shutdown and clock
control [15, 17]. Inthese works the main insightis that when
a unit or a register is not used (i.e. the reservation table of
the unit has an empty slot) during a control step, we can
stop the clock or disable the loading of unneeded data. A
different approach to selective shutdown is taken in [19]: the
scheduling algorithm can be modified to exploit the slack in
the schedule and pre-compute multiplexer control signals.
If the control signals can be computed before the minimum
start time of the operations whose results are multiplexed, we
can use the control signals to completely stop the resource
performing the unneeded operation.

In this paper we introduce a control-flow technique that
achieves sizable power reductions by exploiting the mutual
exclusiveness of sections of the computation. We use in-
formation at the behavioral level about basic blocks in the
representation of a computation. We detect basic blocks that
can never execute simultaneously and we generate a con-
troller structure based on interacting finite state machines
(FSMs). The interacting FSMs are then selectively clocked:
only the part of the controller needed for the execution of
the active basic block receives the clock signal.

One important strength of our behavioral power reduc-
tion approach is that it detects idle conditions that are not
apparent at the lower levels of abstraction. Moreover, the
knowledge about mutual exclusion conditions in the control
flow can be fruitfully exploited for scheduling and resource
allocation in the data flow. In this work we focus on the syn-

thesis of low-power controllers from high-level specifica-
tion, but we are currently working on using the control-flow
information for low-power data-path synthesis.

Our tool for low-power controller synthesis leverages the
synthesis system presented in [5]: an environment for the
automatic synthesis of control-dominated hardware from
system-level specifications, but it can be adapted to other
high-level synthesis methodologies. We have tested our ap-
proach on benchmark high-level specifications obtaining in
average 37% reduction in power dissipationin the controller.

2 Behavioral synthesis

We consider a specification style based on procedural
HDLs with imperative semantic (e.g. Verilog HDL, VHDL).
The hardware model contains four kinds of statements: 1)
assignments (with complex operators), ii) conditional state-
ments, iii) loops, iv) procedure calls. Ali conditionals, loops
and procedure calls can be nested. For the sake of simplic-
ity, we consider hardware models represented by a single
process.

2.1 Computation model

Conditionals and loops express control flow information,
while the assignments represent the dataflow. We use the se-
quencing graph [11] abstraction to represent the control/data
flow information. The sequencing graph is a hierarchical
graph where control-flow primitives are modeled through
the hierarchy, whereas dataflow and serialization dependen-
cies are modeled by graphs [4, 11].

The sequencing graph has two kinds of vertices: oper-
ations and links, the latter linking other sequencing graph
entities in the hierarchy. Sequencing graph entities that are
leaves of the hierarchy are called basic blocks and represent
pure dataflow. Intuitively, referring to the HDL specifica-
tion, a basic block is the straight-line code (sequence of
assignments) within a loop or a conditional. Notice that a
sequencing graph defines the computation as a set of opera-
tions (vertices) and a partial order among them (edges). The
partial order does not depend on the order of the statements
in the HDL code, but it represents data dependencies.

Vertices in the sequencing graph that are links to lower
levels of the hierarchy correspond to control-flow state-
ments. Branching is modeled by associating a sequencing
graph entity with each branching body and a link vertex with
the branching clause. Iteration is modeled by associating a
sequencing graph entity with the body of the loop and a link
vertex with the iteration clause.

Example 1 Figure 1 shows a HDL specification and its
sequencing graph. The vertices 1oop and alt are link
vertices leading to lower levels of the hierarchy. They are

58

oufput [...] dx,dy;

while (a > 0)

begin
dx = dx;
a=a-1; B1
dy =a;

end

if(dy==1)

begin

dx = b+1;
-
end

Figure 1. Hierarchical sequencing graph of a
HDL specification

associated with the control flow and implicitly represent the
evaluation of the loop and branch clause, respectively. The
dashed edges represent the hierarchy: two dataflow leaves of
the hierarchy are represented. Notice that every sequencing
graph has two dummy vertices called source and sink.

2.2 Detecting mutual exclusion

The key contribution in our approach is to realize that
the link vertices (i.e. the control flow constructs) allow us
to identify mutually exclusive sections of the computation.
We define two sequencing graph instances G1 and Gz to
be mutually exclusive when the operations of (1 cannot be
concurrently executed with any operation in G2.

At any given level of the hierarchy, if there is a path in
the sequencing graph connecting two link vertices, the se-
quencing graph instances associated with the link vertices
represent mutually exclusive computations. Remember that
a path between two vertices in a sequencing graph implies
(transitive) functional dependency, therefore the two com-
putations associated with the vertices cannot be concurrently
executed. Moreover, in case of conditional statements, all
alternative branching bodies are mutually exclusive.

The synthesis process requires one to schedule the se-
quencing graph, to determine resource allocation and to
generate a controller FSM. The typical structure of a FSM
generated by synthesis has a natural decomposition that
closely matches mutually exclusive sections of the compu-
tation. Notice that scheduling introduces several additional
mutual exclusion conditions: resource constraints translate
directly into mutual exclusiveness of vertices in the sequenc-
ing graph. In this work we focus on the constraints created
by the control flow. The rationale for this choice is that we
look for a coarse-granularity decomposition; and control-
flow induced decompositions have relatively few compo-
nents.

Example 2 The the state transition graph of the controller
for the example in Figure 1 is shown in Figure 2. We assume
that the schedule of the loop (including the test of the loop
conditional) takes 5 clock cycles and the schedule of the

Figure 2. Controller for the HDL specification

body of the branch (plus the test of the conditional) takes 3
clock cycles. Since there is a direct path from the 1oop and
the alt vertices in Figure 1, the sequencing graphs associ-
ated with the two link vertices represent mutually exclusive
computations. The FSM is divided in two components cor-
responding to the basic blocks Bl and B2 shown in Figure
1. In particular notice that the exits and entry points of a
block correspond to the branch and loop clauses.

2.3 Control-flow based state partitioning

After scheduling and resource allocation, the FSM for the
controller is extracted from the sequencing graph (controller
generation). We call the initial FSM monolithic controller
implementation. In this sub-section we describe a three-
step procedure that creates a partition of the controller’s
states. This is the key information required to generate the
interacting FSM architecture which is our final target. The
~steps are: i) marking, ii) collapsing, iii) clustering. We
outline each of them in sequence.

Marking of the controller’s states is the first step. Dur-
ing controller generation, we mark states associated with i)
loop clause evaluations, ii) procedure calls, iii) return from
procedures, iv) conditional evaluations and v) conditional
joining points. The marking is a straightforward procedure
because the sequencing graph is available, thus the high-
level information on the control flow is still fully explicit
in the hierarchy of the link nodes. Marked states are called
roots of the decomposition. Notice that a single state may
be a multiple root: for example, a state may correspond to
a conditional join and to a loop clause evaluation as well (if
they are scheduled in the same control step). Conversely,
a single link node of the sequencing graph may induce the
marking of multiple roots: consider for example the case of
a partially unrolled loop.

Collapsing is a transformation performed on the marked
FSM. It transforms the state transition graph into a weighted
graph. The sequences of unmarked states between roots are
merged in simple nodes. Each simple node is assigned a
weight equal to the number of FSM states collapsed into it.
The roots have weight equal to one. The subsequent steps
of the algorithm are based on the observation that the roots
have multiple outgoing incoming and/or multiple outgoing

59

edges, while the simple nodes have a single incoming and
outgoing edge.

Clustering is the third phase of the algorithm. Simple
nodes with small weight are chosen first for clustering. The
selected nodes are merged with their fan-in roots (i.e. roots
with edges directed to the nodes) and the weight of the roots
is augmented by the weight of the merged nodes. Clustering
is carried on until the number of nodes left in the graph is
equal to a user-specified number (the number of desired
sub-machines in the decomposition). Notice that roots in
the original unclustered graph may become simple nodes
after one or more clustering steps.

The states clustered within each node in the final graph
are the state sets of the sub-machines in the FSM decom-
position. We call I1(S) = {S1, 592, ..., Sn} the partition of
the state set .S of the original FSM. The rationale behind
the clustering algorithm is to induce a balanced decompo-
sition of the monolithic controller, where the component
FSMs have similar number of states. The complete descrip-
tion of the clustering algorithm is involved, because several
particular cases have to be considered and many heuristic
techniques can be employed to direct the choice of which
nodes are clustered first. We do not describe the algorithm
in full details for space reasons.

The partition I7(S) has two important properties. First,
it is based on the natural hierarchy induced by the control
flow in the sequencing graph. Second, and most important,
all edges entering a node of the graph correspond to edges in
the FSM which have a single destination state. We call this
distinctive characteristic single entry point property. The
single entry point property is fundamental for an effective
low-power implementation based on selectively-clocked in-
teracting FSMs, because it corresponds to a minimum num-
ber of additional signals to be generated in the final imple-
mentation. Unfortunately, there are correct HDL programs
for which it is impossible to generate partitions with sin-
gle entry point, namely programs with gotos and exceptions
(unstructured programs). Thus, we need to guarantee cor-
rect (but sub-optimal) behavior even if the property does not
hold. Intuitively, the root-based partition of controllers ex-
tracted by structured HDL programs have natural decompo-
sitions that lead to lower-power implementations, because
structured code has better locality and mutually exclusive
sections with coarser granularity.

Example 3 Consider the controller of Figure 2. Among
the states shown, S11 and S21 are roots and are identified
exploiting the information in the sequencing graph (they
correspond to link nodes). States S12 to §15 are collapsed
into on simple node SN1. States S22 and S23 are collapsed
as well in the simple node SN2. After marking and collaps-
ing the initial FSM is transformed in the weighted graph
shown in Figure 3 (a). Shaded nodes are roots (Rl and
R2). The weight of the nodes is shown between parentheses.

Figure 3. Marking, collapsing and clustering
steps

Clustering is performed on the graph. Two successive steps
are shown in Figure 3 (b) and (c). Observe that root R2,
after the first collapsing with SN2 becomes a simple node
SN3. Finally, the FSM decomposition induced by clustering
is shown in Figure 3 (d).

3 Control structure based on communicating
FSMs

The algorithm described in the previous section produces
a partition II(S) of the FSM states. We implement the
controller as a composition of communicating FSMs, one
for each set of states in /7(S). The specialized clocking
scheme we use guarantees that only one communicating
FSM is active at a given time (with an exception to be
clarified later).

The FSM partition can be formally described as follows.
LetF=(X,Y, S, s0, 8, A) be the original monolithic control
FSM, where X is the input vector, Y the output vector, S the
set of states, sg € S the reset state. The next state function is
st+1 = 6(x, s;) and the output functionisy; = A(zy, ;). S
has been partitioned in n sets. Our approach is to generate n
interacting sub-FSMs with combined input/output behavior
functionally equivalent to the monolithic controller F. For
a set of states S; in /7(5), the corresponding sub-FSM F; is
created as follow.

o All states in .S; are included in F;, with all transitions
among them.

o A new reset state sq ; is added to F;.

e For each transition from a state p of F; to a state ¢ of
F; (1 # j) a new signal go, , is generated: go, , is
an input signal for machine F; and an output signal
for machine F;.

o Every transition from p to ¢ becomes a transition from
pto sp; in F; and a transition from sp ; to ¢ in F}.

o The transition p — sp ; asserts the output signal go, 4
(of F3). The transition sg; — ¢ is performed only
when the input (of F}) go, , asserted.

60

Fy

Figure 4. Interacting FSMs implementation

The intuition behind this transformation is that for each
transition exiting from a block in the original FSM, the
sub-FSM associated with the block performs a transition to
its reset state. On the other hand, a transition entering a
new block in the original FSM corresponds to a transition
exiting the reset state in the interacting FSM of the block.
The transformation can be clarified through an example.

Example 4 Consider the monolithic controller of Figure
2. Its decomposition in interacting FSMs induced by the
clustered graph of Figure 3 (c) is shown in Figure 4. For
the sake of clarity, we do not show the complete input and
output fields of the FSMs. The transition from S11 to S12 is
taken only if a > 0. If the transition is taken, the additional
output goz 1 is asserted. The signal goy 1 is an input for the
Fy that exits from S01 upon its assertion. The figure shows
other activation signals for interfacing with sub-FSMs 0 and
3 (not shown).

A sub-machine can exit the reset state only upon assertion
of a go signal by another submachine. At any given clock
cycle only two situations are possible: 1) one sub-machine is
performing state transitions and all other sub-machines are
in reset state, ii) one sub-machine is transitioning toward its
reset state, while another one is leaving it.

Notice that the go signals are additional inputs and out-
puts. All inputs and outputs of the original FSM are un-
changed in the sub-machines. If an edge s — t of the
original machine has head and tail state included in sub-
machine F;, the edge is replicated in F;, with the same
input and output fields. Edges in the global FSM connect-
ing states which belong to different partitions are associated
with edges representing transitions to and from the reset
states of the corresponding sub-FSMs. These transitions are
labeled as follows: 1) edges toward reset have the same input
field as the original edge, an additional output go (set to 1)
and all original outputs set to 0. ii) Transitions leaving reset
have only one specified input go and the same output field as
in the original transition edge of the monolithic FSM. The
outputs of a sub-machine blocked in reset state are zero.

For space reasons, we have described the most straight-
forward implementation of the interacting FSMs. Several
optimizations are possible to reduce the number of go sig-
nals. It is important to observe that if the single entry point

property holds, the number of incoming signals for each
sub-FSM can be reduced to the number of sub-FSMs con-
nected to it. Thus the number of go signals is bounded from
above by n(n — 1) but is usually much smaller than that.
The rationale behind this important optimization is that if
there is an edge between sub-machines F; and Fj, and F;
has a single entry point, it does not matter from which par-
ticular state of F; the go signal has been issued (because the
starting state for the operation of Fj is always the same).

Example 5 An example of optimization of the go signals
is shown in Figure 4. The two sub-FSMs F and Fs have
a single entry point. We also assume that sub-FSMs Fs
(not shown) has the same property. Thanks to the single
entry point property, only one go signal is used for each
couple of interacting FSMs, namely goo 1, §o1,2, §o2,1 and
go2,3. We do not need to create separate signals, because
for each sub-machine all transitions leaving the reset states
are directed toward a unique entry state. Notice also that
for this particular example the signals go1 o and go, 3 are
not needed, because there is no communication between the
corresponding sub-machines.

3.1 Clock gating

In the interacting FSM system, most of the machines F;
remain in state sq ; during a significant number of cycles. If
we stop their clock while they stay in reset state, we would
save power (in the clock line and in the FSM combinational
logic) because only a part of the system is active and has
significant switching activity. To be able to stop the clock,
we need to observe the following conditions.

e The condition under which F; is idle. It is true when
the F; reaches the state sp;. We use the Boolean
function ¢s_in_reset; thatis 1 if F; is in state sg ¢, 0
otherwise.

The condition under which we need to resume clock-
ing, even if the sub-FSM is in reset state. This happens
when the sub-FSM machine receives a go signal and
must perform a transition from sg; to any other state.

We can derive the following activation function (in neg-
ative logic), Fy;. The clock is stopped when Fy; = 1.

V

PEF;#F; q€F;

Fu; = is.in_reset; A (99.,¢))

The first term ¢s_in_reset; stops the clock when the ma-
chine reaches sg;. The second term ensures that clocking
resumes when one of the go, 4 is asserted and the sub-FSM
must exit the reset state. This activation function allows
the newly activated sub-FSM to have its first active cycle
during the last cycle of the previously active FSM. The two

INPUT S1
RESET m 5]
res
] clkt
2%, | 204, 21—
clkl FalHL In_resi ~
cik2 ! ‘
] L [&E]
£01,2 : :_r;
In_resl D clkz out
gOg,
Im L
in_res2 . in_res2 -—]

61

Figure 5. Gated-clock implementation of the
interacting FSMs

sub-FSMs make a transition in the same clock cycle: one
is transitioning to its idle state, and the other from its idle
state. The local clocks of F; and F} are both active.

Each local clock of the FSMs Fj is controlled by a gating
block. The block is realized with the activation function
Fa;. We could use Fy;; as enable signal on the flip-flops, but
this scheme would let the clock lines active and consume
power. We gate the clock directly on its line. We use a
low level sensitive latch for Fy;, in order to avoid spurious
activity on the clock line [1]. Figure 5 shows two interacting
FSMs and their clock control circuitry. The local clock of
F; is clocking (having the same waveform as CLK) when
Fg; is 0. is blocked to 0 when F,; = 1. One clock-gating
block is instantiated for each sub-FSM.

Example 6 The gated-clock implementation of the inter-
acting FSMs of Figure 4 is shown in Figure 5. Notice how
the external output is obtained by OR-ing the outputs of the
sub-FSMs. This can be done because we specified that when
a sub-FSM is in reset state, all its output signals are zero,
thus the only possible source of controlling I values for the
outputs is the active sub-FSM.

Figure 5 also shows the clock waveforms, the in_reset
signals and the go signals. Notice that there is a clock
cycle for which both local clocks are enabled. The wave-
forms show how sub-FSM 1 is deactivated and sub-FSM 2
activates thanks to the assertion of the go 5 signal.

3.2 Power savings

The interacting FSM implementation is power-efficient
for several reasons. First, we save some power in the clock
line. For a large fraction of the operation time, only one
local clock is active and consumes power. A sub-FSM F;
has a fewer states than F, it has fewer state variables, and
therefore the local clock of F; is driving fewer flip-flops.
Notice however that when there is a transition from F; to
F;, both local clocks are active. In this cycle, the power
consumed in the clock line is much higher than in the other
cycles.

Second, when a sub-FSM is not active, the output and
state values do not change, and the switching activity in the

out

combinational logic is substantially reduced. The next state
logic of the I3 is significantly simpler and smaller than that
of F', thus the power consumed by F; is smaller. Since only
one Fj is active at a given time, the whole system consumes
less power than the original monolithic FSM.

The power saving would be bigger if we latch the primary
inputs, thereby completely eliminating the switching activity
in the inactive sub-FSM. On the other hand we would need
to replicate the input latches for each sub-FSM, with sizable
area penalty. In the current implementation, the inputs are
not latched. '

There is a loss of power to compute the activation func-
tion. This loss is small because the activation function is
implemented by simple logic and does not consume much
power. Some power is wasted also in the logic to compute
the primary outputs. This logic is not significant compared
to the whole system. It amounts in the worst case to one
n-input OR gate for each primary output. However, the out-
put logic is often minimized, because some of the primary
outputs are not driven by all sub-FSMs.

In summary, notice that power savings depend on the
choice of the state partitions of the control FSM. Good par-
titions are produced when the single entry point property
holds because the number of additional signals needed for
interaction and clock control is minimized. In many cases,
clustering is of paramount importance, since mutually ex-
clusive sections are initially numerous and small. This is an
undesirable situation because a large number of small com-
ponents implies frequent transitions across partition bound-
aries. In the current implementation, the user specifies the
maximum number of desired partition blocks. The tool col-
lapses mutually exclusive sections of small size until the
required number of blocks is reached. For best power sav-
ings, the number of partitions has to be quite small.

4 Implementation and results

We have implemented a complete design flow from the
system level to the gate-level. The front-end of our tool reads
the behavioral description (in C or Verilog) and generates the
controller’s FSM. In this step, the decomposition in blocks
required for the interacting FSMs implementation is created.
The user specifies n, the maximum number of blocks in the
decomposition.

In the second step we generate the interacting FSMs Fj,
t = 1,..n. We also generate the interface of the com-
municating system, we instantiate the FSMs and the clock
block. The interface is written in hierarchical Verilog HDL.
Gate-level synthesis of the FSMs is performed with Synop-
sys design compiler. We used the default options for the
Finite State Machine synthesis. For technology mapping
we specified maximum optimization effort, without timing
constraints. The two implementations have been synthe-

62

Avg pow (uW) Area ratio

Bench NS | NP | org | inter | ratio | seq | comb [tot
XFE 177 | 5 | 2558 | 1700 { 0.66 { 3.5 149 | 1.64
SPDCNT | 56 4 13075 [1211 | 039 |{ 2.83 | 0.85 | 1.02
DRAM 34 4 1562 | 770 | 049 | 2.5 1.09 | 1.28
DRAM 34 2 1562 | 943 | 060 | 1.67 | 1.01 | 1.09
XF 27 2 811 516 | 0.63 1.6 1.16- | 1.26
fifo 24 2 1517 | 1337 | 088 | 1.60 | 144 | 146
XB 20 3 875 598 | 0.68 2 135 | 1.47

Table 1. Results on HLS benchmarks.

sized with the same optimization options and with the same
gate library for synthesis and simulation.

The last step is the gate-level power simulation. We ran
the simulations with PPP [20] (an accurate gate-level power
simulator) and estimated the total average power dissipated
in the circuit. We compare the circuit obtained from the
original specification implemented as a single FSM and from
the interacting FSMs with clock gating. We applied a large
number of randomly generated vectors for power simulation.
Since we simulated the controller in isolation, we used the
neutral signal probability of 50% for all input signals.

We have tested our tool on control-dominated bench-
marks described in [5]. All these designs where originally
specified in C or Verilog. XFE, XF and XB are the con-
trollers of the transmission unit of an Ethernet coproces-
sor. These controllers are respectively the frame transmitter
with exception handling (XFE), without exception handling
(XF), and the bit transmitter (XB). DRAM is the controller
for a PCI bus protocol conversion to a DRAM protocol. We
showed the results for DRAM with 2 and 4 partitions. The
remaining two benchmarks are with a FIFO queue controller
and the speed control unit for an automobile (SPDCNT).

The results are shown in Table 1. We displayed the orig-
inal number of states, the number of partitions, the power
consumption with the original system and the communicat-
ing system. The “ratio” column gives the ratio of power
consumption with the original description and the gated de-
scription. We obtained 37% reduction of power consump-
tion on average, much higher power reductions for systems
with high locality (i.e. systems where one of the interacting
FSMs is running most of the time).

The last three columns of the table reflects the area over-
head. The figures are the ratio of the communicating FSMs
area over the original FSM area, in terms of mapped cells.
We distinguished the combinational area and the sequential
area. The area overhead in combinational logic is mainly
due the additional logic on the outputs (OR gates) and the
activation functions. It can even be smaller thanks to the
simplification the partition introduces. The area of SPD-
CNT has a decrease of 15%. This combinational overhead
is approximatively 20% on average. The sequential over-

head comes from the duplication of the state vectors. This
overhead 1s significant, but it depends on the number of
partitions. For a 4-partition, the area of the sequential part
is increased by more than a factor of 2. For a 2-partition,
the sequential overhead is around 1.6. Notice however that
we used minimum-length state encoding for all FSMs. For
different encoding styles (such as one-hot encoding) the se-
quential overhead is substantially reduced. The total area
increase is on average around 30%.

The computation time is dominated by the FSM synthe-
sis step. Interestingly enough, for our largest examples the
synthesis of all interactive FSMs was faster than the synthe-
sis of the single FSM implementation, even considering the
overhead of generating the partitions.

5 Conclusion and future work

We proposed an approach to power minimization at the
behavioral level based on an interacting FSM implemen-
tation with selective shutdown. The selective shutdown is
obtained by gating the clock of the state registers for inactive
sub-FSMs. We achieved in average a 37% power reduction
with a 30% increase in area. Additionally, our method al-
lows the exploration of the area/power trade-off by reducing
the number of partitions.

We obtain sizable improvements because power mini-
mization is targeted in the early stages of the design process.
Power optimizations techniques at the FSM level (such as
state assignment) and at the gate level can be plugged on
this process to get even better results.

In the future we plan to extend our method by consid-
ering datapath optimization. Power can be reduced in the
datapath by selectively gating the clock of the input latches
of units controlled by inactive sub-FSMs. Moreover, we are
developing algorithms for partitioning based on estimates of
the probability of execution.

6 Acknowledgments

This research is partially supported by NSF under con-
tract MIP-9421129, by the scholarship 200212/90.7 from
CNPq/Brazil, by a fellowship from Fujitsu Laboratories of
America and by ARPA under contract DABT 63-95-C-0049.

References

[1]1 L.Benini and G. De Micheli, “Transformation and synthesis of FSMs
for low power gated clock implementation,” International Symposium
on Low Power Design, pp. 21-26, April 1995.

[2] J. M. Rabacy and M. Pedram, Low power design methodologies.
Kluwer Academic Publishers, 1996.

3] A. Bellaouar and M. J. Elmasry, Low-power digital VLSI design :
circuits and systems Kluwer Academic Publishers, 1995.

63

[4] G.DeMicheli. Synthesis and optimization of digital circuits. McGraw-
Hill, 1994.

C.Coelho, V. Mooney and G. De Micheli, “Hardware/Software parti-
tioning and synthesis from mixed specifications,” to appear in Euro-
pean Design Automation Conference, Sept. 1996.

{51

[6] D.Knapp, T. Ly et al., “Behavioral synthesis methodology for HDL-
based specification and validation,” Proceedings of the Design Au-

tomation Conference, pp. 286-291, June 1995.
{7

R. Bergamaschi, R. O’Connor et al., “High-level synthesis in an in-
dustrial environment,” IBM Journal of Research and Development,

vol. 39, no. 1-2, pp. 131-148, 1995.

S. Note, F. Chattoor et al., “Combined hardware selection and pipelin-
ing in high-level performance data-path design,” IEEE Transactions
on CAD/ISCAS, vol. CAD-11, pp. 413-423, April 1992.

D. Thomas, E. Lagnese et al. Algorithmic and Register-Transfer Level
synthesis: the System Architect’s Workbench. Kluwer Academic Pub-
lishers, 1990.

[10] A. Wu D. Gajski et al. High-Level VLSI synthesis - Introduction to
chip and system design. Kluwer Academic Publishers, 1992.

{11] D.Kuand G. De Micheli. High-Levelsynthesis of ASICs under timing
and synchronization constraints. Kluwer Academic Publishers, 1992.

[12] W. Wolf, A. Takach et al., “The Princeton university behavioral syn-
thesis system,” Proceedings of the Design Automation Conference, pp.
182~187, June 1992.

[13] A. Chandrakasan, M. Potkonjak et al., “Minimizing power using
transformations,” IEEE Transaction on CAD/ISCAS, vol. 14, no. 1,
pp- 12-30, January 1995.

[14] E. Mussol and J. Cortadella, “High-level synthesis techniques for
reducing the activity of functional units,” International Symposium on
Low Power Design, pp. 99-104, April 1995.

[15] A.Raghunathanand N. K. Jha, “Behavioral synthesis for low power,”
Proceedings of the International Conference on Computer Design,
pp. 318-322, October 1994,

{16] J. Chan and M. Pedram, “Register allocation and binding for low
power,” Proceedings of the Design Automation Conference, pp. 29—
35, June 1995.

[17] A. Farrahi, G. Tellez and M. Sarrafzadeh, “Memory segmentation to
exploit sleep mode operation,” Proceedings of the Design Automation
Conference, pp. 36-41, June 1995.

[18] A.Dasguptaand R. Karri, “Simultaneous scheduling and binding for
power minimization during microarchitecture synthesis,” International
Symposium on Low Power Design, pp. 69-74, April 1995.

[8

—

{91

[19] J. Monteiro, S. Devadas et al., “Scheduling techniques to enable
power management,” Proceedings of the Design Automation Confer-
ence, pp. 349-352, June 1996.

[20] A. Bogliolo, L. Benini, and B. Ricco, “Power Estimation of Cell-
Based CMOS Circuits,” Proceedings of the Design Automation Con-
ference, pp. 433-438, June 1996.

