State assignment for Low Power Dissipation

L. Benini, G. De Micheli

Center for Integrated Systems
Stanford University

Abstract

In this paper, we address the problem of reducing the power
dissipated by sequential circuits. We propose a novel ap-
proach to power reduciion based on transition graph descrip-
tion of sequential circuits. We formulate a general theoretic
framework for the solution of the state assignment problem,
and we propose different solutions trading off computational
effort for quality of the results.

A heuristic algorithm has been implemented and been
shown to sensibly reduce the switching activity of sequen-
tial circuits.

1 Introduction

Recent trends in VLSI system design and performance eval-
uation have stressed the increasing importance of power dis-
sipation as a limiting factor and a cost parameter, as opposed
to more traditional constraints, like area and speed.

The critical importance of low power circuits has at-
tracted the attention of several researchers, in first in-
stance for what concerns modeling and estimation of the
average/instantaneous dissipated power, and later address-
ing the problem of synthesis for low power. Recent re-
sults [10, 3, 2] confirm that technology-independent and
technology-dependent logic transformations applied to the
combinational part of sequential circuits can be quite effec-
tive in low power optimization.

In our approach, we want to explore low power optimiza-
tions at the signal transition graph level of abstraction. Given
a transition graph, a synthesis system has the possibility to
decide important details of the implementation, more pre-
cisely those linked to the number of feedback variables and
the state assignment.

The possibility of choosing a state assignment that mini-
mizes the switching activity of the feedback network allows
the synthesis algorithm to use degrees of freedom that are
completely lost at the technology mapping phase and gives
as a result an encoded state transition table that is a very
effective starting point for further technology-dependent op-
timizations on the combinational part. The algorithms that
we have developed target a state assignment that minimize
the switching activity between state transitions, in such a way
that the combinational part of the machine has lower input
transition probability and it is more likely to give small power
dissipation when synthesized.

2 Probabilistic models

At the gate level of abstraction, the power consumption in a
circuit is proportional to its switching activity [4]. To find
the average total power dissipated, we consider the average
power dissipated by each gate during one clock cycle (or

136

0-7803-1886-2/94 $3.00 © 1994 IEEE

an arbitrarily defined At = Teycre), we multiply it for the
transition probability p; of the gate output and we sum over
all the gates in the network [1].

Ngates

1
Py = Evdzd/Tcycle Z C; pi (1)

i=1

Power consumption minimization at the gate level targets
the reduction of one or more of the parameters in eq. 1,
namely:

e Voltage swing or frequency reduction. These parameters
are decided by circuit designers.

e Reduction of P,,; by restructuring the sequential circuit.

(1) Resynthetize combinational logic, for example re-
duce the number of nodes with high switching activ-
ity. This can be done in the technology mapping phase
[3, 10, 2], or even include some ad-hoc technology in-
dependent logic optimizations. Note that combinational
resynthesis affects the number of nodes in the network
and their load capacitances.

(2) Resynthetize the entire sequential circuit, by deter-
mining both a combinational structure and a register

configuration that minimizes Pyot.

We address the last problem, but, since it is a formidable task,
we concentrate in this paper on the state assignment problem
that determines the register configuration. Note again that
state assignment strongly affects the size and the structure of
the combinational component too.

In our approach, we consider first power minimization by
restricting the cost function to the power dissipated by the
registers, and then we investigate the impact of such mini-
mization and its extension to the complete problem. In syn-
thesis, the rationale in our solution can be summarized as
follows:

e Determine a state encoding that minimizes code distance
between state pairs with most frequent transitions.

e At the same time, bias the encoding algorithm in such
a way that the resulting combinational part is minimal
according to some area-related cost metrics.

Our starting point will be the state transition graph (STG)
description of a sequential machine, defined by a vertex
(state) set S = {51, ..., SNstates} and a related edge set rep-
resenting the transitions.

We interpret the STG from a probabilistic point of view
as a Markov chain. Given as initial data an input proba-
bility distribution (we assume for simplicity, equiprobability
and independence), we can associate with each edge in the

7.4.1

IEEE 1994 CUSTOM INTEGRATED CIRCUITS CONFERENCE

27

Figure 1: Part (a): STG, transition conditional probabilities (indicated
with p;;), input values corresponding to state transitions (indicated with
binary digits) and consequent state probabilities (indicated with P;). Part
(b): transformation of the STG and normalization of the total probabilities
for the transitions

graph a real value representing the probability that the cor-
responding transition takes place, given that the present state
is the tail of the edge (this value is the conditional transition
probability). But what we really need to know is the total
probability of every transition in the graph, and this depends
on the state probability distribution (in fact the total proba-
bility of a transition can be calculated as the product of the
conditional probability and the state probability of the node
at the tail of the corresponding edge [9]).

The first problem is to show that it is possible to compute
the state probabilities and, more importantly, to show that
these values are not dependent on the discrete time index,
in other words that it is possible to compute a steady state
probability vector. If we call "reset state” a state such that
there is a transition to it from every other state in the STG,
we can state (without proof) the following:

Theorem 1 A STG with reset state and given conditional
transition probabilities is an irreducible aperiodic Markov
chain with all the states recurrent non null for which the
steady state probability vector exists and is unique.

An irreducible Markov chain with all the states fecur-
rent non null” is a chain where every state can be reached
from any initial state, and the greatest common divisor of the
length of the possible closed paths from every state is one.

In this case the problem of finding the steady state proba-
bility vector is reduced to finding the left eigenvector of the
transition matrix corresponding to the unit eigenvalue, and
normalizing it in order to make the sum of its elements equal
to unity [9].

The transformation of the STG that is needed for our pur-
poses can be summarized as follows:

o Calculation of the state stationary probability vector and
of the total transition probabilities.

e Removal of the self loops (that do not imply state tran-
sitions) and labeling of the other edges with a weight
equal to the correspondent transition probability (the
weights are normalized to integers for simplicity).

¢ Collapsing of the possible multiple directed edges be-
tween two states with one undirected edge with weight
equal to the sum of the directed edges probabilities.

Example 1 The transformation of the STG is illustrated in Fig. 1 (as-
suming that the input values are equiprobable and independent). Note that
an edge with high conditional probability (like s| — s;) can have total
probahility equal or even smaller than an edge with small conditional prob-
ability (like s4 — s3). Note that this graph is without reset state, but the
stationary probability vector exists; this shows that the theorem above gives
a sufficient but not necessary condition for the existence of such vector.

3 State assignment for low power

51384919 The main idea in our approach to this problem is to find a

state assignment that minimizes the number of state variables
that change their value when the FSM moves between two
adjacent states; if we ideally can guarantee that each possible
state transition implies the change of value of only one state
variable, we know that nothing better can be done in reducing
the switching activity associated with the given STG, as far
as the registers are concerned. Once stated the essence of
our goal, we now give some examples of possible particular
solutions.

Example 2 Given a counter’s STG, a state assignment that gives the
minimum switching activity in the circuit is a Gray encoding of the stétes.
Gray encoding is a solution only for this particular form of STG, for which
the problem is quite trivial (note that in a counter the input is irrelevant,
and all the transitions are equiprobable).

Example 3 Given a STG of arbitrary structure, a good performance
in term of reduced switching activity is reached with One-Hot encoding
of the states. One-hot encoding guarantees the switching of only two state
variables for every transition, thus it is not minimum, but it does not require
any algorithmic effort.

One hot encoding is not a practical solution because the num-
ber of state variables needed is equal to the number of states.
Even if we accept such an overhead, our circuit will likely
present a total increase of dissipated power, mainly because
the combinational part will have a large number of inputs and
outputs, with obvious increase in complexity and capacitive
load.

An algorithm for low power state encoding must be ap-
plicable to arbitrary STGs and the number of state variables
used should not be far from the minimum [logs Nstates].
Given these intuitions, we can now proceed to a more for-
mal definition of the problem.

We define the Hamming distance d,; between two
Boolean vectors a,b € B™ as the number of bits in the same
position a;, b; with different phases: dqp = 30, a; © by,
where the summation is the usual arithmetic summation.

If we describe the encoding using a Boolean matrix with
rows corresponding to state codes and columns correspond-
ing to the state variables, encoding for minimum switching
activity can be formalized as finding Boolean row vectors
[e}..eNver], where Nwvar is the number of state variables
used, that are solutions of the following ILP:

Nedges Nvar

Min(Z w{"j Z el @eé) such that (2)
Nk ! I=1
Eei—@e}Zle,-,s]',s,-;éSj (3)

=1

k

where w;; is the weight on the edge between states sy, s;.

The inequalities express the fact that no two states can be
allowed to have the same code, and the cost function to
minimize takes into account the need to give adjacent codes
to states with high-probability transitions.

This theoretical” solution is of little interest, because the
size of the problem is formidable: the number of inequalities
is proportional to the square of the number of the states, and
the solution space to be explored is approximatively propor-
tional to the factorial of the number of states. Nevertheless,
we shall see in the next section that this formulation is very
useful to give insight on more affordable heuristic solutions.

7.4.2

137

In summary two more observation are of interest. First, for
several problems a solution with distance one between all the
connected states is impossible: the presence of an odd cycle
in the graph is an example of constraint not satisfiable with
any distance-one encoding, but this fact does not mean that
the minimum of the cost function cannot be reached. Second,
the minimum length constraint can be relaxed, because an
increase of the number of state variables can often lead not
only to strong reductions of switching activity, but also to
more compact realization.

4 Algorithms for state encoding

The problem of state encoding has been extensively studied
in the recent past [6, 8, 7]. We propose a column-based
approach (this name stems from the fact that the encoding
Boolean matrix is found column by column) that can be
summarized as follows. We consider one single state variable
and we try to assign its value for each state in the graph, in a
way that is likely to minimize the switching activity for the
complete assignment; then, we proceed to the next variable.

The rationale is the following. The same value of the con-
sidered state variable should be given to states that are linked
by high weight edges. During this process we must consider
that, once all the available state variable have been assigned,
no two states are allowed to have the same code (during the
assignment procedure, if two variables have the same partial
code,) they are said to belong to the same indistinguishability
class).

If the maximum number of state variables that we are
allowed to use is Ny,qa and we are assigning the bit codes for
the 1-th variable, the maximum number of indistinguishable
partial state codes after the assignment must be less than
2(Nmes—1) otherwise in the following steps the remaining
unassigned variables will not be able to create a code that
identifies every single state.

A solution to this problem can be once again formulated
as an ILP. Let ¢ be the I-th variable (code bit) 1 < I <
Nmas Of the state array, we call e} its value (1 or 0) for
the state s; and Cy;, k = 1..Nclass; the classes of states
with indistinguishable partial codes after the assignment of
the preceding ! — 1 variables:

Nedges
Min(Z w,?"j (e @eﬁ)) such that 4)
h=1
4 < 2Nma.‘r—1
RN etl - VG (5)
Z‘.Ec“eg S 2Nmaz]

This formalism can be clarified through an example.

Example 4 Consider the weighted graph in Fig. 1 (). Nmaz = 2.
At the beginning, no variable is assigned and all the states belong to the
same class C'y, 1. We have four states, so 2Nmazr—1 = 7 (this means that we
cannot give the same value to three states, because the remaining unassigned
variable can distinguish only couples of states); ineq. 5 requires that we
assign O to a couple of states an 1 to the other two. One assignment that
minimize eq. 4 is e} = e} = 1 and] = ¢} = 0 (Fig. 2 (3)).

The advantage of this approach lies in the reduced size
of the problem that we have to solve at each step, the price
paid is in lost of optimality for the result, in fact the column-
based ILP solution guarantees the optimum assignment for
one state variable at a time, but not for the global state array.

Figure 2: Part (a): First variable assignment. The indisting. classes
of states after the first assignment are shown. Part (b): Second variable
assignment and termination.

To improve the the final outcome, we want to bias the
decision made in solving the 1-th partial problem using the
results in the preceding assignments: this is done by the
dynamic modification of the weights in the cost function
that are adjusted after each “column” assignment using the
following formula:

W] = WEoa(dig + 1) (6)

Linew
Where d; ; is the Hamming distance between the partially
assigned codes of states s; and s;.

Example 5 In Fig. 2 (b) the new weight set is shown, and the final
solution is found assigning the second variable in a way that gives the
minimum edge violation and distinguishes all the states.

Even if using the column-based approach an optimal solu-
tion can be found for some problems of practical dimension,
the ILP is an NP-complete problem. For this reason, in order
to provide a faster heuristic, we have proposed a polynomial
time solution for the column assignment problem. This is
the pseudo-code of the algorithm:

assign(S){
sort edges by weight in decreasing order;
foreach edge {si,s;} {
if(s; and s; not assigned) {
if(no Class violations) {
r=select.bit (s¢,s;);
e =T €e; =x;
else
r=selectbit (s, s5);
ei=1z; ejzz'; }
else if(s; or s; not assigned) {
shzunassignecjl(s.‘,s,)i
sy=assigned(s;,s;);
if(no Class vioclations) {
r=select bit (e);

ep =T;
else
eh—8;7 P

The algorithm is based on a greedy choice of the constraint
to satisfy, if it is impossible to assign the same code to two
states (because an indistinguishability class becomes t00 big)
a different code is assigned. The function “select_bit”
makes a choice between two possible assignments based on
the already assigned neighbor states.

We are now able to describe a general framework for the
solution of the state encoding problem using the column
based approach:

for 1=1 to Nmax
adjust Class constraints;
assign(S);
adjust the edge weights; (eq. 6)

(eq.5)

7.4.3

138

where the procedure "assign” can be the exact ILP ver-
sion or the fast heuristic described above.

If we are not constrained to use the minimum number of
state variables, as this is often the case, we can try different
solutions for multiple values of N,,,,. Increasing the num-
ber of state variable will very likely give a smaller number
of constraints violations, but the number of state variables
should not be allowed to increase too much from the min-
imum, in order to avoid an explosion in complexity of the
combinational part of the FSM.

At this point, we need to consider the possibility to in-
troduce additional constraints in order to obtain a near area-
minimal realization of the combinational part of the network.

In order to tackle this problem, we have adopted a fast
heuristic for minimal-area realization targeting multilevel
logic implementation of the combinational part. Our algo-
rithms are similar to those proposed in Mustang [7]. The
user has the possibility to choose between two different op-
tions: a fanout-oriented heuristic, well suited for machines
with small number of input and large number of outputs, and
a fanin-oriented heuristic that performs better in the opposite
situation.

For details on these algorithms, see [7], here only two
points are worth some more notes. First, the area constraints
are expressed with edge weights exactly like the power con-
straints, and we are able to give the user the possibility to
specify different trade offs in their relative importance ac-
cording to the design objectives. Second, even if our edge
weight calculation for area minimization is similar to the one
proposed in Mustang, our state assignment algorithm is col-
umn based, and this gives us the possibility to dynamically
adjust the weights, allowing a potentially more effective state
assignment.

S Implementation and results

The heuristic algorithm described above has been imple-
mented and applied to some benchmark circuits. The results
are illustrated in Tab. 1 and have been obtained as follows.
We have used a standard linear algebra package to find the
total transition probabilities in the STGs, then we have ap-
plied our state assignment algorithm, POW3. We have then
obtained a multilevel implementation of the state assigned
FSM, using SIS standard script.

The same benchmarks have been processed using an area-
oriented state assignment program, JEDI [5], and performing
the same optimizations steps with SIS.

The implementations have been simulated with random
patterns using MERCURY, a gate level simulator, in order
to monitor the transitions in the networks that are directly
related to the power consumption of the real circuits.

It is possible to observe that, for all the FSMs considered,
our state assignment produces circuits with lower switching
activity compared to those produced by JEDI, and the area
(linked to the number of literals in the network) penalty paid
is almost always small. What is more interesting is that the
difference in switching activity seems to increase for bigger
circuits, for which low power consumption is even more
critical.

Note that we have not mapped the circuits using a technol-
ogy library, since the algorithm described above is intended
to be a preprocessing step in a complete synthesis tool that in-
cludes a low-power driven technology mapper, and at present
we have only area-driven tools that will very likely reduce
the positive impact of our optimizations. Thus our compar-
isons are based on transition activity, which is a good power

[Ccircuit | var. | L jEDI/POW3 | Tot u. JEDI /POW3 | st JEDI/POWS | % |

btbara 4 61/ 3630 /3448 327 /294 12
towe | 4 126 /131 871 /7970 1033 /851 n
bbtas 3 257128 2971 /2690 610 / 456 35
K14 4 120/ 114 7296 /7083 1403 /1104 r1
k17 s %I 5548 /5463 1337 /1081 B
k512 s 67 /87 7650 /4825 2355 /1538 53
donfile 5 102 / 214 5231 /4573 1743 /1378 2%
plasct 6 97 1 663 27859 /19771 3204 / 1240 158
P 708 1 697 2735 /16306 3208 /1278 151
51488 [} 74271727 14073 11123 628 / 341 84
Table 1: Comparison between POW3 and JEDI after multiple level

optimization: Circuit name, number of state variables, ratio of total number
of transitions, ratio of number of state transitions and percent reduction of
state transitions.

estimator for unmapped networks.

The last column in the table shows the reduced switching
activity in the state lines, and this is an important information
that can be used in future for further minimize the power
consumption in the combinational network.

6 Conclusions

A novel state assignment algorithm targeting low-power con-
sumption has been described and implemented. It compares
favorably with the existing state assignment tools targeting
minimal area implementations, achieving a 20% average re-
duction of total switching activity, and a 56% average reduc-
tion for state variable related activity.

This results confirms the importance of state assignment
even for power, it also opens the way to the exploration
of new algorithms for the optimization of the FSMs com-
binational part that take into account the reduced switching
activity on the present state inputs (latch outputs).

References

[1] K. Keutzer A. Ghosh, S. Devadas and J. White. Estimation of average
switching activity in combinational and sequential circuits. In Proc.
of Design Automation Conf., pages 253 — 259, June 1992.

[2] S. Devadas A. Shen, A. Ghosh and K. Keutzer. On average power
dissipation and random pattern testability. In Proc. of IEEE Int. Conf.
On Computer Aided Design, pages 402 — 407, November 1992.

[3] M. Pedram C. T. Tsui and A. Despain. Technology decomposition
and mapping targeting low power dissipation. In Proc. of Design
Automation Conf., pages 68 — 73, June 1993.

[4] M. A. Cirit. Estimating Dynamic Power Consumption of CMOS Cir-
cuits. In Proc. of IEEE Int. Conf. On Computer Aided Design, pages
534 - 537, November 1987.

[5] B. Lin and A. R. Newton. Synthesis of multiple-level logic from
symbolic high-level description languages. In Proc. of IEEE Int. Conf.
On Computer Design, pages 187 — 196, August 1989.

[6] G. De Micheli. Symbolic Design of Combinational and Sequential
Logic Circuits Implemented by Two-Level Logic Macros. JEEE Trans-
action on CAD, 5(4), pages 597 — 616, 1986.

[7] A. R. Newton S. Devadas, Hi-keung Ma and A. Sangiovanni-
Vinceatelli. MUSTANG: State Assignment of Finite State Machines
Targeting Multilevel Logic Implementations. IEEE Transaction on
CAD, 7(12), pages 1290 — 1300, 1988.

[8] A. Sangiovanni-Vinceuntelli T. Villa. NOVA: State Assignment of Fi-

nite State Machines for Optimal Two-Level Logic Implementation.
IEEE Transaction on CAD, 9(9), pages 905 — 924, 1990.

191 K. Trivedi. Probability and statistics with reliability, queuing and
computer science applications. Prentice-Hall, 1982.

[10] S. Malik V. Tiwari, P. Ashar. Technology mapping for low power. In
Proc. of Design Automation Conf., pages 74 — 79, June 1993.

7.4.4

139

