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Abstract

We present a (sound and complete) tableau calculus for Quantified Hybrid Logic
(QHL). QHL is an extension of orthodox quantified modal logic: as well as the usual
O and ¢ modalities it contains names for (and variables over) states, operators @, for
asserting that a formula holds at a named state, and a binder | that binds a variable to
the current state. The first-order component contains equality and rigid and non rigid
designators. As far as we are aware, ours is the first tableau system for QHL.

The tableau calculus is highly flexible. We only present it for the constant domain
semantics, but slight changes render it complete for varying, expanding or contracting
domains. Moreover, completeness with respect to specific frame classes can be obtained
simply by adding extra rules or axioms (this can be done for every first-order definable
class of frames which is closed under and reflects generated subframes). We briefly discuss
such theoretical issues at the end of the paper, but the main aim of the present paper is
simply to give an example driven introduction to the tableau system.

1 Introduction

Hybrid logic is an extension of modal logic in which it is possible to name states and to assert
that a formula is true at a named state. Hybrid logic uses three fundamental tools to do
this: nominals, satisfaction operators, and the |-binder. Nominals are special propositional
symbols that are true at precisely one state in any model: nominals ‘name’ the unique state
they are true at. A satisfaction operator has the form @; where s is a nominal. A formula
of the form @ ¢ asserts that ¢ is true at the state named by the nominal s. Finally, a
formula of the form |s.¢ binds all occurrences of the nominal s in ¢ to the current state of
evaluation — that is, it makes s a name for the current state. (Actually, so that we don’t
have to worry about accidental binding in the course of tableau proofs, we shall distinguish
between ordinary nominals, which cannot be bound, and ‘state variables’ which are essentially
bindable nominals.)

Hybrid logic has a lengthy history (see the webpage www.hylo.net for further informa-
tion), and over the years it has become clear that adding the hybrid apparatus of nominals
(and state variables), satisfaction operators, and | to modal logic often results in systems
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with better logical properties than the original. But most previous work on hybrid logic
has examined the effects of hybridizing propositional modal logics. What about gquantified
(first-order) hybrid logic?

In fact, strong evidence already exists that quantified hybrid logic (QHL) is also better
behaved logically than orthodox quantified modal logic. In [2], the only recent paper devoted
to the topic, it is shown that a very general interpolation theorem holds in QHL (as is well
known interpolation almost never holds in orthodox quantified modal logic [4]). The purpose
of the present paper is to show that QHL is well behaved in another respect: just as in
the propositional case, it is possible to define simple and intuitive tableau systems. We shall
present a tableau system for Q HL which handles equality, and rigid and non-rigid designators.

A lot could technically be said about the tableau systems discussed here, and we mention
some results at the end of the paper. Moreover, a lot could (and should) be said about why
we feel QHL is a good tool for handling many traditional applications of orthodox quantified
modal logic, but (apart from an example showing that @ HL handles validities that Montague-
style systems don’t) space considerations prevent us from discussing this topic.

2 Quantified Hybrid Logic

We first define the syntax of QHL. We have a set NOM of nominals, a set SVAR of state
variables, a set FVAR of first-order variables, a set CON of first-order constants, a set IC of
unary function symbols, and predicates of any arity (note that predicates of nullary arity are
simply propositional variables). The terms of the language are the constants from CON, the
first-order variables from FVAR and the terms generated by the rule

if ¢ € IC and s € NOM U SVAR, then Q,q is a term.

(For readers familiar with propositional hybrid logic, this notation may come as a surprise: we
are combining a satisfaction operator with a term to make a new term. But as the semantics
defined below will show, overloading the @ notation in this way is quite natural: @;q will be
the value of the non rigid term ¢ at the world named by s.)

We use (more or less consistently) the following symbols for these different syntactic
entities:

Nominals NOM n,m,s,t
State variables SVAR w,s,t
Propositional variables Pyl
First-order constants CON ¢, d,q;,...
Non rigid designators  IC q,9 - - -
First-order variables FVAR =z,y,v
First-order terms tis g, ...

The atomic formulas are all symbols in NOM and SVAR together with the usual first-order
atomic formulas generated from the predicate symbols and equality using the terms. Complex
formulas are generated from these according to the rules

Gl oND | dVY ¢ =9 |Tzg | Vag | O¢ | TP | Qe | Jw.¢.

Here z € FVAR, w € SVAR and n € NOM U SVAR.
These formulas are interpreted in first-order modal models with constant domains. A
QHL model is a structure (W, R, D, Ijom, Icon, I )wew such that



e (W, R) is a modal frame;

® I,om is a function assigning members of W to nominals in NOM,;
® .oy is a function assigning elements of D to constants in CON;
e for each w € W, (D, I,,) is an ordinary first-order model.

To interpret formulas with free variables we use special two—sorted assignments. A QHL
assignment is a function g from SVAR U FVAR to W U D which sends state variables to
members of W and first-order variables to elements of D. Given a model and an assignment
g, the interpretation of terms ¢, denoted by ¢, is defined as

z = g(z) for = a variable
c = I.on(c) for ¢ a constant
@,q = I,(q) for g a non rigid designator,

and n is Io,(n) if n a nominal, or g(n) if n a state variable.

Formulas are now interpreted as usual. With g7 we denote the assignment which is just like
g except that g(z) = d. M, g,s IF ¢ means that ¢ holds in model M at state s under the
assignment g. The inductive definition is as follows:

M, g,slk P(ty,...,tn) <= (t1,-..,t,) € I4(P)

M,g,sl-t; =1 <= fi:fj

M, g,slFn < I,om(n) =s, for n a nominal
M,g,slFw < g(w) =s, for w a state variable

M, g,s Ik =g = Mg,s, ¢

M, g,slFdp Ay <~ M, g,slkFdand M, g,s -

M,g,s -V — Mg,slFdporMg,sl-a
M,g,slF¢dp— P <~ M,g,s Ik ¢ implies M, g, s IF ¥

M, g,s - Jxp < M,g3,slF ¢, for some d € D

M,qg,s IFVad < M, gj,sl-¢, foralld e D

M, g,s - <~ M, g,tIF ¢ for some t € W such that Rst
M,g,s |- 0O¢ <~ M,g,tlF ¢ for all t € W such that Rst
M, g,s - Q¢ <~ M,g,Inom(n) Ik ¢ for n a nominal
M,g,s Ik Qe — M,g,9(w) Ik ¢ for w a state variable
M,g,s Ik lw.¢ = M,g7,sl-¢.

3 The tableau calculus

The tableau system can be divided into three natural pieces: (A) the propositional rules,
the <& and O rules and the rules for @; (B) the rule for |; (C) the rules for (first-order)
quantification and equality. The blocks of rules taken separately form a complete calculus for
the appropriate reducts. In particular:

1. A is complete for the propositional modal language expanded with nominals and @. (We
name this system HL(@); in the literature it is often called the basic hybrid language.)

2. A UB is complete for HL(@Q, ), the expansion of HL(@) with state variables and the |
binder;



3. AUBUC is complete for QHL.

Some terminology. As usual, a tableau branch is closed if it contains ¢ and —¢, where ¢
is a formula. A tableau is closed if each branch is closed. A branch is atomically closed if
it closes on an atom and its negation. A (tableau) proof of a hybrid sentence ¢ is a closed
tableau beginning with =@;¢, where s is a nominal not occurring in ¢.

3.1 Tableau for HL(@)

A key feature of our tableau is that all modal formulas occurring in a proof are grounded
to a named world by their label. (This same feature also occurs in labelled tableau for
propositional modal logic [7, 6].)

Grounding to a named state is implemented in our system by ensuring that all formulas
occurring in proofs are of the form Q¢ or =@s¢ for s a nominal. Thus the propositional
rules become

Conjunctive rules
Qy(¢ A 9) ~Q,(¢VY)  —Q (¢ — 9
@s¢ _‘@s¢ @S¢
@s'w _‘@sw _‘@sw
Disjunctive rules
Q(¢Vy) _—Q(sAYP) Q,(¢ — )
@S¢ ‘ @s¢ _‘@s¢ | _'@s'l/’ _‘@s¢ | @sw
Negation rules
_‘@sﬁﬁb @s_‘¢
@s¢ ﬁ@SQZS

To these we add rules for diamond and box. In the diamond rules, ¢ is a nominal which does

not occur on the branch.

Diamond rules
@, 0 -@,0¢
Q, Ot @<t
Q¢ -Q;¢

Box rules

Q@,0¢, @Ot —-Q;OC¢, QO
Q¢ —Q;¢

Finally the rules for @. There are two rewrite rules to delete nestings of @. Next, as Q¢
really means that s and ¢ are equal, there are rules to handle equality. These three rules
are direct analogues of the reflexivity and replacement rules in Fitting’s first order tableau
system [5]. As we will use them often, we gave them separate names.

@ rules
@,@;¢p —-@;@;¢p [s on the branch] . Qg Qg \ Q,t @,Cs Brig
Qb -0 Q.5 [Refl —gq,,  WNoml —g 55— [Bridee]
The following rules can be derived using Nom and Ref.
@St @St @t’)" @St @t(P _
@—ts [Sym] TJ[Trans] @7# [Nom 1]
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Here is a proof for Nom ! which incorporates a proof of Sym. Trans is just an instantiation

of Nom~1!.

(1) @4, @;¢p assumption

(2) Qs application of Ref

(3) Qs by Nom from (1), (2)
(4) Q49 by Nom from (1), (3).

Example. Figure 1 below contains a tableau proof for the validity
(1) (GpAO-p) = (B(g = n) = O—q).

Here n is a nominal and p, q are propositional variables. The formula expresses that if a state
has two successors, then if it has at most one ¢ successor, it has at least one —¢ successor.
Note that this is not expressible in ordinary modal logic. In ordinary modal logic we cannot
put an upper bound on the number of successors.

3.2 Tableau for H/L(|,Q)

To obtain a complete tableau system for the expansion of H /(@) with variables over states
and the binder |, we only need to add the following two rewrite rules to the rules for HL(@):

Downarrow rules

Qlw.¢ —~Qslw.¢

Qs ¢[s/w] —Qy s /w]

Here [s/w] means substitute s for all free occurrences of w in ¢. Because s is always a nominal,
whence cannot be quantified over, we do not have to worry about accidental bindings.

Examples. Using downarrow and the variables over states we can make formulas which
express structural properties of the frame. For instance, |w.Ow holds at a state s if and
only if s is reflexive; |w.O0OCw holds at s if and only if Vi(Rst — Rts) holds. When taken
universally, these structural properties correspond to the well known axioms p — <p and
OOp — p, respectively. The easy side of this correspondence can be shown in the logic
HL],@). That is, both these formulas are valid

(2) Jwow — (p— Op)
3) Jw.Olow — (SOp—p).
We give a tableau proof of the first.

1. =Q;(lw.Qw — (p = <p))
Qlw.Ow

_‘@s(p - Op)

Qs

Q,p

-@Q;Op

_‘@sp-

NSOtk N

In this, 2 and 3 are from 1 by a conjunctive rule; 4 is from 2 by a downarrow
rule; 5 and 6 are from 3 by a conjunctive rule; 7 is from 4 and 6 by a box
rule. The tableau closes on 5 and 7.



=@y (Op A O=p — (O(g = n) = Oq))
@s(op A <>_‘p)
—@,(0(g = n) = O=g)
Q;Cp

@50_‘17

@,;0(q — n)

_'@SO_'Q

Q,<t

Qp

Q@;Or

@r_‘p

Qi(g — n)

O NS OUE W

— == O
M=o

131 —@,q |14 @
13.2 -@Q;~g |15. @Q.(¢ = n)
13.3 @tq

16.1 -Q.q 17. Q.n
16.2 —Q,—¢g 18. @t

16.3 Q,q 19. Qur
20. @t’f‘
21. Q.p

In this, 2 and 3 are from 1 by a conjunctive rule; 4,5,6,7 are from 2 and
3 by conjunctive rules; 8,9,10,11 are from 4 and 5 by diamond rules; 12 is
from 6 and 8 by box; 13.1 and 14 are from 12 by a disjunctive rule; 13.2
is from 7 and 8 by box; 13.3 is from 13.2 by a negation rule. The branch
closes on 13.3 and 13.1.

15 is from 6 and 10 by box; 16.1 and 17 are from 15 by a disjunctive rule;
16.2 is from 10 and 7 by box; 16.3 is from 16.2 by a negation rule. The
branch closes on 16.1 and 16.3.

18 is from 14 by the derived Sym rule; 19 is from 17 by Sym; 20 is from
18 and 19 by Nom; 21 is from 20 and 9 by the Nom rule. The final branch
closes on 21 and 11.

Figure 1: Tableau for Op A O—p — (O(g — n) — O—q).



3.3 Tableau for QHL

A complete tableau system for quantified hybrid logic consists of the HL(], @) system, plus
the (adjusted) rules for the quantifiers and equality from Fitting’s system (see [5]) for first-
order logic with equality, plus two rules relating equalities across worlds. In the existential
rules, ¢ is a parameter which is new to the branch. As parameters are never quantified over,
the substitution [c/z] is free for the formula ¢(z). In the universal rules, ¢ is any grounded
term on the branch (thus either a first-order constant, a parameter or a grounded definite
description). A grounded definite description is a term @,,q for n a nominal and ¢ a non-rigid
designator from IC.

Existential rules
QIzd(z) —QVzp(x)
@s¢(c) —|@5¢5(C)

Universal rules
QVrp(z) —QIzd(x)
Q;¢(t) —Q@,¢(t)

Since we assume constant domains, we expect the Barcan formula and its converse to hold.
In hybrid logic, they can be formulated in two ways,

OVz¢ < VzO¢ and Q.Vz¢d < VrQp.
Both are valid. We present a tableau proof of OVz¢(z) — VxOe(z).

1. —Q(BVzh(z) — VzO4(x))
2. Q@;OVzg(x)

3. —Q,\VzO¢(x)

4. —-@,O¢(c)

5. Q;Ot

6. —Qip(c)

7. @QVzd(x)

8 @t¢(0)

In this, 2 and 3 are from 1 by a conjunctive rule; 4 is from 3 by an existential
rule; 5 and 6 are from 4 by a diamond rule; 7 is from 2 and 5 by a box
rule; 8 is from 7 by universal instantiation. The tableau closes on 8 and 6.

Besides Fitting’s [5] Reflexivity (Ref) and Replacement (RR) rules, there are three extra rules
for equality. The first (called DD) states that if n and m denote the same state, then @,q
and @,,q denote the same individual. The second and third (both called @=) embody that
equality is a rigid predicate: if two terms are the same in one world, they are the same in every
world. Because these two rules peel the leading @,, off equalities, reflexivity and replacement
can be kept in the old format.

QHL Equality rules

¢ Q@,m Q,(t; = t;) —Q,(t; =)
t= olu]

B Gug=0me™ Ta=g O TSli=t)

[e=]

In the Replacement rule, ¢[u] denotes ¢(¢) with some of the occurrences of ¢ replaced by w.



Examples. The most interesting examples deal with equality. First we show that equality
is necessary: VaVy(z =y — O(z = y)).
The tableau proof:

1. -Q\VzVy(z =y — O(z = y))
2. =Q,(c1 =y = Ofe1 = 2))
3. @5(61 = 02)

4. —|@SD(C]_ = CQ)

5. @Ot

6. —|@t(01 = C2)

7. C1 = C9

8_ —|(Cl = CQ).

In this, 2 is from 1 by two applications of an existential rule; 3 and 4 are
from 2 by a conjunctive rule; 5 and 6 are from 4 by a diamond rule; 7 and
8 are from 3 and 6 respectively by the two @= rules.

The next example is about rigid and non rigid designators. Consider the sentence Caroline
is Miss America. When formalising this let ¢ be a rigid designator denoting Caroline and
g a non-rigid designator denoting Miss America. Then |z.(c = @,q) means Caroline is the
present Miss America. It is true in a state w if I.on(c) = I,y (g). This formula has the following
relation with the O operator:

(4) FE ({w.e=Quq) — Olw.c= Quq
(5) E ({w.c=Quq) — lw.Oc= Quq.

A falsifying model for the sentence in (4) is given by two worlds n and m, with Rnm, and
a domain {a,b} with the interpretation I.on(c) = I,(q) = a and I,,(¢) = b. Then (4) fails
at world n. When downarrow has wide scope in the consequent, the formula becomes true.
Here is the tableau proof:

-Q,(Jw.c = Quq) = Jw.O(c = Qyq))
Q,lw.c = Q,q

-Q,lw.0O(c = @Qyq)

@n(c = @HQ)

ﬁ@nD(C = @nQ)

Q,,Om

_‘@m(c = @RQ)

c=Quq

—(c = @,q).

© NSO WD

In this, 2 and 3 are from 1 by a conjunctive rule; 4 and 5 are from 2 and 3
by a downarrow rule, respectively; 6 and 7 are from 5 by a diamond rule;
8 and 9 are from 4 and 7 by an @= rule, respectively.

Finally we give two examples of formulas which are valid in QHL but not in Montague’s
intensional logic IL [8]:

(6) VzIyO(z=y) — FyO(c=y)

(7) c1 =C — (D(01 = Cl) — D(Cl = CQ)).



The validities are easy to prove by tableau. For the universal instantiation law (6), applying
once the universal tableau rule leads to a contradiction:

-Q,(VzIyO(z = y) — JyO(c = y))
Q,(VzIyO(z = y))

—@Q;(3yB(c =1y))

Q@,IyO(c = y).

W=

To prove (7) (substitutes can be substituted for equals), the @= rules are needed.

NSO N o
©
@
%
o~

In this, 1,2,3 are from 0 by two applications of the conjunctive rule; 4 and
5 are from 3 by a diamond rule; 6 is from 5 by a @= rule; 7 is from 1 by a
@= rule. Note that the premise O(c; = ¢1) is not even used.

4 Conclusions

To conclude, some technical remarks. The soundness of the tableau system is clear, but what
about completeness? In fact, the system is complete, and the easiest way to prove this is
to lift the standard model construction for the basic hybrid language (discussed in detail in
Chapter 7 of [3]) to QHL.

But the calculus is not only complete, it is also flexible. For a start, it permits us to
straightforwardly handle all four standard domain conditions. We presented it only for
the constant domain semantics, but slight changes render it complete for varying, expand-
ing or contracting domains. Consider the case of contracting domains. This condition is
not definable in orthodox first-order modal logic, but it is definable in QQHL, namely by
Jw.0OVz@,,Jy(y = z). By freely introducing instances of this sentence in the course of tableau
proofs, we obtain a system complete with respect to contracting domains.

Furthermore, the fundamental completeness result for propositional hybrid logic extends
to the first-order case (irrespective of whether constant, varying, expanding, or contracting
domains are assumed). The result is: every first-order definable class of frames which is
closed under and reflects generated subframes can be completely axiomatised by adding a
pure axiom (see [1]). This result covers many frame classes definable in orthodox modal logic
(for example, transitivity, reflexivity and symmetry) and also many others not so definable
(for example, irreflexivity, antisymmetry, and discreteness). Thus complete tableau systems
for all these frame classes can be obtained by adjoining extra (pure) axioms to the tableau
system just presented, so we automatically have complete tableau systems for hybrid analogs
of T, D, B, S4, and S5, and for a countable infinity of other logics besides.

Finally, in an unpublished companion paper we have shown that the presented calculus can
be used to construct interpolants. That interpolation holds for QHL and all pure axiomatic



extensions was proved in [2] by a model theoretic argument. But it is useful to have a
mechanism for explicitly calculating interpolants, and the tableau system presented in this
paper lets us do precisely that.
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