
Maximum Leakage Power Estimation for CMOS Circuits�

S. Bobba and I. N. Hajj

Coordinated Science Lab & ECE Dept.

University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

E-mail: fbobba, i-hajjg@uiuc.edu

Abstract

Low supply voltage requires the device threshold to be reduced in order to maintain performance.
As the device threshold voltage is reduced, it results in an exponential increase of leakage current
in the subthreshold region. The leakage power is no longer negligible in such low voltage circuits.
Estimates of maximum leakage power can be used in the design of the circuit to minimize the leakage
power. The leakage power is dependent on the input vector. This input pattern dependence of the
leakage power makes the problem of estimating the maximum leakage power a hard problem. In
this paper, we present graph based algorithms for estimating the maximum leakage power. These
algorithms are pattern-independent and do not require simulation of the circuit. Instead the circuit
structure and the logic functionality of the components in the circuit are used to create a constraint
graph. The problem of estimating the maximum leakage power is then transformed to an optimization
problem on the constraint graph. E�cient algorithms on the graph are used to estimate the maximum
leakage power dissipated by a circuit. We also present comparisons with exhaustive/long simulations
for MCNC/ ISCAS-85 benchmark circuits to verify the accuracy of the method.

1: Introduction

Power dissipation is a critical issue in present day VLSI circuit design. Integrated circuits with
large power dissipation require expensive packaging to ensure proper heat dissipation. Excessive
power dissipation results in over-heating of the components in the circuit and makes them susceptible
to failure. Also, the increasing use of portable computing makes power minimization an important
objective in circuit design. Integrated circuits used in portable applications need to consume less
power because it extends the battery life. Since the power is proportional to the square of the supply
voltage, the supply voltage has been scaled to design low power circuits. To reduce the e�ect of
reduced supply voltage on the performance, the threshold voltages have also been lowered [1]. This
however increases the leakage power due to the increased subthreshold currents. Hence, CAD tools
to estimate the leakage power are required for the design of low-voltage, low-power circuits.

Event driven systems triggered by an external event with long period of inactivity may have
signi�cant leakage power dissipation. For instance, embedded microcontrollers spend most of their
time in an inactive state (standby mode). Although the magnitude of the leakage current in the
standby mode is signi�cantly smaller than the current in normal operation, the standby energy
consumption can be a dominant component due to the large portion of time the circuit spends in
standby mode. The leakage power dissipated by a circuit in the standby mode is dependent on the
input vector to the circuit [2, 3, 4, 5]. The total number of input vectors for a circuit with N inputs
is 2N . An estimate of the leakage current (power) in the standby mode for a particular input vector
can be obtained by circuit simulation.

� This work was supported by SRC under contract 98-DJ-109



A circuit can enter and exit the standby mode a large number of times, each time having a
di�erent input vector. The average leakage power in the standby mode can be computed using the
following parameters: the probability of each input vector in the standby mode and the leakage
power dissipated by the circuit for that input vector. In general, the number of possible input
vectors can be large and the probability values for the input vectors in the standby mode can be
application dependent. Hence, it may be di�cult to accurately estimate the average leakage power
dissipated by a circuit in the standby mode and the circuit designer may not be able to ensure
that the system leakage power speci�cations are met. In such a case, an estimate of the maximum
leakage power (current) can be used in the design of the circuit to guarantee that the standby power
dissipation constraints for a circuit are met. The maximum leakage power is the maximum value
of the leakage power dissipated by a circuit over all input vectors and is an upper-bound on the
average leakage power. The maximum leakage power (current) can also be used to �nd the leakage
hot-spots and estimate the worst-case battery life. Estimates of the maximum leakage power can be
used to minimize the leakage power by design techniques such as the dual threshold optimization
technique [6] and the sizing of transistors. Another approach to minimize leakage power is to apply
in the standby mode, the input vector that causes minimum leakage power dissipation [3].

The input pattern dependence makes the problem of determining the maximum leakage power
dissipated by the circuit a hard problem. The exact solution to the problem requires an exhaustive
search of the exponential input vector search space. In this work, we transform the circuit into
the constraint graph and perform optimization on the constraint graph to obtain estimates of the
maximum leakage power. In the next section, we describe the method used to obtain the leakage
power values for each input assignment to a logic block. These leakage power values are used as
weights on the vertices of the constraint graph. Logic and structural constraints are represented as
edges in the constraint graph. In section 3, we describe the technique to construct the graph using
the circuit information. In section 4, we present the algorithms for optimization on the constraint
graph to estimate the maximum leakage power. In section 5, we present the experimental results.
Finally, in section 6 we present the conclusions.

2: Leakage Current: Models and Characterization

The two main sources of leakage current are: reverse-biased diode leakage current and the sub-
threshold leakage through the channel of an OFF transistor. The diode leakage occurs from the
source or drain to the substrate through the reverse-biased diode when a transistor is turned o�.
For instance, in case of an inverter with low input voltage, the NMOS is turned OFF and the
PMOS is turned ON. The output voltage will be high because the PMOS is ON. Hence, the drain-
to-substrate voltage of the OFF NMOS transistor is equal to the supply voltage. This results in a
current leakage from the drain to the substrate through the reverse biased diode. The magnitude
of the diode leakage current is dependent on the area of the drain di�usion and the leakage current
density, which is set by the technology. The subthreshold current is the drain-source current of an
OFF transistor. This is due to the di�usion current of the minority carriers in the channel for a
MOS device operating in the weak inversion mode (subthreshold region). For instance, in case of
an inverter with low input voltage, the NMOS is turned OFF and the output voltage is high. Even
if the VGS is 0V , there is still a current 
owing in the channel of the OFF NMOS transistor due to
the VDS potential of Vdd. The magnitude of the subthreshold current is a function of temperature,
supply voltage, device size and the process parameters. The process parameter that has a dominant
e�ect on the subthreshold current values is the threshold voltage (VT ). Reducing VT results in an
exponential increase in the subthreshold current.

In CMOS circuits, the logic blocks (gates) consist of series and/or parallel connected transistors.
The leakage power dissipated by a circuit can be estimated as the sum of the leakage power dissipated
by each of the logic blocks in the circuit. In this work, we de�ne the logic block as the set of DC
or channel connected transistors. This is the most general representation of the logic block and
it can be used to estimate the leakage power dissipation of a static or dynamic or pass-transistor



Table 1. Leakage power using HSPICE for a two input NAND gate

Inputs Output Leakage Power
A B O (in pW)

0 0 1 19.4844
0 1 1 27.3161
1 0 1 40.3637
1 1 0 68.9426

logic block in the inactive mode. The current drawn by the logic block is dependent on the the
con�guration of the ON and OFF transistors. The OFF transistors draw the leakage current and
the ON transistors provide the conducting paths to the power supply nodes. The magnitude of
the leakage current for a logic module is determined by the con�guration of the transistors in the
logic module, dimensions of the transistors, the input logic value to the logic module, temperature,
supply voltage and other process parameters. The leakage power (P i

leak) for a logic module i in an
inactive or stand-by state can be denoted as,

P i
leak = Vdd I ileak ; (1)

where Vdd is the nominal supply voltage and I ileak is the module i leakage current. In this work, we
consider static CMOS gates only. This method can also be applied to dynamic or pass-transistor
circuits. The estimates of leakage power for each input assignment to a logic gate are obtained using
circuit level simulator HSPICE. This is a one-time leakage power characterization of the logic cells
in a technology library. This characterization can also be performed along with the delay or power
characterization of logic cells in a technology library. The BSIM3 transistor model parameters of
MOSIS 0:35� process are used with the nominal supply voltage of 3:3V to estimate the leakage
power. The nominal temperature was 25�C. For simplicity all transistors are assumed to have
the same channel length of 0:4�, while the channel width for PMOS and NMOS transistors are
assumed to be 4:0� and 2:0� respectively. Table 1 shows the leakage power values for all the input
assignments of a two-input NAND gate. It can be seen that the maximum leakage power dissipation
occurs when the two parallel PMOS transistors are OFF and the minimum leakage power dissipation
occurs when the two series NMOS transistors are OFF.

3: Graph Formulation

Using the characterization technique described in the previous section, the leakage power for
each input assignment to a logic block can be obtained. A trivial upper bound estimate of the
maximum leakage power can be obtained as the sum of the maximum leakage power for each of
the logic blocks in the circuit. This assumes that all the logic blocks can simultaneously draw their
respective maximum leakage current from the power supply. Due to spatial correlations of the logic
lines, all the blocks may not draw their respective maximum current simultaneously. In this section
we describe the structural and logic constraints that account for some of these spatial correlations.

Every logic block with k inputs has 2k di�erent input assignments. Each logic block with k inputs
is represented using 2k nodes which correspond to the di�erent input assignments to the logic block.
For each input assignment the leakage power dissipated by the logic block can be di�erent. The
leakage power dissipated by the circuit for an input assignment to the logic block is used as the
weight on the vertex that corresponds to that input assignment to the logic block. The vertices
in the constraint graph for a circuit consists of all the nodes due to each of the logic block in the
circuit.

Logic blocks cannot take input assignments independent of other block in the circuit. A logic
assignment to a logic block can imply a logic value at the input of some other block. This results in



b a0 0
b a0 1

b a01 b a11

Constraint 
graph for 
module I 

Clique Constraints 

a

b
cI

Figure 1. Clique constraints

a

b
c d

b a0 1

b a01

0c

b a0 0

b a11

1c

Module I 

Module II 

Clique Constraints 

Logic Constraints 

I II

Figure 2. Logic constraints

constraints between the vertices that correspond to the logic assignments to the two logic blocks.
The structural relationship due to the connectivity of logic blocks can also result in constraints
between vertices in the constraint graph. An edge is used to denote a constraint. An edge between
two vertices implies that the logic assignments corresponding to the two vertices are incompatible.
Under any input vector the two input assignments can never occur simultaneously. Hence, the
modules cannot simultaneously dissipate the leakage power corresponding to the input assignments
for any input vector. Observe that the constraints tighten the trivial upper bound by enforcing
the con
icts due to the spatial correlations. The logical and structural constraints described next
account for these correlations. There are three types of constraints:

1. Clique constraints: This constraint enforces the rule that only one of the 2k input assignments
to a k input logic block can be present for any input vector. This is represented by a set
of edges between every pair of vertices corresponding to the 2k input assignments to a logic
block. These constraints are called the clique constraints. Fig. 1 shows the clique constraints
for a two input NAND gate. A two input NAND gate has four di�erent input assignments.
Each of these is represented as a vertex in the constraint graph.

2. Logic constraints: This constraint enforces the logic functionality of a logic block. This con-
straint results in edges between vertices of logic blocks that are input-output related. These
constraints ensure that the output node to a logic block has a consistent logic value as implied
by the input assignment to the logic block. Hence, this constraint can add edges between
the vertices corresponding to all the fanout blocks of a logic block to the vertices of the logic
block. These constraints are called the logic constraints. Fig. 2 shows the logic constraints for
a two input NAND gate driving an INVERTER. A two input NAND gate has four di�erent
input assignments. An INVERTER has two di�erent input assignments. Each of these is
represented as a vertex in the constraint graph. If an input to the NAND gate is LO then the
output is HI and if both the the inputs are HI then the output is LO. These are represented
as logic constraint edges in the constraint graph.

3. Stem constraints: This constraint enforces the rule that a stem node can have only one logic
value. This constraint results in edges between vertices of logic blocks that are driven by the
same stem node. These constraints ensure that the input node to a logic blocks driven by



0c 1c

1c0c

Module I 

Module II 

Clique Constraints 

Stem Constraints 
I

II

c

d

e

Figure 3. Stem constraints

the same stem has a unique logic value. Hence, this constraint can add edges between the
vertices corresponding to all the fanout blocks driven by a stem. These constraints are called
the stem constraints. Fig. 3 shows the stem constraints for a node driving two INVERTERs.
An INVERTER has two di�erent input assignments. Each of these is represented as a vertex
in the constraint graph. The stem node can take only one logic value. This is represented as
stem constraint edges in the constraint graph.

4: Optimization on the Constraint Graph

A vertex in the constraint graph denotes an input assignment to a logic module. The weight on
the vertex denotes the leakage power dissipated by the logic module for the corresponding input
assignment to the logic block. An edge between two vertices denotes that the input assignments
corresponding to the vertices are incompatible. Hence, the problem of �nding the maximum leakage
power dissipation reduces the problem of �nding a set of vertices in the constraint graph such that
the sum of weights on the vertices is maximum and there are no edges between any pair of the
vertices. This problem is exactly the problem of �nding the maximum weight independent set in
the constraint graph. An independent set in a graph is de�ned as a set of vertices with no edges
between any pair of the vertices in the set. A maximal independent set is an independent set for
which none of the vertices in the remaining graph can be appended to increase the size of the
independent set. A maximum weight independent set in a graph is a maximal independent set for
which the sum of weights on the vertices is maximum over all maximal independent sets.

An exact solution to the maximum weight independent set gives an upper-bound on the maximum
leakage power dissipated by a circuit. The rules enforced by the clique, logic and stem constraints
always hold for any input vector. The clique constraint enforces the rule that for any input vector
there is only one input logic assignment for each logic block. The logic constraint enforces the logic
functionality of a logic block. The stem constraint enforces the rule that a stem node can take
only one logic value. These constraints always hold for any input vector. But, the rules enforced
by the clique, logic and stem constraints do not account for all the spatial correlations. Due to
reconvergent fan-out it may be possible that a particular input assignment to a logic block can
never occur for any input vector. In the construction of the constraint graph, we assume that
all the input assignments to a logic block are possible and denote each of them with a vertex.
Solving for the maximum weight independent set results in a search of a larger solution space.
The correlations due to reconvergent fan-out can reduce the solution space by eliminating a few
vertices corresponding to the input assignments that can never be excited for any input vector.
Hence, the exact solution to the maximum weight independent set on the constraint graph yields
an upper-bound on the maximum leakage power dissipation of the circuit.

The problem of determining the maximum weight independent set in an arbitrary graph is NP-
Complete [7]. There exists some classes of graphs like perfect graphs, claw-free graphs for which
the problem can be solved in polynomial time. Since the constraint graph does not belong to any
of these special classes of graphs, it is not known if the maximum weight independent set problem
can be solved in polynomial time for the constraint graph. In this work, we use fast linear time
greedy algorithms to estimate the maximum weight independent set in the constraint graph. The



greedy algorithms generate a lower-bound on the maximum weight independent set. Since the
exact solution to the maximum weight independent set is an upper-bound on the maximum leakage
power dissipation, the greedy algorithms for the maximum weight independent set can generate
good estimates for the maximum leakage power dissipation. In the next sub-section, we describe
three greedy algorithms for estimating the maximum weight independent set in the constraint graph.
Each of the greedy algorithms is applied on the constraint graph and the maximum (best) solution
of the three algorithms is taken as the estimate of the maximum leakage power dissipation of the
circuit for which the constraint graph was constructed.

4.1: Greedy Algorithms for Maximum Weight Independent Set

The greedy algorithms pick a vertex in the graph using some gain function and the selected
vertex and the vertices adjacent to it are then deleted to obtain the new subgraph. The greedy
algorithm is iterated on the subgraph till all the vertices in the graph are deleted. Di�erent gain
functions may give di�erent solutions for the same constraint graph. The di�erent gain functions
place di�erent emphasis on the following parameters: weight on a vertex, weights on the neighbors
of a vertex, number of neighbors of a vertex. The idea behind a gain function is to combine di�erent
quantities associated with a vertex into a single number so that one can pick a good locally optimal
vertex. For the maximum weight independent set, a vertex with a large weight and a small number
of neighbors or small value for the sum of weights on neighbors can be a good choice. One can obtain
a large number of di�erent greedy algorithms for the maximum weight independent set by changing
the gain function. We have experimented with di�erent heuristics and we present the experimental
results for three gain functions that we observed perform well consistently. The three algorithms are
applied to the constraint graph and the maximum (best) solution of the three algorithms is picked
as the estimate of the maximum weight independent set in the constraint graph. These linear time
greedy heuristics are fast and give a lower-bound estimate on the maximum weight independent set
in the constraint graph.

Let vi denote the vertex i and N(vi) denote the list of neighbors of vertex vi in the graph. Let
w(vi) denote the weight on the vertex vi. The three gain functions are de�ned below:

� G1: This gain function uses the weight of a vertex and the weights of the neighbors of the
vertex in the graph to compute the gain for the vertex. The gain for a vertex i is given by,

g(vi) = w(vi)�
X

j2N(vi)

w(vj): (2)

The vertex i with the maximum gain g(vi) in the graph is picked.

� G2: This gain function uses the weight of a vertex and the number of neighbors of the vertex
to compute the gain for the vertex. The gain for a vertex i is given by,

g(vi) =
w(vi)

1 + jN(vi)j
(3)

The vertex i with the maximum gain g(vi) in the graph is picked.

� G3: This gain function uses the weight of a vertex and the number of neighbors of the vertex
(in case of con
ict) to compute the gain for the vertex. The gain for a vertex i is given by,

g(vi) = w(vi) (4)

The vertex i with the maximum gain g(vi) in the graph is picked. If there is more than one
vertex with the same weight, then the vertex with the minimum number of neighbors is picked.

In the next section, we present the experimental results for ISCAS-85/ MCNC benchmark circuits
and compare the maximum leakage power dissipation obtained using the greedy heuristics on the
constraint graph with exhaustive or long random input vector simulations.



Table 2. Comparison of graph based methods with exhaustive simulation for esti-
mating the maximum leakage power

Num. Pg1 Pg2 Pg3 Run Trivial P g
leak Pleak %

Ckt PI Time UB graph exhaust. error

9symml 9 7.451 7.508 7.511 11.88 11.545 7.511 8.207 -8.48
C17 5 0.327 0.327 0.327 0.21 0.413 0.327 0.327 0.00
alu2 10 13.338 13.525 13.475 50.34 19.662 13.525 14.467 -6.51
alu4 14 27.369 26.244 25.970 244.99 38.819 27.369 28.373 -3.53
b1 3 0.448 0.394 0.373 0.27 0.563 0.448 0.480 -6.66

cm151a 12 1.240 1.041 1.041 0.36 1.689 1.240 1.254 -1.11
cm152a 11 1.130 1.053 1.053 0.34 1.551 1.130 1.143 -1.13
cm162a 14 2.037 2.032 1.859 0.22 2.715 2.037 2.185 -6.77
cm163a 16 1.830 1.859 1.855 0.49 2.284 1.859 1.925 -3.42
cm42a 4 1.099 1.125 1.285 0.34 1.718 1.285 1.171 9.73
cm82a 5 1.076 0.990 0.943 0.29 1.557 1.076 1.151 -6.51
cm85a 11 2.177 2.116 1.719 0.67 2.787 2.177 2.241 -2.85
cmb 16 2.541 2.137 2.456 0.77 3.315 2.541 2.502 1.55
cu 14 2.526 2.540 2.601 0.89 3.456 2.601 2.680 -2.94

f51m 8 3.327 3.320 2.988 1.20 4.723 3.327 3.552 -6.33
majority 5 0.474 0.465 0.527 0.21 0.695 0.527 0.519 1.54
parity 16 3.179 2.561 2.368 0.87 4.136 3.179 3.179 0.00
pm1 16 2.051 2.003 2.078 0.63 2.752 2.078 2.147 -3.21
t481 16 12.847 13.595 13.537 36.69 18.829 13.595 14.578 -6.74
x2 10 2.138 2.105 2.048 0.66 2.704 2.138 2.180 -1.92
z4ml 7 1.721 1.761 1.517 0.57 2.582 1.761 1.868 -5.72

5: Experimental Results

The experimental results were obtained on the MCNC/ISCAS-85 benchmark circuits [8]. Each of
these combinational multilevel circuits were optimized by script.rugged and mapped to a technology
library consisting of NAND, NOR, INVERTER and BUFFER using SIS [9]. In this paper, we
present a comparison of the accuracy of the maximum leakage power dissipation generated using
the greedy heuristics on the constraint graph and the exhaustive/random input vector simulations.
Exhaustive simulation is performed for circuits with a small number of primary inputs. Logic
simulations for 100000 randomly generated input vectors are performed for larger circuits. The
logic simulator used in the simulations is a zero-delay simulator and the pre-characterized leakage
power values for each logic module were used to compute the leakage power dissipated by the circuit
for a particular input vector. The run time values are in CPU seconds on UltraSparc2 workstation.
The leakage power values are in nano-Watts.

Table 3 shows the comparison of the trivial upper bound on the maximum leakage power dis-
sipation, and the maximum leakage power dissipation obtained by exhaustive simulation with the
maximum leakage power obtained using the graph based methods. The second column (Num. PI)
denotes the number of primary inputs for the speci�ed circuit. Pg1, Pg2 and Pg3 denote the esti-
mates of the maximum leakage power obtained using the greedy heuristics on the constraint graph
for gain functions G1, G2 and G3 respectively. The run time values correspond to the CPU time
used for computing the maximum leakage power using the three greedy algorithms. The trivial
upper bound on the leakage power dissipation is obtained as the sum of the maximum leakage
power for each logic block in the circuit. P g

leak denotes the maximum leakage power obtained using
the graph based methods computed as the maximum value of Pg1, Pg2 and Pg3. Pleak denotes the



maximum leakage power dissipation obtained by exhaustive simulation. The % error is computed
as 100 � (P g

leak �Pleak)=Pleak . It can be seen that the graph based method generates a signi�cantly
tighter bound than the trivial upper bound. Also the graph based method generates maximum
leakage power values very close to the actual values. The graph based algorithms are fast and the
run time requirements are nominal.

Table 4 shows the comparison of the trivial upper bound on the maximum leakage power dissipa-
tion, and the maximum leakage power dissipation obtained by random input vector simulation for
100000 input vectors with the maximum leakage power obtained using the graph based methods.
The notations for the terms in the table is the same as described before. Since the random input
vector simulation for 100000 covers only a small fraction of the entire search space, the maximum
leakage power dissipation value (P l

leak) obtained using the random input vector simulation is only
a lower bound on the maximum leakage power dissipation. Hence, we do not present the % error
computation for this case. From the results it can be seen that the graph based method generates
good estimates of the maximum leakage power for a circuit. The CPU time requirements of these
algorithms are nominal.

6: Conclusions

We have presented an input pattern independent algorithm for computing the maximum leakage
power dissipation of a circuit. We use the circuit structure and functional information to transform
the problem to a graph problem and use graph-theoretic algorithms to �nd the solution. The
exact solution to the maximum weight independent set on the constraint graph gives an upper-
bound estimate of the maximum leakage power. The greedy heuristics for the maximum weight
independent set give a lower-bound solution. Hence, the linear time greedy heuristics for the graph
problem generate good estimates of the maximum leakage power for a circuit. The method we
presented is quite general and it can be applied to dynamic and pass-transistor circuits. We have
presented comparisons with results obtained by exhaustive/long random input vector simulations to
show that the constraint graph based method generates tight results. The graph based algorithms
for computing the maximum leakage power dissipation are fast and they require only a few minutes
of CPU time for the largest circuit.

References

[1] A. Chandrakasan, I. Yang, C. Vieri, and D. Antoniadis, \Design considerations and tools for low-voltage
digital system design," in Proc. of DAC, pp. 113-118, June 1996.

[2] R. X. Gu and M. I. Elmasry, \Power dissipation analysis and optimization of deep submicron CMOS
digital circuits," IEEE Journal of solid-state circuits, vol. 31, no. 5, pp. 707{713, May 1996.

[3] J. P. Halter and F. N. Najm, \A gate-level leakage power reduction method for ultra-low-power CMOS
circuits," in Proc. of CICC, pp. 475{478, May 1997.

[4] A. Ferre and J. Figueras, \On estimating leakage power consumption for submicron CMOS digital
circuits," in Proc. of PATMOS, pp. 269{279, Oct. 1997.

[5] D. T. Blaauw, A. Dharchoudhury, R. Panda, S. Sirichotiyakul, C. Oh, and T. Edwards, \Emerging
power management tools for processor design," in Proc. of ISLPED, pp. 143{148, Aug. 1998.

[6] L. Wei, Z. Chen, M. Johnson, and K. Roy, \Design and optimization of low voltage high performance
dual threshold CMOS circuits," in Proc. of DAC, June 1998.

[7] M. R. Garey and D. S. Johnson, Computers and Intractability. New York, NY: W. H. Freeman and
Company, 1979.

[8] S. Yang, Logic synthesis and optimization benchmarks user guide, Version 3.0. MCNC, Research Triangle
Park, NC, 1991.

[9] R. Brayton, G. D. Hachtel, and A. L Sangiovanni-Vincentelli, \Multilevel logic synthesis," in Proc. of
the IEEE, vol. 78, no. 2, pp. 264{300, February 1990.



Table 3. Comparison of graph based methods with random input vector simulation
for estimating the maximum leakage power

Num. Pg1 Pg2 Pg3 Run Trivial P g
leak P l

leak

Ckt PI Time UB graph random

C1355 41 20.333 20.417 20.050 96.72 29.987 20.417 20.428
C1908 33 20.897 19.575 19.077 91.40 29.418 20.897 20.709
C2670 233 38.252 38.007 36.656 390.13 49.906 38.252 38.699
C432 36 8.349 8.106 8.147 9.29 11.376 8.349 8.831
C880 60 18.416 18.203 17.620 63.52 24.499 18.416 18.564
C3540 50 50.154 50.593 48.945 789.18 73.570 50.593 51.814
C5315 178 72.774 71.562 70.675 1296.66 101.731 72.774 72.290
C6288 32 121.149 121.147 108.916 2854.74 163.793 121.149 114.287
C7552 207 94.850 95.629 94.763 3209.24 139.180 95.629 98.065
apex6 135 31.148 30.693 29.953 258.73 42.814 31.148 30.843
apex7 49 9.539 9.600 9.295 17.02 13.493 9.600 10.335
b9 41 5.314 5.200 5.437 3.05 7.154 5.437 5.489
c8 28 5.117 5.741 5.082 3.71 7.752 5.741 5.752
cc 21 2.499 2.268 2.340 0.74 3.237 2.499 2.545
cht 47 6.173 6.191 5.752 5.38 8.655 6.191 6.128

cm150a 21 2.178 2.151 2.191 0.57 3.134 2.191 2.286
comp 32 5.329 4.755 4.479 1.93 6.270 5.329 5.137
cordic 23 2.947 2.883 2.634 0.90 4.088 2.947 3.022
count 35 5.819 5.625 5.919 6.40 7.550 5.919 5.897
dalu 75 31.672 31.567 30.892 209.88 43.819 31.672 31.598

example2 85 13.000 12.438 12.018 34.94 17.642 13.000 12.957
frg2 143 31.038 30.163 30.971 260.71 40.461 31.038 30.141
i1 25 2.131 2.152 2.252 0.53 2.646 2.252 2.250
i2 201 12.598 10.406 12.152 8.69 13.074 12.598 8.769
i3 132 6.527 5.294 6.812 2.57 7.376 6.812 5.911
i4 187 14.558 14.835 15.311 19.73 17.895 15.311 13.026
i5 133 9.017 7.623 8.013 5.36 11.375 9.017 8.160
i6 138 23.515 23.548 19.585 182.32 26.227 23.548 21.426
i7 199 30.627 30.771 27.808 348.45 35.042 30.771 28.064
i8 133 43.145 42.821 42.042 704.25 56.482 43.145 43.678
k2 45 46.768 46.509 48.148 635.54 60.320 48.148 46.734
pair 173 66.709 66.450 65.675 1059.26 93.464 66.709 66.725
unreg 36 5.129 4.828 4.694 3.62 6.267 5.129 4.991
vda 17 24.906 24.393 25.298 147.01 32.413 25.298 25.006
x3 135 31.715 31.350 30.045 221.31 43.893 31.715 31.419
x4 94 16.055 15.018 15.809 59.21 20.824 16.055 15.981


