
Energy Efficient Source Code Transformation based on Value Profiling

Eui-Young Chung† Luca Benini‡ Giovanni De Micheli†

† feychung,nannig@stanford.edu
Stanford University

Computer Systems Laboratory
Stanford, CA 94305-4070, USA

‡ lbenini@deis.unibo.it
Università di Bologna

Dip. Informatica, Elettronica, Sistemistica
40136, Bologna, ITALY

Abstract
This paper presents a source code transformation technique

based on value profiling for energy-efficient system design. This
technique reduces the computational effort of the program by
specializing it for highly expected situations. Thus, the proces-
sor running the optimized program can be shutdown or slowed
down for energy saving without performance degradation. The
value profiler observes parameters passed to the procedures dur-
ing profiling and detects semi-static parameters which are highly
probable to have the same values whenever they are passed to the
procedures. According to this information, procedures are spe-
cialized for the observed values using a partial evaluator. The
corresponding procedure call in the original source code is re-
placed by a conditional statement which selects either the origi-
nal procedure call or the specialized procedure call according to
the values of the observed parameters. Experimental results show
that the proposed technique improves the energy efficiency of the
source code up to more than 2 times over the original code.

1 Introduction
Attention to low-power system design has been increasing due

to the widespread use of portable devices [2, 3, 4]. Excessive
power consumption adversely impacts several key design metrics.
First, the battery life time is shortened, thus reducing the use-
fulness of portable device. Second, heat dissipation is increased
proportionally to power consumption, thus packaging and cool-
ing cost is also increased and the system speedup and reliability
is limited by this factor. Third, the environmental impact is seri-
ously raised due to the demand for more electricity.

Traditionally, low-power design techniques have focused on
circuit and gate level design [4, 5]. Recently, the emphasis has
shifted toward higher abstraction levels because power optimiza-
tions applied at the early stages of the design process can be more
effective [1, 8]. Software optimization is another key issue in
low-power design because most large-scale systems include pro-
cessors and memories. These components are often responsible
for a large fraction of system power dissipation [6, 8]. The soft-
ware running on a processor (and its memory system) determines,
to a large degree, its power dissipation.

Clearly, the power consumption due to software execution is
tightly related to the target system architecture. For this rea-
son, most of previous research for software optimization has fo-
cused on low-level code optimization,i.e. assembly or binary
executable code, which is the most appropriate level to have the
most accurate software analysis model with the consideration of

the underlying hardware [7, 9, 10].
Compared to low-level optimization techniques, only a few

high-level approaches were proposed. In [11, 12] and [13],
sophisticated high-level optimization techniques for performance
improvement such as loop unrolling and procedure in-lining were
applied for power saving and their impact on power saving is as-
sessed using instruction level simulation. The basic assumption
of these approaches is that the positive effect on performance will
also be positive to power consumption. Simunicet al. proposed
an energy efficient source code transformation technique in [20],
but their approach is restricted to a specific architecture (ARM
processor) and manual code-rewriting. In [14], numerous source-
level transformation techniques are introduced, aiming at reduc-
ing the power consumed by memories in data-dominated applica-
tion.

The technique proposed in this paper is also applied at
the source code level, and takes into account both processor
and memory power. Optimization focuses on computationally-
intensive procedures whose input parameters are highly probable
to have the same values whenever they are called. We propose a
value profiling technique which automatically identifies the pro-
cedures and parameters having the properties mentioned above.
After selection, candidates are passed to a partial evaluator to be
specialized for the identified parameters. Finally, the correspond-
ing procedure calls in the original source code are replaced with
conditional statements which selectively call either the original
procedure or the specialized procedure depending on the value of
the parameters used for the program specialization.

The proposed technique is similar to procedure cloning in the
sense that single procedure is replicated multiple times and each
new copy is specialized for the call site environments [15]. Also,
the authors of [15] proposed a methodology which selectively
performs cloning among multiple cloning candidates under the
code size constraint using cloning vector. However, our approach
is different from the technique described in [15]. First, the cost
metric in [15] is code size, but in our approach the cost metric is
energy consumption for the given program. Second, the proposed
technique can be applied to the call sites which have non-constant
input parameters by using value profiling, while the procedure
cloning technique [15] only considers constant input parameters.
Third, it is possible to generate multiple clones for single call
site using the proposed technique, while the procedure cloning
technique considers only single clone for each call site. Finally,
the approach in [15] still leaves the optmization strategy for each
clone to the later stage of compilation, but in our approach, this

main () f
int i, j, a, b[8], result = 0;
for (i = 0; i < 8; i++)

scanf(f, "%d", &b[i]);
scanf(f, "%d", &a);
result += foo(a, b);
printf("result = %d", result);

g
int foo(int a, int b[8]) f

int i, sum = 0;
for (i = 0; i < 8; i++)

sum += a * b[i];
return sum;

g

(a) Original Program

main () f
int i, j, a, b[8], result = 0;
for (i = 0; i < 8; i++)

scanf(f, "%d", &b[i]);
scanf(f, "%d", &a);
if (cvd foo(a)) result += sp foo(b);
else result += foo(a, b);
printf("result = %d", result);

g
int foo(int a, int b[8]) f

int i, sum = 0;
for (i = 0; i < 8; i++)

sum += a * b[i];
return sum;

g
int sp foo(int b[8]) f

return 0;
g
int cvd foo(int a) f
if (a == 0) return 1;
return 0;

g

(b) New Specialized Program

Figure 1. Example of Source Code Transfor-
mation Using the Proposed Technique

strategy is formally described.
In Section 2, we demonstrate the basic idea and overall flow

of the proposed technique for program specialization using value
profiling. In Section 3, the details of profiling method will be
presented. In Section 4, the source code transformation technique
will be discussed. Finally, we will show the experimental result
in Section 5 and conclude our work in Section 6.

2 Basics of the Proposed Technique
In this section, we present the rationale of our approach with

an example and describe the overall source code transformation
flow.
2.1 Basic Idea

The technique described in the following sections aims at im-
proving the energy efficiency of a given program by specializing
it for situations that are commonly encountered during its exe-
cution. The specialized program requires substantially reduced
computational effort in the common case, but it still behaves cor-
rectly. The “common situations” that trigger program specializa-
tion are detected by tracking the values passed to the arguments
of procedures and functions.

An example is shown in Figure 1 to illustrate the basic idea.
As shown in Figure 1 (a), procedure foo in the original program
has two arguments. If the value of variablea is 0 for most of the
cases, this procedure can be simply reduced to a new procedure
sp foo as shown in Figure 1 (b).

Original
C files

Instrumented
 codes

User supplied
 library

C compiler

Procedure
Selection

Transformation
 Preparation

Specialization

Source Code
Alternation

Final C filesProfiling

 code
Instrumentation

Figure 2. Overall Source Code Transforma-
tion Flow

In reality, the value of variablea is not always 0. For this rea-
son, the call of procedurefoo cannot be completely replaced by
the new proceduresp foo. Instead, it can be replaced by a condi-
tional statement which selects appropriate procedure call depend-
ing on the result of Common Value Detection (CVD) procedure
namedcvd foo in Figure 1 (b). The example in Figure 1 handles
only a single common case whena= 0. Our approach is not lim-
ited to single common case. If there are multiple common cases,
the conditional statement is replaced with multi-way branch state-
ment and the corresponding procedure call is selected depending
on the value of conditional.

The CVD procedure becomes an overhead factor in terms of
computational effort because it must always be executed to call
either the original procedure or the new specialized procedure.
Also, both the CVD procedure and the new specialized procedure
increase the overall code size.

Thus, if the specialized procedure is only marginally simpli-
fied, or if the original procedure is more frequently selected than
the new specialized procedure, the transformed program may re-
quire more computation than the original program. For this rea-
son, our specialization technique is best suited for average en-
ergy reduction, while worst-case energy and execution time may
slightly increase.

2.2 Overall Source Code Transformation Flow
The simplified overall source code transformation flow is il-

lustrated in Figure 2. As shown in Figure 2, the first step is
profiling to identify the procedures to be transformed. Two dif-
ferent kinds of profiling information are important for the iden-
tification. First, it is important to know how much each proce-
dure contributes to the overall computational effort. Second, for
the computation-intensive procedures, it is necessary to detect the
procedures which have Constant-Like Arguments (CLA),i.e. the
arguments which are highly probable to have the same values.
When a procedure satisfies these two conditions, it can be spe-
cialized as mentioned in Section 2.1. Profiling for detecting com-
putational kernels,i.e. execution frequency profilingis commonly
done. Value profiling is a less-developed discipline, which has
started to attract the attention of the research community only in
the last few years [21]. Our approach to value profiling is de-
scribed in detail in Section 3.3.

These two kinds of profiling can be staged in two different
ways. Value profiling could be performed after execution fre-
quency profiling. Alternatively, execution frequency and value
profiling could be carried out concurrently. In the first case, value
profiling can be applied only to the computation intensive pro-
cedures, thus the time required for value profiling can be signifi-
cantly reduced. But serialization can cause longer profiling time,

whereas in second case, profiling is done in one pass, but the
amount of work in the single pass is increased.

In our profiler, we opted for the second approach. Instrumen-
tation of the original C source code is performed in a preliminary
step (code instrumentation) and the instrumented code is com-
piled with specialized libraries for profiling. During profiling,
both execution frequency and value information for each pro-
cedure are obtained by executing the binary code generated by
the compilation step. Based on profiling information, the can-
didate procedures which are computationally intensive and have
CLAs are selected for specialization in procedure selection step.
In transformation preparation step, those procedures are copied
into a new file with assigning values to CLAs.

The newly generated file is fed into the partial evaluator for
specialization. In our current framework, specialization step is
performed by CMIX [17] which is a compile-time (off-line) pro-
gram specializer, and the interface from profiling to CMIX is au-
tomated. Our framework is not restricted to a specific partial eval-
uator. Any other partial evaluator can replace CMIX. In addition
to the specialized procedure, the CVD (Common Value Detec-
tion) procedure is also automatically generated in this step. In the
final step (source code alternation), the original source code is
automatically transformed into a new specialized code by replac-
ing the procedure call with the conditional statement as shown in
Figure 1. The current framework is semi-automated in the sense
that the tool provides the information needed to make the choice
and performs a tentative selection, but the candidate procedure
selection can be overridden by the user and the final decision on
which procedure calls should be replaced is also left to the user.

3 Profiling
3.1 The Structure of Profiler

Most profiling techniques are aimed at low level abstraction
of programming language,i.e. assembler or binary executable
to extract more accurate architecture-dependent information such
as memory address tracing and execution time estimation. Since
they are designed for specific machine architectures, they have
limited flexibility [18].

For the technique proposed in this paper, it is sufficient to
have only relatively accurate information rather than accurate
architecture-dependent profiles, while keeping source-level infor-
mation. In other words, it is more important to identify which
piece of code requires the largest computational effort rather than
to know the exact amount of computational efforts required for
its execution.

We used the SUIF compiler infrastructure [22] for source code
instrumentation because it provides essential core routines for
program analysis and manipulation. The instrumentation for pro-
filing is performed based on the abstract syntax trees (High-SUIF)
which well represent the control flow of the given program in high
level abstraction. In detail, a program is represented as a graph
G= fV;Eg, where node setV is matched to the high level code
semantics such asfor-loop, if-then-else, do-while con-
structs and denoted asvi 2 V, i = f0;1; � � � ;Nv� 1g, where,Nv
is the total number of nodes in a programG. Any edgeei j 2 E
connects two different nodesvi and vj and represents their de-
pendency in terms of their execution order. Note that nodevi is
hierarchical, thus each nodevi can have its subgraph to represent
the nested constructs. For each nodevi which is a procedure, we
insert counters as many as its descendent nodes to record the vis-
iting frequencies. And for each descendent node, SUIF instruc-
tions for incrementing the corresponding counter are inserted for
execution frequency profiling. Value profiling requires additional

manipulations such as type checking between formal parameters
and actual parameters of procedure calls, recording the observed
values and so on.

The proposed profiler has ATOM-like structure [19] in the
sense that user supplied library is used for instrumentation,
namely the source code is instrumented with simple counters
and procedure calls which are defined in user supplied library as
shown in Figure 2. The user supplied library includes the proce-
dures required for both execution frequency profiling and value
profiling. At the final stage, the instrumented source code and the
user supplied library are linked to generate the binary executable
for profiling.

3.2 Computational Kernel Identification
Computational kernel identification can be achieved by exe-

cution frequency profiling and computational effort estimation.
Execution frequency profiling is a widely used technique to ob-
tain the visiting frequency of each basic unit (nodevi of graphG).
This information only represents how frequently each basic unit
is visited, but does not show how important each basic unit is in
terms of computational effort.

For this reason, we used a simple estimation technique of
computational efforts for each basic unit using the number of in-
structions of each basic unit, where the instruction set used is the
built-in instructions defined in SUIF framework. Due to the lack
of specification of a target architecture, it is assumed that all the
instructions require same computational effort. But we provide
a way to distinguish the cost of each instruction when the target
architecture is determined using an instruction cost table. Each
SUIF instruction is defined with its cost in the instruction cost
table, thus the execution time of each nodevi of graphG can be
calculated as follows.

cei = fi � ii
N�1

∑
j=0

(oi j �cj) (1)

where,cei is the estimated computational effort of nodevi , fi is
the execution frequency of nodevi from execution frequency pro-
filing, ii is the average number of iterations for each visit of node
vi , oi j is the number of instructionj observed in nodevi , cj is
the cost of instructionj , andN is the total number of instructions
defined in SUIF. Note that the basic unit of our approach includes
for-loop and do-while constructs. For this reasonii is considered
in Equation 1. It is also worthwhile to mention that the Equation 1
represents the single level computational efforts estimation. As
mentioned in 3.1, the nodevi is hierarchical. Thus, the cumulated
computational efforts for each nodevi can be estimated by the
sum of current level computational effort and the computational
effort of its descendent nodes.

3.3 Value Profiling
As mentioned in Section 2.1, value profiling is performed at

the procedure level. In other words, each procedure call is pro-
filed, because single procedure can be called in many different
places with different argument values. The reason that we chose
value profiling instead of value tracing is to avoid huge disk space
and disk accesses required for value tracing.

One of the difficulties in value profiling occurs when the argu-
ment size is dynamic. For example, any size of one-dimensional
integer array can be passed to an integer type pointer argument
whenever the corresponding procedure is called. Another diffi-
culty occurs when the argument has complex data type because
complex data type requires hierarchical traversal for value profil-
ing.

Proc 0

.........

.........

call 0

call 1

call 2

call 0

call 1

.........arg 0

row # Value C

0

S−1

......

......

......

arg n−1

Proc n−1

Procedure List Call List Argument List

Value Table

Figure 3. Internal Date Structure of Value Pro-
filing

For this reason, currently value profiling in our work is re-
stricted to elementary type scalar and array variables. Note that
this restriction is not applied to the arguments defined at each
procedure, but to the variables passed as arguments for each pro-
cedure call. When a procedure call has both types of variables as
arguments, only the variables which violate this restriction are ex-
cluded from profiling. Pointers to procedures are not considered
in our approach due to its dynamic nature.

Figure 3 shows the internal data structure of value profiling
system. As shown in Figure 3, each procedure has a list of proce-
dure calls which are activated inside the procedure. Each proce-
dure call in the list has a list of arguments and each argument in
this list satisfies the type constraint mentioned above and has its
own fixed size value table to record the values observed and their
frequencies. Each row in the value table consists of three fields -
index field, value field and count (C) field.

The index field represents not only the index of the row, but
also the chronological order of the row in terms of the updated
time relative to other rows. Thus, the larger the index is, the more
recently the corresponding row is updated. In our representation,
each row is denoted asri , i 2 f0;1; � � � ;S�1g, whereS denotes
the size of value table,i.e. the number of the rows in the table.
The value field is used to store the observed value, and theci
field in ri counts the number of observations of the correspond-
ing value. The table is continuously updated whenever the corre-
sponding procedure call is executed. At the end of profiling, each
argument of the value table is examined to find the values which
are frequently observed and only the argument-value pairs which
satisfy user defined constraint calledOT (Observed Threshold)
are reported to the user. For this purpose,ori (Observed Ratio) is
calculated for eachri in the value table as follows.

ori = ci=
S�1

∑
j=0

cj (2)

The largerori is, the more frequently the value is observed. When
ori is smaller thanOT, the value inri is disregarded.

The key feature of value profiling is the value table replace-
ment policy [21]. As mentioned above, the size of each value
table is fixed to save memory space and table update time.ci of
each value table is initialized to 0. Thus if a new value is observed
and at least one ofci is 0, the new value is recorded inri which has
the smallest index among these rows. On the other hand, when
the table is full (there is noci which is 0), the following formula
is used to select the row which is to be replaced.

r f i =W � i+(1�W)�ci (3)

where,r f i , i 2 f0;1; � � � ;S�1g is replacement factor which is the
metric to decide which row is to be replaced. The smallerr f i is,
the more likelyri will be selected for replacement. The weighting

Specialization

Instruction Set
 Level Sim.

Source Code
 Alternation

Satisfied?

End

Change
Strategy

No

Yes

Figure 4. Iterative Procedure for Source Code
Transformation

factorW is used to specify the importance of the chronological
order relative to observed countci . The selectedri which has
the smallestr f i is deleted from the table andr j ! r j�1, j 2 fi+
1; � � �S�1g if j < S�1. Finally, the new value is stored to a new
row rS�1.

4 Source Code Transformation
From the profiling information, the procedure which is identi-

fied as a computational kernel and has CLA is selected for code
transformation. The code transformation in our approach depends
on the existing partial evaluator called CMIX, but it can be re-
placed by any other specializer. Even though the selected proce-
dure is specialized by external software, it is possible to control
specialization by using a control file which is fed to the special-
izer. This is one of the reasons that the interface from profiling
to specialization is semi-automated, namely there is a chance for
user to control the specialization. The input C-code file to special-
izer is automatically prepared from the user script which specifies
the target procedure and the values of arguments to be declared
as static.

The partial evaluator performs optimization for the given code
using the information on static data. Thus, constant-related opti-
mizations such as constant propagation and constant folding are
the important optimization features in partial evaluation. Also,
other optimization techniques such as loop unrolling, simple alge-
braic simplification, procedure in-lining, and procedure cloning
are performed.

One of the side effects of partial evaluation is that taking
more space for programs and data may produce less computa-
tions, while taking less space for those may produce more com-
putations [16]. For this reason, the code size of the specialized
procedure is usually larger than the size of original procedure.
Increased code size changes the memory access pattern for both
data and instruction, therefore system performance and power
consumption after specialization are hard to predict.

To overcome this problem, we adopt an iterative procedure
as shown in Figure 4. Whenever specialized code is generated,
instruction-set level simulation is performed to see the impact of
specialization. While the iterative specialization procedure is per-
formed, user can change the specialization strategy as follows.

� Loop unrolling suppression: The loop which would cause
significant code size increase when it is unrolled can be sup-
pressed not to be unrolled.

� Static data declaration change:When the argument de-
fined as static does not have much impact on the improve-
ment, it can be changed to dynamic argument. This tech-
nique can be effective when several arguments are declared
as static for a single procedure call.

� Canceling specialization: When the specialization for
some procedure call is not so effective on the improvement,
the corresponding call can be canceled for the specializa-
tion.

� CVD procedure elimination: When it is possible to iden-
tify that a static argument always has the same value, the
CVD procedure is not required. In this case, the overhead
from CVD procedure can be eliminated.

5 Experimental Results
We applied the proposed technique to the ARM software de-

velopment environment [23], with a target hardware architecture
which consists of ARM SA-110 processor, and 1MB burst SRAM
main memory. Under the ARMulator based environment. ARM
SA-110 has both 16KB I-cache and 16KB D-cache and its clock
speed is set to 99:4MHz. The power consumption of SA-110 is
assumed as 450mW in active state and 20mW in idle state. Also,
the memory access time is assumed as 90ns for non-sequential
access and 45ns for sequential access and its power consumption
is 305mW in active state and 1:7mW in idle state. All these values
are adopted from the data book. Under the system configuration
mentioned above, 6 DSP application C programs were applied for
validation purpose. The metrics measured in this experiment can
be summarized as follows.

� Computational kernel identification: The proposed fre-
quency execution profiling with high-level computational
effort estimation technique is compared to the profiler pro-
vided by ARMulator.

� Value profiling correctness: We compared the CLA ob-
tained from the proposed value profiling with the result of
value tracing to validate the proposed value table replace-
ment policy.

� Code size:The impact on the code size due to source code
transformation is assessed.

� Speedup:The effect of the proposed technique for perfor-
mance is also evaluated.

� Energy saving: The energy consumption of the given pro-
gram is estimated by the sum of energy consumption of both
processor and memory and it can be represented as follows.

ENERGYtotal =
1

∑
i=0

1

∑
j=0

Pi j �Ni j �Tcycle (4)

where,i 2f0;1g and 0 represents processor and 1 represents
memory, respectively. Similarly,j 2 f0;1g, where 0 means
active state and 1 means idle state, respectively. Finally,Pi j
represents average power consumption of resourcei in state
j , Ni j represents the number of cycles that resourcei is in
statej , andTcycle is the cycle time.

For the comparison shown in Table 1, it is assumed that the
cost of each instruction is identical,i.e. 1 for computational ef-
fort estimation. The value table size is fixed as 10 and the weight-
ing factorW used for replacement factor calculation is set to 0:5.
Finally, theOT (Observed Threshold) is also set to 0:5.

Even though the instruction cost is assumed to be identical, the
relative importance of each procedure evaluated by the proposed
profiling is exactly same as the result from the ARMulator. The
absolute importance of each procedure is also evaluated with 90%
accuracy. It is also verified that CLA detection using the proposed
value profiling is exactly performed with reduced computation
time and disk space.

C Programs comp. kernel # of CLA
proposed ARMulator proposed trace

Compress block dct block dct 2 2
Expand block idct block idct 2 2
Edetect convolve2d convolve2d 1 1
FFT fft fft 1 1
g721 encode quan quan 2 2
Composite nv composit nv composit 5 5

Table 1. Proposed Profiling Technique Vali-
dation

C Programs code size execution time energy
Compress 1.30 0.93 0.94
Expand 1.18 0.86 0.86
Edetect 1.25 0.42 0.39
FFT 1.16 0.83 0.80
g721 encode 1.04 1.00 1.01
Composite 1.17 1.01 1.02

Table 2. Comparison between Transformed
Code and Original Code (normalized to orig-
inal code)

Table 2 shows the improvement achieved by the proposed
technique over the original C programs.

For each program, different specialization strategy is applied
due to the different nature of each program. The strategy for each
program is summarized as follows.

� compress:The computational kernel, blockdct procedure
has two three-level nested for-loops. Thus, the specializa-
tion causes drastic code size explosion. Code explosion is
a serious problem in embedded system environment due to
the small size of cache. For this reason, one out of three
levels for each nested loop is not unrolled.

� expand: expand is similar to compress program. Thus,
same strategy is applied. Nevertheless it shows better im-
provement than compress program because the portion of
computational effort devoted to each computational kernel
is different. The computational kernel of expand requires
higher computational effort than that of compress program.

Specialized Procedure Call Combination

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(T
ra

ns
fo

rm
ed

 C
od

e
/ O

rig
in

al
 C

od
e)

Code Size
Execution Time
Energy Consumption

(000) (100) (010) (001) (110) (101) (011) (111)

Figure 5. Impact of Specialized Procedure
Call Combination (edetect program)

� edetect: edetect shows the best improvement in terms of
both performance and energy. It is interesting that the com-
putational kernel is called in three different locations with
different values passed to CLA. For this reason, the com-
putational kernel is specialized three times for the common
CLA with three different values. Also, the computational
kernel includes four-level nested for-loop, thus two outer
loops are not unrolled. It is also worthwhile to mention
that simple algebraic reduction can be performed because
there are several multiplications with 0 or 1 in the unrolled
code. For this reason, drastic performance and energy im-
provement can be achieved. Figure 5 shows the variation of
improvement with the change of the combinations of calls
specialized. Each tuple index on X-axis represents which of
the three calls are selected for specialization. For example,
(100) means only the first procedure call is specialized and
(111) means all three procedure calls are specialized. As
shown in Figure 5, the performance increase and energy re-
duction ratio show more steep slope than code size increase.
Thus, it is better choice to select all the procedure calls for
specialization.

� FFT: The FFT program is specialized for 16 points. It is
interesting that the trigonometric functions which are pro-
vided by the C standard math library has constant arguments
when they are specialized. For this reason, the specialized
program does not contain the expensive trigonometric func-
tions, but has the pre-computed their constant outputs.

� g721: The computational kernel has two CLAs - one is con-
stant array and the other is an integer which represents the
array size. At first, we specialized the program for both
CLAs, but the result is worse than the original program due
to the overhead of CVD procedure. For this reason, only the
integer CLA is used for specialization and there is little im-
provement as shown in Table 2. But it is found that the array
CLA is true constant which is defined with its declaration.
Therefore, it is possible to eliminate the CVD procedure.
With this modification, it is possible to achieve 24:2% per-
formance improvement and 22:3% energy saving over the
original program. The kernel of this program is not so com-
putationally intensive, but it is called so frequently. Thus,
the effect of CVD procedure is significant because CVD
procedure is evaluated at each procedure call.

� composite: Even though the computational kernel of this
program has five CLAs, it is shown that there is little benefit
to specialize the given program for those CLAs. In this case,
the performance and energy consumption can be worse than
the original program due to the overhead of CVD procedure.

In average, the proposed technique improves the energy effi-
ciency of the source code by 20% (25% with the consideration of
CVD elimination for g721 encode) with 18% code size increase
for six DSP application programs. It is observed that the devia-
tion of improvement is very large depending on the nature of the
programs. For the best case, the improvement is more than twice,
but for the worst case, the transformed code can be worse than
the original code due to the overhead of the CVD procedure.

6 Conclusion
In this paper, we presented an energy efficient source code

transformation technique based on value profiling and partial
evaluation. The proposed high-level execution frequency profil-
ing and computational effort estimation technique for computa-
tional kernel identification is validated by comparing it to a com-

mercial instruction-level profiler. Also, the value profiling tech-
nique is verified by the comparison with value tracing which re-
quires more computation time and disk space.

Based on the profiling information, a source code transforma-
tion technique using partial evaluation is proposed and its impact
on code size, performance, and energy consumption is evaluated.
The proposed technique reduces energy consumption (as well as
average-case performance), but it also increases program size.
For some application programs, code size increase can be seri-
ous. To avoid this code size explosion, a careful specialization
strategy unrolling suppression is required.

The experimental results show that the transformed source
code can reduce processor and memory energy consumption by
more than a factor of two compared to original program, but the
effectiveness of the proposed technique depends on the property
of the given application program. It is also shown that it is pos-
sible to apply the proposed technique to tradeoff performance,
power, and code size (edetect program). Finally, we show a pos-
sibility to improve the effectiveness of the proposed technique by
eliminating the CVD procedure overhead when the CLA is true
constant(g721 encode program).

Acknowledgement
This research has been supported in part by ST Microelectronics
and by NSF under grant CCR-9901190. Also, the authors would
like to thank Dr. G. Luculli for several comments and sugges-
tions.

References
[1] L. Benini and G. De Micheli,Dynamic Power Management

of Circuits and Systems: Design Techniques and CAD Tools,
Kluwer, 1997.

[2] A. Chandrakasan and R. Brodersen,Low-Power Digital
CMOS Design. Kluwer, 1995.

[3] W. Nebel and J. Mermet (Eds.),Low-Power Design in Deep
Submicron Electronics. Kluwer, 1997.

[4] J. M. Rabaey and M. Pedram (editors),Low-Power Design
Methodologies. Kluwer, 1996.

[5] M. Pedram, “Power minimization in IC design: principles
and applications”,ACM TODAES, vol. 1, issue 1, pp.3-56,
Jan. 1996

[6] V. Tiwari, S. Malik, and A. Wolfe, “Power Analysis of Em-
bedded Software: A First Step Towards Software Power
Minimization”, IEEE Transactions on VLSI, vol. 2 no. 4,
pp437-445, Dec. 1994

[7] V. Tiwari, S. Malik, A. Wolfe, “Instruction Level Power
Analysis and Optimization of Software”,Journal of VLSI
Signal Processing Systems, vol. 13, no.1-2, pp.223-233,
1996

[8] L. Benini and G. De Micheli, “System-Level Power Op-
timization Techniques and Tools”,ACM TODAES, vol. 5,
issue 2, pp.115-192, Apr. 2000

[9] H. Tomiyama, H. T. Ishihara, A. Inoue, and H. Yasuura,
“Instruction Scheduling for Power Reduction in Processor-
Based System Design”,Design Automation and Test in Eu-
rope, pp.855-860, Feb. 1998

[10] C.L. Su, C.Y. Tsui, and A.M. Despain, “Saving Power in the
Control Path of Embedded Processors”,IEEE Design and
Test of Computers, vol. 11, no. 4, pp.24-30, Winter 1994

[11] H. Mehta, R. Owens, M. Irwin, R. Chen, and D. Ghosh,
“Techniques for Low Energy Software”,Proceedings of
ISLPED, pp.72-75, 1997

[12] G. Esakkimuthu, N. Vijaykrishnan, M. Kandemir, M. Irwin,
“Memory system energy: influence of hardware-software
optimizations,” International Symposium on Low Power
Electronics and Design, pp. 244-246, 2000.

[13] Y. Li and J. Henkel, “A Framework for Estimating and
Minimizing Energy Dissipation of Embedded HW/SW Sys-
tems”,Design Automation Conference, pp.188-193, 1997

[14] F. Catthoor, S. Wuytack, E. De Greef, L. Nachtergaele, and
H. De Man, “System-Level Transformation for Low Power
Data Transfer and Storage”, A. Chandrakasan, R. Brodersen
eds. Low-Power CMOS Design, IEEE Press, 1998

[15] K. Cooper, M. Hall, and K. Kennedy, “A Methodology
for Procedure Cloning”, Computer Languages, Volume 19,
Number 2, pp 105-117, April, 1993

[16] C. Consel and O. Denvy, “Tutorial Notes on Partial Eval-
uation”, ACM Symposium on Principles of Programming
Languages, pp.493-501, 1993

[17] L. O. Andersen, Program Analysis and Specialization for
the C Programming Language, PhD thesis. DIKU, Univer-
sity of Copenhagen. May, 1994.

[18] J. Pierce, M. D. Smith, and T. Mudge. Instrumentation
tools. in Fast Simulation of Computer Architectures (T. M.
Conte and C. E. Gimarc, eds.), Kluwer Academic Publish-
ers: Boston, MA, 1995, pp. 47-86.

[19] A. Srivastava and A. Eustace, “ATOM: A System for Build-
ing Customized Programming Analysis Tools”,Proceed-
ings of the SIGPLAN 1994 Conference on PLDI, pp.196-
205, Jun. 1994

[20] T. Simunic, L. Benini, and G. De Micheli, “Energy-Efficient
Design of Battery-Powered Embedded Systems”,Proceed-
ings of ISLPED, pp.212-217, 1999

[21] B. Calder, P. Feller, and A. Eustace, “Value Profiling and
Optimization”, Journal of Instruction-Level Parallelism,
vol. 1, Mar. 1999

[22] Stanford Compiler Group, The SUIF Library: A set of core
routines for manipulating SUIF data structures, Stanford
University, 1994

[23] Advanced RISC Machines Ltd (ARM), ARM Software De-
velopment Toolkit Version 2.11, 1996

