Regular Expressions and Context-Free
Grammars for Picture Languages

Oliver Matz

Institut fir Informatik und Praktische Mathematik
Christian-Albrechts-Univertitat, Olshausenstrafie 40, D-24098 Kiel
oma@informatik.uni-kiel.de

Abstract. We introduce a new concept of regular expression and
context-free grammar for picture languages (sets of matrices over a
finite alphabet) and compare and connect these two formalisms.
Keywords: formal languages, pictures languages, grammars, regular ex-
pressions.

1 Introduction

Many attempts have been made to generalize the definitions and results of the
theory of formal word languages to other, more complex objects than words, e.g.
traces, graphs, and trees. One possible generalization are pictures (matrices over
a finite alphabet, e.g. two-dimensional words). Sets of pictures will be called pic-
ture languages or simply languages. Picture languages have been investigated by
many authors; a comprehensive survey is [GR96]; another collection of references
can be found for example in [Sir87].

It 1s a not finished subject to transfer results of the theory of word lan-
guages to picture languages. Here we present a new approach based on regular
expressions and context-free grammars.

In [GRSTY6] the concept of tiling systems as a device for recognizing picture
languages is investigated. Tiling systems are a possible generalization of the
concept of finite automata for word languages. In [GRST96] it is shown that
their expressive power is equal to that of formulas of existential monadic second
order theory over pictures, so the close relation of automata and logic carries over
from the theory of word languages to picture languages and gives a somewhat
“robust” class of picture languages — the recognizable picture languages.

Regular expressions are a device for the definition of word languages that
is more difficult to transfer to picture languages. A straightforward adaption
of regular expressions to pictures — we will call them “simple” — is studied
in [GR92,GRST96,GRI6]. Simple expressions use two partial concatenations
named row- and column concatenation (denoted by © and @), which put their
arguments vertically above each other (horizontally next to each other, resp.),
provided they have the same width (height, resp.). Additionally, both of these
concatenations may be iterated. But the expressive power of such expressions
is much weaker than that of tiling systems, so the Kleene theorem cannot be
carried over to the theory of picture languages.

In this paper we suggest a more powerful type of regular expressions for
picture languages, the so-called regular expressions with operators. Inside these
expressions we allow the Kleene star to range over more complex combinations
of juxtapositions, unions, and even intersections of concatenations.

As an informal example, let us assume we
have two expressions r and s that generate all
columns, i.e. pictures of width 1, and all rows,
i.e. pictures of height 1, resp. We consider the
column-concatenation with r (let us denote it
by (©r)) as an individual object. Tt will enlarge
a picture that it is applied to by one column.

The row-concatenation with s (denoted (©s)) ‘
will enlarge its argument by one row. Now, if we

allow a Kleene star to iterate the juxtaposition of these two so-called operators,
we get another operator, ((Or)(6s))*, which enlarges its argument alternatingly
by one row and one column a finite number of times. If this operator is applied to
the expression generating all 1x1-squares, we obtain a regular expression with
operators that generates all squares, as illustrated by the figure.

We will distinguish different classes of expressions with operators, depending
on how operators may be constructed. Given appropriate constraints, these ex-
pressions do not exceed the expressive power of tiling systems; but they are more
powerful than simple regular expressions (the set of squares is not definable by a
simple regular expression, see [GR92,GRST96,GR96]). For one particular class
of expressions with operators it remains open whether it exhausts the class of
recognizable languages.

We will also try to transfer the concept of context-free grammar from word
languages to picture languages. Our approach for this differs very much from
the one in [Sir87]. In our grammars, sentential forms are terms built by the two
binary concatenation symbols ©, @ as well as terminals and non-terminals, which
are used as constant symbols. A rule has a non-terminal on the left hand side
and a sentential form on the right hand side. The derivation proceeds as follows:
One starts with the start symbol and replaces repeatedly a non-terminal A by
the right hand side of an A-rule until a sentential form is reached that consists
entirely of terminal symbols. If this can be evaluated to a picture, this picture
is generated.

We characterize the expressive power of certain regular expressions with op-
erators by context-free grammars with a certain constraint concerning the way
recursion is allowed. This result corresponds in a way to the classical equivalence
of regular word expressions to right-linear word grammars. This is why we think
that our definition of “regular picture languages” by expressions with opera-
tors gives another natural and robust class of picture languages that is worth
studying.

More detailed proofs can be found in [Mat95].

2 Basic Notions

Throughout the paper we consider a fixed finite alphabet X. A picture over ¥
of size (m,n) (where m,n > 1) is a mxn-matrix over X. For a picture P of size
(m,n), we define P = m and |P| = n. We denote the set of all pictures over X
by Z‘:_.

Next we will define a row- and a column-concatenation for pictures. Let P, @)
be pictures of size (k,!), (m,n) respectively.

If & = m, then the column concatenation P @) of the two pictures is the
kx (n+l)-picture obtained by appending @ to the right of P.

Analogously, in case { = n their row concatenation P & @ is defined as the
(k+m)xl-picture of obtained by appending @ to the bottom of P.

These partial concatenations can be extended to languages as usual, i.e. for
LM C Xt wedefine LOM = {PD®Q|P € L,Q€ M}. These concatenations
can be iterated: For a language L C X%, we set L®! := L and LoG+) .= [0,
Now the column closure of L is defined as LOF := ., L% The row closure is
defined analogously. -

If no ambiguity arises, we denote the column concatenation L @ M of two

languages L, M by (L M), and similarly use <ALJ> instead of I, & M. The

iterated column concatenation may be written as L’ and Lt instead of L®" and
LO* resp., whereas I; and Ly denote L° and L®*, resp. The latter notion will
only be used 1n case no conflict with indices occurs.

3 Regular Expressions with Operators

The set N-REG(X) of simple regular expressions over X with typical element r
is defined by the following BNF-style rules:

ru=al(riUre) | (r1©ra) | (r1 ©re) | (r1Nre) | rOF | rOF

Here a stands for an arbitrary letter from ¥. The language generated by such
an expression is defined in a straightforward way: For all a € X let £ (a) = {a}
(the singleton of the 1x1-picture @), and for two expressions r and s we define
L(res) = L(r) © L(s) an so on. The subset of N-REG(X) of monotonic
expressions (i.e. expressions without intersection symbol) will be denoted by
REG(X). The classes of languages definable by such expressions will be denoted
by the corresponding calligraphic notations N-REG(X) and REG(X).

In these and similar cases we will omit the explicit mentioning of X if possible.
We will omit brackets inside expressions following the usual conventions, i.e. ©F
and ©t bind stronger than concatenation symbols, which bind in turn stronger
than union and intersection symbols.

FErample 1. Consider the language L that consists of the set of all pictures such
that there is one row and one column (both not at the border) that hold b’s and

the remainder of the pictures is filled with a’s. L is generated by the expression

al a’y (% by at)
bt | oy [b7 | b+
al a’y (% by at)

The fact that the set of squares over a one-letter alphabet is not generated by
a simple expression is an immediate consequence of the following characterization

of the class N-REG(X).

Theorem 2. (see [Mat95].) A language L C {a}*} is in N-REG iff it is in REG
iff the set {(m,n)|a’? € L} is a finite union of Cartesian products of ultimately
periodic subsets of N> 1.

The above theorem is an analogue to the known fact that a set N of integers is
ultimately periodic iff the set {a” |n € N} is a regular word language. (Note that
this theorem remains true even when we allow also complementation symbols
inside regular expressions.)

Theorem 2 shows that the expressive power of REG is very limited. But
note that on the other hand any picture language that is recognizable by tiling
systems in the sense of [GRST96,GR92] is the projection of a picture language
that is generated by an expression from N-REG over a possibly larger alphabet.
But we think that the use of intersection and projections disturb in a way the
“assembling character” of regular expressions.

That is why we investigate another type of regular expressions whose main
idea is to allow the Kleene star to range over more complex juxtapositions of
concatenations. Before we give the syntax and semantics of these expressions,
let us consider again the example of the introduction. The crucial point was
to consider terms such as (Qay), the concatenation with a column of a’s to
the right, as individual objects, which may be either applied to expressions or
composed with each other by juxtaposition, iteration, and union.

With this intuitive idea of the class of regular expressions with operators, we
will give a more formal definition. For the sake of maximal generality we will
allow the intersection and union symbols as well, both in “expressions” and in
“operators”.

Definition 3. The set N"-REG UOP(Z) of regular expressions with typical ele-
ment » and the set N-UOP(X) of unrestricted regular operators with typical
element ¢ are defined by the following BNF-style rules:

ra=al(rier)|(r or) [m®t [m® | (rUr) | (rnr)|re
o= (or) [(Or) | (re) [(r®) | (e102) [0" [01 Ue2 | 01N o2

Again, a stands for an arbitrary element from X.

As before, we drop the “N-” prefix in the respective notation to denote the
classes of monotonic expressions and operators, i.e. ones that do not have inter-
section symbols 1n it.

Before we give the semantics of these type of expressions, let us consider
another example. The expression ab((a®)(®b))* describes the set of all words
(= pictures with one single row) that result from ab by appending repeatedly
one a to the left and one b to the right, i.e. the language {a’b’|i > 1}. Since
this word language is non-regular, we make the disappointing observation that
we leave the class of recognizable languages if we allow the iteration in such an
unrestricted way. Since our aim was to find suitable extensions of the concept
of regular expressions to pictures, we shall put a certain constraint on the way
operators may be juxtaposed in order to ensure that the resulting language is
recognizable by tiling systems.

The crucial point for this constraint is that we make sure that an operator
that “works to the right” (like (b)) is never juxtaposed, united, or intersected
with another operator that “works to the left” (like (a®)), and similarly top- and
bottom-operators are seperated. On the other hand, we allow the combination
of, say, bottom and right, so our example regular expression a((Day)(©a™))*
for the set of squares is still 0.k. We will call operators that meet this constraint
restricted. This is put formal by the following definition, in which the decoration
symbols 7, [, b and ¢ (for “right”, “left”, “bottom” and “top”, resp.) are used in
order to indicate in which direction an operator potentially enlarges a picture
that it is applied to.

Definition 4. The set O—REGROP(Z) (set of expression with restricted opera-
tors) with typical element r and the sets ROP,(X) for every o € {br, bl tl tr}
(set of restricted M-regular operators for direction ?) with typical element ¢° are
defined by the following BNF-style rules:

ra=al(rier) | (ror) [T [e [(riUr) [(r) | re

0u=0"d" " "

¢ = (o) | (@) | (& d) & | (e U el) | (e 1)
o n=(ro) [(or) | (6") [&% | (o7 U) | (6 N ey)
¢ v=(or) | (ro) | (e} e5) [& | (et Uey) | () N e5)

¢ u=(ro) | (ro) | (ei'ed) | &7 | (o Ueh) | (e N o)

Again, a stands for a letter from X. The elements in ROP,(X) are called
0-regular operators for every directiond € {br,bl,tl,tr}. We also define d-regular
operators for 0 € {r,{,t,b}: For any r € N-REGEOF | the operator (or) (or
(r@), or (&7), or (re), resp.) is an r-regular (or l-regular, or b-regular, or -
regular, resp.) elementary operator. For any @ € {r,[,t,b}, more complex 0-
regular operators are built by union, intersection, concatenation, or Kleene-star
the way as above.

Now the definition of the semantics of expressions and operators is straight-
forward:

Definition 5. Two functions [] : N-REGY?F — 2¥% and [1:n-UOP —
9(TExZ) are defined simultaneously by induction over the structure of N-

regular expressions and operators:

For r,s € REGUF and o, 0 € UOP let:

— [a] ={a} for all a € X,

[(rUs)] = [r] U [s], (similarly for N, ® or & instead of U,)

— [r®*] = [r]®*, (similarly for ©* instead of ©*))

[rel={Re %3P el (P,R) € L),

— [(or)]={(P.R) | Pe X AR€ PO [r]},

[(r®)] = {(P,R) | P € &% AR € [r]® P}, (similarly for © instead of ®,)
— [(eo)] = [c] o [¢], where o denotes the usual relational product,

— [(eU)] =[c]Ulel, (similarly for N instead of U,)

[] = Usenlel'.

Binary relations on Zﬁ_ will be referred to as operations. For an expression r we
denote the pictures language generated by r also with £ (r) instead of [r]. We
we will denote the class of languages (operations, resp.) generated by elements

from a class of expressions (operators, resp.) by the corresponding calligraphic
notation. Thus O—REGROP(Z]) denotes the class of languages definable by ex-
pressions with restricted operators and so on.

In the context of regular expressions with operators, the symbols ®+ and ©+
become superfluous because for every regular expression r one has £ (r®*) =
L (r(0r)*), and similarly for © instead of ©.

A picture language or an operation will be called (monotonic) N-regular if it
is the denotation of a (monotonic) N-regular expression or operation. We make
the following simple observation:

Remark 6. All of the above mentioned classes of languages are closed under
rotation and reflection. The classes defined by monotonic expressions are closed
under projection.

For the set of regular expressions with restricted operators one can show
that every picture language generated by such an expression is recognizable by
a finite tiling system, as stated in the following theorem.

Theorem 7. Every language in N-REGRCT (L) is recognizable by tiling systems
as defined in [GRI2].

We conjecture that the converse of Theorem 7 is not true, but we cannot
show this.

3.1 Two More Examples

We use an example of [GRST96] to show that N-REGRCT is not closed under
complement. In fact, the complement of a N-regular language need not even be
recognizable:

Erample 8. Let ¥ be a finite alphabet. Let ¢ = X((6X7)(0X4))*, and

a Z‘:
— o e N o q _ q
r_U Xy ,5_E+r2+,t_sﬁ<2+>,u_ t+ ﬁ<q).
azb \ b X

q generates the set of all squares; s generates all pictures whose top and bottom
row are different; ¢ all pictures which additionally have size (n + 1,n) for some
n. Finally, u generates all pictures of size (2n,n) for some n > 2, in which there
are two different rows with a square in between, i.e. all pictures of the form

5 where P and) are different squares larger than 1x1. This language is not
recognizable (see [GRST96]) and is thus (by Theorem 7) not in N-REGRCP.

Ezample 9. Let q as above. The expression Z((Dg)(6(¢ © q)))* generates the
set of all squares whose side length is a power of two.

To see this, note that (Og)(6(q ®¢)) is an operator that will enlarge a mxn-
picture P, where m + n is even, to an (m + %(m + n))x (n 4+ m)-picture with P
in its left upper corner. The expression X generates all 1x 1-squares, so for all i,
the expression X((®q)(S(q @ ¢)))? generates all 2! x 2\-pictures.

4 Context-Free Grammars

We will introduce a concept for context-free grammars that we consider a
straightforward adaption to pictures languages. For the classes REGRT | REG,
and REGUOP, we will find certain subclasses of context-free grammars of the
same expressive power (rank-{br,bl,tl, tr}-linear, rank-{r,{,t,b}-lincar gram-
mars, or rank-linear grammars resp. The first and second of these classes yield
— when restricted to words rather than pictures — a class of grammars that
characterizes the regular word languages.

Before we introduce our notion of context-free gram-

S — <é) a mar for picture languages, we give a toy example that
might be self explaining. Here, S is the start symbol, and

A— (SB) A, B, C are other non-terminal symbols, and a, b, ¢ are
the terminal symbols. B yields the set of all columns of

() ‘ b b’s, whereas C' yields the set of rows in ¢*a. The alternat-

0)| a ing recursion of S and A makes sure that this grammar

produces the set of squares over {a, b, c} that have a’s on
the diagonal, ¢’s above, and b’s below it. In order to obtain a grammar that
produces all squares over the singleton a, one may replace all b’s and ¢’s by the
letter a.

4.1 Sentential Forms, Grammars, Context-Free Languages

Trying to adapt the concept of (context-free) grammar from the theory of formal
word languages to that of picture languages involves the following crucial prob-
lem: How can subpictures of a given picture be replaced by pictures of possibly

different size? In order to avoid this problem, we do not use pictures as sentential
forms, but terms built up by terminal and non-terminal symbols and the binary
symbols 6 and ©.

Definition 10. Let V' be any alphabet. A sentential form over V is an element
from REG(V) in which only the connectives © and @ (but not U, ®* and ©t)
occur. SF(V) denotes the set of all sentential forms over V.

Note that the language generated by a sentential form a can have at most one
element, which we will denote by [«].
For example, possible sentential forms over {a,b,¢,d} are (¢ & b) @ (c © d)

and (a © (b @ ¢) & d). The first one generates the the picture %2 , whereas the

second does not generate a picture.

A context-free picture grammar will be defined very similarly to a word
grammar. Derivation works the same way as for word grammars: One senten-
tial form results from the preceding one by replacing a non-terminal with some
corresponding right hand side, giving again a sentential form. The end of such a
derivation is reached when there are only terminal symbols left. If this “terminal
sentential form” can be evaluated to a picture, this picture is generated by the
grammar.

Definition 11. A context-free picture grammar is a tuple G = (N, X, —,9),
where N is a finite set of non-terminal symbols, disjoint from the set X' of terminal
symbols; S € N (the start symbol); and - C N x SF(N U X)) is a set of rules.

For a context-free grammar G = (N, X, —, S), we define the relation ¢ on
SF(NUZX) by 8 kg «iff there is some rule (A, &) € — such that 5 results from
3 by replacing one occurrence of A by a. (We drop subscript G if possible.) We
denote the reflexive and transitive closure of by E.

Two grammars (G1, Gy with the same terminal symbol set X are called
strongly equivalent iff for every terminal sentential form o € SF(X) the equiva-
lence Sq l—*Gl a <= S l—*G2 a holds.

We denote by £(G) = {[a] | « € SF(X), S ¥ a} the picture language
generated by G.

4.2 Limits of Context-Free Grammars

The following is proven similarly as the corresponding fact in the case of word
languages:

Remark 12. Every context-free grammar is strongly equivalent to a context-free
grammar in Chomsky Normal Form (CNF), i.e. having only rules of the form
(A,Bo (), (A,B0D (), and (A, a), where A, B, C are non-terminals and a is a

terminal.
The Chomsky Normal Form can be used to prove the following.

Lemma 13. The language of Example 1 is not context-free.

Proof. Consider a context-free grammar G in CNF with I C £ (G). We show
L(G) Z L.

Provided that n is sufficiently large, among the n — 2 different nxn-pictures
P; over {a,b} that have b’s exactly in the i-th row and the i-th column (i €
{2,...,n — 1}) there are two different ones, say Py and P, such that both of
them can be derived from the same two-symbol sentential form o, say a« = COD.
(The case « = C' & D is analogous.)

Now we can choose decompositions P, = P @ R and P, = P’ ¢ R’ with
P R P R € E‘:_ such that P, P’ can be derived from C and R, R’ can be
derived from D. Tt is easy to see that PO R’ € L (G) \ L.

The above lemmashows that N-REG € CF for two-letter alphabets. Together
with Theorem 15 this shows that N-REG and REGROP are incomparable.

4.3 Rank-Linear Grammars and Regular Expressions

Our aim is to find constraints for context-free grammars such that grammars
with these constraints capture exactly the expressive power of monotonic ex-
pressions with unrestricted (or with restricted) operators.

These constraints are formalized in the definition of rank-linear grammars,
which have some restriction on the way recursion is allowed. The main idea is
to have some kind of ranking on the set of non-terminals and to require that the
rank of the left hand side is larger than the rank of the non-terminals on the
right hand side of a rule, except for at most one of them, which may have the
same rank. If, additionally, this particular non-terminal is always “at the same
place” — top-left, top-right, bottom-left or bottom-right — inside the right hand
sides of all rules with “equally large” non-terminals on the left hand sides, then
the grammar will be even {br, bl tl,tr}-rank-linear. A corresponding definition
applies for the directions from {r,{,¢,b}.

Definition 14. Let G = (N, X, —,S) be a context-free grammar, < be a pre-
order (i.e. a reflexive, transitive relation) on N. The equivalence relation <N >
is denoted by =. Let < =<\ =.

A rule (A, «a) is linear wrt. < if there is at most one occurrence of some
non-terminal B in a@ with B = A and all other non-terminals in a are < A.

If, additionally, there are z € {l,r} and y € {t,b} such that in subterms
a; @ a, of a the factor a, does not contain this B and analogously for & and y,
then the rule (A, @) is yz-linear wrt. <. If all non-terminals in « are < A, then
the rule (A, @) is yz-linear for any z and y.

If a rule is tz- and bz-linear wrt. <, then it is z-linear wrt. <. If it is yr- and
yl-linear wrt. <, then it is y-linear wrt. <.

The grammar G is rank-linear wrt. < if all rules are linear wrt. <. The
grammar G is called {br, bl tl,tr}-rank-linear wrt. < if for every =-equivalence
class [A] there is a ® € {br,bl, ¢l ,tr} such that all the B-rules for B = A are
0-linear.

{r,l,t,b}-rank-linear grammars are defined analogously.

A grammar is rank-linear, {br,bl,tl tr}-rank-linear, or {r,l t, b}-rank-linear
iff there is a preorder < such that it has the respective property wrt. <. A lan-
guage is called rank-linear (or {br, bl tl tr}-rank-linear or {r, 1 t, b}-rank-linear,
resp.) if it is generated by some grammar with the respective property.

The notion on rank-linearity of context-free picture grammars compares to
the linear word grammars as follows: Rank-linear grammars in which no &-
connective occurs may be viewed as word grammars; a word grammar is linear
iff it is in this sense a rank-linear grammar wrt. the universal relation on the set
of nonterminals as the preorder.

The example grammar from the beginning of this section is in CNF and
{br,bl,tl, tr}-rank-linear wrt. a preorder with S = A and B,C < A,S. The S-
rules and A-rules are br-linear wrt. this preorder, and the B-rules (C-rules) are
t-linear (I-linear, resp.) wrt. this preorder.

Note the little incompatibility of notations that in our definition an r-linear
rule wrt. the universal relation corresponds to what is known as a left-linear rule
of a word grammar and vice versa.

Rank-linear word grammars can also generate non-linear word languages such
as {a’b’ |i > 1}T. (Consider the grammar with the rules S — SA | A, A — aAb |
ab and a preorder such that A < S.)

The following theorem states that rank-linear grammars, {br, bl, ¢, tr}-rank-
linear grammars, and {r,l,t,b}-rank-linear grammars capture exactly the ex-
pressive power of REG UOP, REGROP, and REG, resp.

Theorem 15. For all languages L C Z‘: we have

— L 1s rank-linear iff L € REGUOP‘
— L is {br,bl,tl, tr}-rank-linear iff L € REGROP.
— L s {r,l,t,b}-rank-linear iff L € REG.

The proof uses the concept of generalized operator grammars (GOGs) as an
intermediate stage. These are, roughly speaking, grammars in which the right
hand side of rules need not be sentential forms but may be arbitrary monotonic
expressions from REGYPF . In a derivation step of a GOG, one non-terminal A
is replaced by a sentential form a that is “below” a right hand side 3 of an A-rule
in the sense that «a results from 3 by replacing subexpressions in an outermost
strategy, namely: Each union o U g is replaced either with ¢ or with g, each
iteration ¢* is replaced with a finite number of compositions of ¢, and so on.

The different notions of rank-linearity can be defined similarly for GOGs.

For a given monotonic regular expression r, there is the equivalent GOG with
the only rule (S, 7). So the construction of a grammar amounts to reducing the
complexity of the right hand sides inductively by introducing new rules until a
grammar is reached, whose right hand sides contains only sentential forms.

Conversely, a given grammar with one of the rank-linearity properties is also
a GOG with this property. Now the construction of an expression means to
reduce the number of rules and to replace the recursion of non-terminals with

the iteration of operators. Formally, the latter is done by induction over the
maximal length of a strictly decreasing chain wrt. to the given preorder.

The term “generalized operator grammar” has been chosen because of the
similarity to the “generalized transition graphs” used to pass from automata to
regular word expressions.

5 Summary of (Non-)Inclusion Results

The following table shows the mentioned non-inclusion results that hold over
alphabets with at least two letters, and a witness for each.

N-REG L CF language of lemma 13
REGROT ¢ N-REG set of squares

REGHCT ¢ REC {a’bi | i> 1}
From the above facts, Theorem 7, and
trivial inclusions like REG C REGROP, R‘CC CF
one can infer the results presented in
the figure for non-trivial alphabets. Here, S

the dotted lines indicate incomparability
and the remaining lines show inclusions,
which are marked by # when known to be
proper. It is open whether the inclusion
REGROP C N-REGRCP is also proper
in case of a one-letter alphabet, but it
1s known that the inclusion REGROP C
REC is (see [Mat95]). Note that for a sin-
gleton alphabet both concatenations are +
commutative, from which one can de- 7
duce that any unrestricted operator can
be transformed into an equivalent br- REG
operator and therefore REGHCT ({a}) =

REGRT ({a}).

N-REG REGROP

6 Conclusion

We have shown that besides the concept of tiling systems; which is an extension
of recognizability to picture languages, there are interesting classes of regular ex-
pressions which allow to define a canonical analogon to regular word languages
in the context of pictures. However, it seems to be impossible to define regu-
lar picture language in such a way that all characterization results and closure
properties of the theory of words carry over to pictures.

Our characterization results may be viewed as a step towards a Kleene-
like theorem for picture languages: In the same sense that a right-linear word
grammar can be considered a non-deterministic finite automaton on words, a

{br,bl,tl, tr}-rank-linear grammar might be considered a kind of automaton on
pictures (or rather on sentential forms). However, the translation into automata
theoretic terms is not as immediate for {br,bl, tl,¢r}-rank-linear grammars as
for (right)-linear word grammars.

The following open problems are of particular interest:

— Do CF and REGROP coincide in case of a one-letter alphabet? If so, this
would be a nice correspondence to the situation of word languages.

— Do N-REGRCP and REC coincide? One candidate for a recognizable lan-
guage not in N-REGRCT is the language of all pictures over {a} for which
|P|is prime and P is the length of an accepting run of a fixed LBA accepting
the set of words of prime length.

— Ts the emptiness problem for REGT?F decidable? Note that it is undecidable
for N-REG™F even for a fixed alphabet of size 1; see [Mat95].

Besides these questions dealing with the picture language definition formalisms
of this paper, one could imagine to transfer other concepts from word languages
to pictures in such a way that some of the known results of the theory of word
languages remain true. For example: Is there a reasonable analogon to the monoid
recognizability of word languages?

Moreover, future research may deal with the more general case of n-dimen-
sional arrays for arbitrary integers n instead of n = 1 or n = 2, e.g. words or
pictures. It is easy and only a matter of notational inconvenience to redo all the
definitions and proofs of this paper for arbitrary dimensions.

Acknowledgments. I thank Wolfgang Thomas for the help and advice he gave
me during the preparation of both my diploma thesis and this paper.

References

[GR92] D. Giammarresi and A. Restivo. Recognizable picture languages. In Pro-
ceedings First International Collogium on Parallel Image Processing 1991,
number 6 in International Journal Pattern Recognition and Artificial Intel-
ligence, pages 241-256, 1992.

[GR96] D. Giammarresi and A. Restivo. Two-dimensional languages. In G. Rozen-
berg and A. Salomaa, editors, Handbook of Formal Language Theory, volume
IT1. Springer-Verlag, New York, 1996.

[GRST96] D. Giammarresi, A. Restivo, S. Seibert, and W. Thomas. Monadic second-
order logic and recognizability by tiling systems. Information and Compu-
tation, 125:32-45, 1996.

[Mat95] Oliver Matz. Klassifizierung von Bildsprachen mit rationalen Ausdricken,
Grammatiken und Logik-Formeln. Diploma thesis, Christian- Albrechts-Uni-
versitat Kiel, 1995. (German).

[Sir&7] R. Siromoney. Advances in array languages. In Ehrig et al., editors, Graph
Grammars and Their Applications to Computer Science, volume 291 of Lec-
ture Notes in Computer Science, pages 549-563. Springer-Verlag, 1987.

