
ASSOCIATIVE DEFINITION OF PROGRAMMING
LANGUAGES1

Stefano Crespi Reghizzi2, Matteo Pradella and Pierluigi San Pietro
Politecnico di Milano,

Dipartimento di Elettronica e Informazione,
P.za L. da Vinci 32, I-20133 Milano

e-mail: {crespi, pradella, sanpietr}@elet.polimi.it

ABSTRACT
Associative Language Descriptions are a recent grammar model, theoretically less pow-
erful than Context Free grammars, but adequate for describing the syntax of pro-
gramming languages. ALD do not use nonterminal symbols, but rely on permissible
contexts for specifying valid syntax trees. In order to assess ALD adequacy, we analyze
the descriptional complexity of structurally equivalent CF and ALD grammars, find-
ing comparable measures. The compression obtained using CF copy rules is matched
by context inheritance in ALD. The family of hierarchical parentheses languages, an
abstract paradigm of HTML, and of expressions with operator precedences is studied.
A complete ALD grammar of Pascal testifies of the practicality of the ALD approach.

Keywords: Context Free Grammars, Syntax, Associative Grammars, Grammar Size,
Context Inheritance, Descriptional Complexity, Local Testability

1. Introduction

In spite of their widespread use for defining computer languages, context-free (CF)
grammars have shortcomings that prompted the search of alternative models. The
recently proposed [2, 3] Associative Language Description (ALD) model combines
two historically prominent approaches of formal linguistics: the structural Chomskian
method and the associative (or distributional) method. From the former ALD takes
the tree structure of CF rules, from the latter the notion of local testability and
context association. An ALD consists of purely terminal patterns accompanied by
contextual constraints; it therefore qualifies as a “pure” grammar in the sense of [4],
since it does not use nonterminals.

The ALD language family though smaller than the CF family, is here shown to
be empirically adequate for defining useful computer languages. There are two main
features of CF languages which exceed the capacity of ALD. The first one is counting:
ALD languages are Non-Counting (NC) in the sense of [5], that is they may not

1Work supported by MURST-Cofinanziamento 9801204372/2 1999 and by CNR-CESTIA.
A preliminary version of this paper was presented at DCAGRS’99 [1].

2Also with Università della Svizzera Italiana, Ist. di Tecnologie della Comunicazione.

2

use numerical congruences for discriminating valid from invalid strings. The ability
of CF grammars (and of course finite state automata) to perform modulo counting
is clearly extraneous to the syntax of computer and natural languages. The second
missing feature has to do with the phenomenon of synonymity, and is more difficult
to describe. Two constructs which occur in two contexts which are identical up to
an unbounded length cannot be discriminated using ALD. One could imagine that
this lack of discriminatory capacity could jeopardize the new model: this paper shows
to the contrary that useful computer languages can be defined by ALD. This work
supplements in a practical sense the theoretical proof [3] that the Hardest CF language
of Greibach [6] is an ALD language.

Incidentally, the ALD investigation was initially motivated by the search for a
language model that would be consistent with modern brain theory [7], but the present
work does not go in that direction, and considers computer languages.

A new proposal should be defended by showing its advantages over consolidated
models. Here we provide some evidence of ALD suitability for practical language
definition, first by using ALD for describing a real programming language - Pascal
[8], then by comparing the descriptional complexity of CF and ALD grammars.

Section 2 provides the basic definitions. Section 3 exhibits a large piece of empirical
evidence, the ALD grammar of Pascal. In Section 4 simple bounds on the descriptional
complexity of the two models are derived. Section 5 considers multi-level structures
that occur in technical languages (mark-up languages or expressions with operator
precedence), and compares their complexity using ALD and CF rules. It also observes
the duality between the combinatorial growth of ALD permissible contexts and the
growth of CF productions in copy-free grammars, and that context inheritance may
reduce the complexity by the same amount as the introduction of the CF copy rules.
In the conclusion, other relevant aspects of ALD theory are mentioned.

2. Basic definitions

We use a special character ⊥, not present in the terminal alphabet Σ, called the
left/right terminator, which encloses the sentences of the language. Next, we define
the tree structures that are relevant for ALD. Let ∆, the place holder, be a new
character.

A tree whose internal nodes are labeled by ∆ and whose leaves have labels in Σ is
called a (stencil) tree. It is composed by juxtaposed subtrees having height one and
leaves with labels in Σ∪{∆, ε}, called constituents (ε stands for the null string). The
frontier of a tree T (of a constituent Ki) is denoted by τ(T) (resp. τ(Ki)).

The next rather technical definition formalizes the notions of left and right contexts
of a constituent.

Definition 1 (left/right contexts) For an internal node i of a tree T, let Ki and Ti

be resp. the constituent and the maximal subtree of T having root i. Introduce a new
symbol ω /∈ Σ ∪ {⊥,∆}, and consider the tree TKi obtained by replacing in T the
subtree Ti with ω. Consider the frontier of TKi , τ(TKi) = sωt with s, t ∈ Σ∗. The

3

: integer

a := var ;

7

a

program p1 ; begin end .

K

K K

K K

1

5

K

2 3

4

6

Figure 1: A stencil tree with six constituents schematized by triangles

strings ⊥s and t⊥ are called, resp., the left and right contexts of Ki in T and of Ti

in T: left(Ki, T) = left(Ti, T) = ⊥s and right(Ki, T) = right(Ti, T) = t⊥.

For instance, in Fig. 1 the left context of K3 is:
⊥ program p1; var a : integer; begin
and the right context of K5 is:
end. ⊥
Next comes the main definition.

Definition 2 (ALD, rules, patterns, permissible contexts) An Associative Language
Description (ALD) A consists of a finite collection of triples x[z]y or rules, where
x ∈ (⊥Σ∗) ∪ Σ+, y ∈ (Σ∗⊥) ∪ Σ+, and z ∈ (Σ ∪ {∆})∗ − {∆}; the string z is called
the pattern and the strings x and y are called the permissible left/right contexts.

Sometimes we use the notation (x, y) for denoting the pair of left and right contexts
of a rule x[p]y.

An ALD provides a set of test conditions for checking the validity of a tree, namely
that the contexts of each constituent are consistent with the permissible contexts of
some rule. Therefore, an ALD is a device for defining a set of trees and a string
language, corresponding to the frontiers of the trees.

Definition 3 (constituent matched by a rule, valid trees, tree and string language,
equivalence and structural equivalence) A rule u[z]v matches a constituent Ki in T
if z = τ(Ki), u is a suffix of the left context of Ki in T and v is a prefix of the right
context of Ki in T. A tree T is valid for an ALD A if each constituent of T is matched
by a rule of A.

4

The (stencil) tree language TL(A) defined by an ALD A is the set of all trees valid
for A. The (string) language defined by the ALD A, denoted by L(A), is the set of
the strings x ∈ Σ∗ such that x = τ(T) for some tree T ∈ TL(A). Two ALDs are
structurally equivalent if they define the same tree language; they are equivalent if
they define the same (string) language.

A general remark on the structure of ALD definitions is that the patterns represent
the shortest valid strings that may occur for the various constructs of the language.
The patterns in general include one or more place-holders, that permit to increase
the construct by insertions of other patterns. Insertions are controlled by context
permissibility.

For conciseness, we adopt the following notations to factorize common patterns
and contexts. Two (or more) rules with the same pattern x1[z]y1 and x2[z]y2 can be
merged into the complex rule: x1|x2[z]y1|y2, which can be merged with a rule having
the same contexts x1|x2[w]y1|y2 into the complex rule x1|x2[z|w]y1|y2.

Moreover, if a permissible context is irrelevant, it can be omitted and replaced by
ε (meaning “don’t care”). Finally, in a pattern p, the notation 〈w〉 stands for w ∪ ε
(i.e. w is an optional part of the pattern p).

Examples The language {ancbn | n ≥ 1} is defined by the ALD rules: ⊥[a∆b]⊥;
a[a∆b]b; a[c]b.

Both contexts can be dropped from the first two rules, and either the right or the
left context can be omitted from the last rule, obtaining the equivalent description:
[a∆b]; a[c].

Some rules may be useless: e.g. adding the rule [aa]a to the previous ALD, does
not change the defined language. That is because its right context does not match
any constituent.

Obviously, all 1-nonterminal context-free languages are ALD. For instance, the
Dyck language over the alphabet Σ = {a, a′} is defined by the ALD rules: [a∆a′∆];
[a∆a′]; [aa′∆]; [aa′]; [ε] where all contexts are “don’t care”, or more concisely by:
[a〈∆〉a′〈∆〉]; [ε].

Ambiguity can occur in ALDs much as in CF grammars. For example, the following
rules ambiguously define the Dyck language: [∆∆]; [a∆a′]; [ε].

For a rule x[z]y we introduce some integer attributes:

• the left (resp. right) degree of a rule is |x| (resp. |y|);
• the degree of a rule is max{|x|, |y|};
• the degree of an ALD is the maximum of the degrees of its rules.

A tree language T is of degree k, if there exists an ALD A of degree k such that
T = TL(A); similarly for a string language. The degree induces an infinite hierarchy
of ALD language families [3].

It is sometimes convenient to assume that contexts have the same length and that
all rules are useful, two properties next defined.

5

Definition 4 (homogeneous, reduced ALDs) An ALD A of degree k is homogeneous
if for every rule x[p]y ∈ A,

• x ∈ {Σk ∪ ⊥Σj | 0 ≤ j < k} and

• y ∈ {Σk ∪ Σj⊥ | 0 ≤ j < k}.

An ALD is reduced if each rule is used, i.e., it matches some constituent in some
valid tree.

We mention from [3] some relevant properties of ALD and relations between ALD
and CF models.

Statement 1 For any ALD there exists a structurally equivalent CF grammar (i.e.,
which generates the same set of stencil trees and hence also the same string language).

Let k be the degree of the ALD (which can be assumed homogeneous). The proof
is based on the idea of assigning to every ALD subtree T a syntax category (i.e. a
nonterminal) characterized by four parameters: (le, fi, la, ri), where le and ri are
resp. the left and the right context of length k of the subtree; fi and la are the first
and the last k terminal characters of τ(T) (see Definition 1).

Other relevant facts are:

• The ALD family of languages is strictly included in the CF family.
For instance the language {anbn | n ≥ 1} ∪ {anb2n | n ≥ 1} is not ALD. This
fact is proved using a swapping lemma, which states that subtrees which may
occur in the same unbounded contexts may be interchanged.

• Yet the ALD family contains the hardest CF language of Greibach [6].

• ALD tree languages are Non-Counting in the sense of [5].

• The Locally Testable regular languages (in the strict sense of [9]) are included
in the ALD family. (It is an open problem whether all regular languages are
ALD.)

3. Applying Associative Language Descriptions: the case study Pascal

In order to assess in practice the descriptive capacity of the ALD model, and to
compare its convenience with the established CF model, we have worked on two real
languages, HTML and Pascal. We report on the latter, since the former has simpler
structures that will be briefly considered in Section 5.

It was somewhat surprising to discover that Pascal is an ALD language, meaning
by that that the same approximation provided by a BNF grammar can be obtained
using an ALD (of course, semantic constraints exceed the descriptive capacity of both
models).

Following the classical separation of lexicon and syntax, we assume that the source
text has been already tokenized by a lexical analyzer or scanner. This allows us to
focus on the syntactic aspects of the language. The tokens of Pascal are identifiers,

6

keywords, numerical constants, comments, etc. It could be of some interest to observe
that the lexicon, which is usually defined using regular expressions or finite automata,
can be defined by an ALD, even if it is unknown whether all regular languages are
ALD. For brevity sake we do not dwell on the lexical definitions and jump straight to
the syntax.

Shorthands: rule blocks and context inheritance

The ALD of Pascal and of other complex languages, though straightforward to derive,
would be rather cumbersome to write if only “simple” ALD rules were to be used.
In order to shorten the ALD and to highlight constructs which are equivalent with
respect to context, we use two convenient devices: Cartesian products and context
inheritance.

Cartesian products are an effective method for simplifying complex ALD rule defi-
nitions. For instance, a typical Pascal instruction can occur, among the others, inside
the contexts: (begin, end), (then, else), (repeat, until), (; , ;) and many combinations
of them, like (repeat, ;). A defining ALD should consider every possible combination
in its definition, resulting often in contexts that are long, complex and hard to read.

The Cartesian product notation permits more readable ALD definitions, and is
based on the simple idea of implicitly considering every combination of the left and
right contexts. This sometimes leads to inclusion of unwanted combinations (e.g.
(repeat, else)), but in many practical cases this is not a problem, since they are
useless and therefore cannot be exploited. In Section 4 we introduce an effective
theoretical condition to use Cartesian products.

Definition 5 (rule block) A rule block is a triple denoted by L P R where P
is a set of patterns, L is a set of left contexts and R is a set of right contexts. The
rule block denotes the set of ALD rules: {x[p]y | (x, p, y) ∈ L× P ×R}. A void L or
R stands for {ε}, or “don’t care”. A set of rule blocks denotes the union of the ALDs
denoted by each rule block.

We will use some more shorthand notations, necessary to improve readability.
The | separator is used in context set even to denote union. For instance, let A be

a set and a, b be strings: the context A|a|b denotes the set A ∪ {a, b}.
An example of a rule block is the following:
of 〈∆〉 cst : ∆ end | cst

It denotes the two ALD rules: of [〈∆〉 cst : ∆]end and of [〈∆〉 cst : ∆]cst.
Context inheritance has the same purpose and effect as renaming productions in

CF grammars. Productions such as expression → term in the grammar
expression → factor ∗ term + expression
expression → factor ∗ term
term → factor ∗ term
term → factor
etc.

7

reduce the size of the grammar by stating that wherever an expression occurs a term
may occur as well (subcategorization).

In the ALD of Pascal (see the appendix) context inheritance conveniently factorizes
repeated context sets of arithmetic or Boolean expressions.

Definition 6 (ALD with inheritance) Extend rule blocks by allowing a new symbol
⇑ in the contexts, i.e., a rule block L P R is such that L ∈ ℘(⇑∪ (⊥Σ∗)∪Σ∗),
and R ∈ ℘(⇑ ∪ (Σ∗⊥) ∪Σ∗). An ALD with inheritance S is a sequence of h ≥ 1 rule
blocks, such that the ⇑ does not occur in the contexts of the first rule block. For the
i-th rule block Li Pi Ri of S, 1 ≤ i ≤ h, let L′i = (Li ∪ L′i−1 − {⇑}) if ⇑∈ Li,
L′i = Li otherwise; let R′i = (Ri ∪ R′i−1 − {⇑}) if ⇑∈ Ri, R′i = Ri otherwise. Then,

the ALD denoted by S is the set of rule blocks
{

L′i Pi R′i | 1 ≤ i ≤ h
}

.

The ALD definition of Pascal strongly uses inheritance. For instance the definition
of expressions is the following:

:= | if | . . . ∆ CompOp ∆ ; | end | else | . . .

⇑ | CompOp | {+ | -} ∆ | ⇑ |
AddOp 〈{+ | -}〉 ∆ AddOp ∆ CompOp

⇑ | MultOp ∆ MultOp ∆ ⇑ | AddOp

⇑ 〈 not 〉 cst | ⇑ |
〈 not 〉 id (∆) | MultOp

(∆) | . . .

This is taken from the appendix, rules from 20 to 23, and omits for simplicity many
of the contexts of the first rule, necessary for using expressions within instructions.

Length of the contexts for Pascal

Concerning the length of the contexts which are needed for Pascal, we found that for
most rules, the degree one3 suffices, with a majority of rules having don’t cares in at
least one context. Quite frequently the left context is longer than the right one; a fact
which agrees with our intuition that since strings are parsed from left to right, past
tokens are more important than look-ahead tokens for determining grammaticality.

For example, the following two rule blocks define procedures and functions (Ap-
pendix, rules 13 and 14):

procedure id 〈(∆)〉 ; ∆ begin ∆ end 〈; procedure id ∆〉 |
〈(∆)〉 ; ∆ begin ∆ end ; function id ∆

function id 〈(∆)〉 : id ; ∆ begin ∆ end 〈; function id ∆〉 |
〈(∆)〉 : id ; ∆ begin ∆ end ; procedure id ∆

3Of course here we count tokens not single characters of the keyboard.

8

The maximum degree 3 is required in one localized construct, the specification
of parameters of functions or procedures. The permissible left contexts are the two
strings function id (and procedure id (– the right context is “don’t care”. The
rather long left context is needed to distinguish the construct (formal parameters
declaration – Appendix, rule 15):

function id (| 〈∆ ;〉 〈var〉 ∆ : ∆ id |
procedure id (〈∆ ;〉 〈var〉 ∆ : ∆ record ∆ end

from the construct (actual parameters list – Appendix, rule 19):
¬{function | procedure} id (| , | id [∆ , ∆) |]

The last context description expression is based on negative examples. In fact
¬{function | procedure} id (means any string a id (, where a ∈ Σ is a token
different from function or procedure. Sometimes it is more economical to specify
the forbidden left/right contexts, instead of the permissible ones. This is analogous
to the description of exceptions, instead of regularities.

Don’t cares occur frequently, e.g., 3 being the degree of this ALD, the context
(with, ε), used in the rule block (Appendix, rule 18):

〈∆ ,〉 id 〈.id 〈∆〉〉 |
with 〈∆ ,〉 idˆ〈∆〉 |

〈∆ ,〉 id [∆] 〈∆〉
stands for the set of contexts {(u.with, v) | u ∈ Σ2 ∪ ⊥Σ, v ∈ Σ3 ∪ Σ2⊥}.
By comparing the ALD with the CF grammar of Pascal, that is reproduced in

many textbooks, the reader will find the sizes to be about the same.
A disclaimer: although the presented ALD version already improves on our first

attempts, it is not claimed to be the best possible, especially because of the great
difference in maturity and experiences between ALD and CF modeling.

Designing a complex ALD

In this section we collect some notes deriving from the experience of designing a
complex ALD, such as the one for Pascal.

First, we proceeded in a top-down fashion, constructing the syntactic trees of Pascal
programs, from simple to more complex ones, disregarding of course the names of
nonterminal symbols, which do not exist for an ALD.

Usually, it is natural to start with short, often asymmetric contexts. In the case of
Pascal, we started with a left context of length one, and zero length right contexts.
After inserting a rule block, it is trivial to compute context intersections with the
already defined ones. (An automatic tool for checking this could be designed).

Consider an example. Every Pascal program has the following structure (as stated
in the previous section, the left ⊥ context denotes the top rule) – Appendix, rule 1:

⊥ program id 〈(id ∆)〉 ; ∆ begin ∆ end .
The first place holder is used for the program parameters, if any. The second delta

stands for every kind of definition (variables, functions, etc.). The third delta denotes
the main body of the program. Next we write the rules for the place holders above.

9

A straightforward candidate definition for the parameters list of the first delta is:
id 〈∆〉 , id

While a quite natural description of the main program definitions is:
; 〈const ∆ ;〉〈type ∆ ;〉〈var ∆ ;〉〈procedure id ∆ ;〉〈 function id ∆ ;〉

So far all the used contexts are different, therefore no overlapping of contexts may
cause over generalization. That is, we cannot use one rule instead of another, while
building a stencil tree.

Let us continue with the rule defining a procedure. Now a problem arises, if we try
to define procedures by a left context of length 1 and a don’t care for right context:

id 〈(∆)〉 ; ∆ begin ∆ end 〈; procedure id ∆〉
The left context is id, which is the same of the program parameters list definition.

The two constructs are thus interchangeable, causing an error because it should not
be possible to put a procedure definition in a parameters list.

A simple solution is to enlarge the left or the right contexts by one. We choose
to increase the left context, because enlarging the right context would not do: a
permissible right context of the procedure definition is the semicolon, a widely used
separator which is likely to cause confusion with other constructs.

Extending the two conflicting contexts we obtain the rules (Appendix, rules 2 and
13):

(id 〈∆〉 , id

procedure id 〈(∆)〉 ; ∆ begin ∆ end 〈; procedure id ∆〉
A similar problem arises in the definition of a list of assignment instructions:
begin | ; id := ∆ 〈; ∆〉

The left semicolon conflicts with the main program definitions. To discriminate we
use the right contexts (Appendix, rules 3 and 16):

; 〈const ∆ ;〉〈type ∆ ;〉〈var ∆ ;〉〈procedure id ∆ ;〉〈 function id ∆ ;〉 begin

begin | ; id := ∆ 〈; ∆〉 end | ;
Overlapping contexts are not necessarily wrong, a case to be illustrated by the

example of relational expressions.
A simplified definition of a relational expression is (from Appendix, rule 20):
if | := | . . . ∆ CompOp ∆ end | ; | else | . . .

where CompOp = {=, >, <, >=, <=, <>} is a relational operator.
On the other hand an arithmetic expression is defined by (Appendix, rule 21):
AddOp | if | := | . . . ∆ AddOp ∆ CompOp | end | ; | else | . . .

where AddOp = {+,−, or}.
Both the left and the right contexts of relational and aritmetic expressions overlap,

but this is correct. For instance, in an assignment both a comparison and a sum can
occur (e.g. in x := ∆, where ∆ can be y > 4, or y + 4); similarly in an if statement
both a relational expression and a Boolean one can occur, as in if y > 4, or if a or b.

This situation is ideal for context inheritance: The contexts of the arithmetic
expression are a superset of the contexts of the relational expression, because a sum
precedes a comparison in the operator hierarchy (e.g. in y + 3 > z + 4). In choosing

10

the context of a new rule block, the designer can take advantage of inheritance. As
he/she writes down the tree of a typical Pascal program, inheritance can be used to
specify the possibility of interchange between subtrees. It is quite convenient to re-use
some complex contexts already described, by referencing them with ⇑.

Summarizing, here is a short description of the conceptual design steps:

1. Choose the current length for the contexts (typically one for the left context
and zero for the right context).

2. For a certain language construct, write a rule block definition, taking the con-
texts of the current length. The contexts are computed using the previous rule
blocks, according to the desired position of the place holder. Use inheritance, if
the contexts of the previous rule block can be reused.

3. When a new rule (block) is introduced, check that context intersections w.r.t.
every existing rule are empty.

4. If all intersections are void, then the current rule block is consistent with the
ALD.

5. If the intersection with some rule block is not void, two cases arise:

(a) The two constructs may legally occur in the same program context: the
current rule block and the other one are interchangeable;

(b) The two construct may never occur in the same program context. This
is a symptom that the current context length is insufficient, and must be
increased. This can be done by replacing a “don’t care” with an actual
context, or by effectively increasing the context length by one (left or right).

The design steps are iterated until all language structures have been successfully
considered.

If the context length increases unboundedly, it is likely that the tree language to be
designed is not an ALD language (but the same language could be ALD for a different
tree structure).

It is important to understand why the previous algorithm must be applied itera-
tively. The creation of a new rule block can offer in its pattern applicability for some
previous rule. Therefore, the contexts sets of the previous rule have to be recomputed,
considering this new rule.

It should be noted that long contexts can be simplified, if they are redundant.
For instance, we built a rule block with left and right contexts of length 2. Then
we observed, by computing the context set intersection, that the right context is not
necessary (as in many rules reported in the Appendix); therefore, we discarded it.
This simplification could be introduced after step 4, or after step 5.

4. The complexity of ALD and CF descriptions

For a meaningful comparison of the ALD and CF models, we focus our attention on
structurally equivalent grammars, because both in linguistics and in compiler tech-
nology the structure to be assigned to a sentence is usually imposed by semantics.

11

Firstly, we state some definitions and properties, that are quite useful in the com-
parison with CF grammars. To formalize the structural properties of CF grammars
we take the classical approach of Mc Naughton [10] based on parenthesis grammars.

Let G = (V, Σ, P, S) be a CF grammar, where V are the nonterminals, P the pro-
ductions and S the axiom. We assume the parentheses ’(’ and ’)’ and the terminator
⊥ not to be in Σ. To be consistent with the notation introduced for ALD, we also
assume that G derives words of the form ⊥ z ⊥, where z ∈ Σ∗.

Definition 7 (parenthesis grammars and languages) The CF parenthesis grammar
associated with G is G′ = (V, Σ ∪ {(,)}, P ′, S), where P ′ = {B → (α) | B → α ∈
P ∧ α /∈ V } ∪ {B → C | B → C ∈ P ∧ C ∈ V } (from [10]). Likewise, the parenthesis
ALD grammar A′ associated with an ALD A is the set: {x[z]y | z = (p)∧x[p]y ∈ A}.

The parenthesis language of the CF grammar G or of the ALD grammar A is the
language defined by G′ or A′, respectively.

Two language definitions are structurally equivalent iff they generate the same
parenthesis language. The rules B → C, C ∈ V are called copy rules. A CF grammar
is copy-free if no production in P is a copy rule.

It is well-known that any CF grammar admits a structurally equivalent copy-free
grammar. Structural equivalence, as defined here, disregards copy rules, because they
are a mere expedient for reducing grammar size.

Statement 2 For every ALD there exists a structurally equivalent, homogeneous re-
duced (Def. 4) ALD.

Proof. Let k be the degree of a given ALD A. A homogeneous, structurally equivalent
ALD is A′′ = {ux[z]yv | x[z]y ∈ A∧ux ∈ Σk ∪{⊥ Σj | 0 ≤ j < k}∧ yv ∈ Σk ∪{Σj ⊥|
0 ≤ j < k}}, which may contain unusable rules which can be eliminated without
changing the language, giving a reduced ALD. 2

Next we show that for a given tree language the ALD is unique, provided that the
degree is fixed and the rules are homogeneous. This uniqueness property does not
hold for CF grammars: two CF grammars generating the same tree language, i.e.
structurally equivalent, may be different.

Statement 3 If A′ and A′′ are two structurally equivalent reduced homogeneous
ALDs of the same degree, then A′ = A′′.

Proof. Suppose by contradiction that in A′ − A′′ there is a rule u[p]v, which (being
A′ reduced) is used in a tree T ∈ LT (A′). Since LT (A′) = LT (A′′), T ∈ LT (A′′),
which is absurd since u[p]v /∈ A′′ and A′ and A′′ are homogeneous of the same degree.

2

Let us consider Statement 1. Observing that the nonterminals of the equivalent
CF grammar are 4-tuples (le, fi, la, ri), the next statement follows immediately.

12

Corollary 1 For any ALD of degree k, there exists a structurally equivalent CF gram-
mar having at most |Σ|4k nonterminals.

This bound is too pessimistic; however, instead of refining it, we reverse the com-
parison, by relating the size of a given CF to the size of the structurally equivalent
ALD, when the latter exists.

We need the following definition from [10].

Definition 8 (McN-patterns, equivalent and useless nonterminals, reduced CF gram-
mars) For a grammar G, let VS = Σ ∪ V ∪ {(,)}. A string β ∈ V ∗

S ∆V ∗
S , where ∆ is

the place holder, is called a McN-pattern4. Moreover, for B ∈ V denote with β[B]
the result of the replacement of the placeholder in β with B.

Two nonterminals B,C ∈ V are equivalent iff ∀β(S →+ β[B] ⇐⇒ S →+ β[C]).
A nonterminal B is useless iff there exists no β such that S →+ β[B] or there exists
no t ∈ Σ∗ such that B →+ t.

A CF grammar is reduced if it does not contain equivalent or useless nonterminals.

It is well-known that for any CF grammar there exists an equivalent reduced gram-
mar.

Next, we consider the unbounded and bounded contexts of a nonterminal and a
mapping from the right-hand sides of CF productions to the patterns of the ALD
rules.

Definition 9 (context and k-context of a nonterminal) The context of a nonterminal
B of a CF grammar G is Con(B) = {(u, v) | u ∈⊥ Σ∗, v ∈ Σ∗ ⊥ ∧S →+ uBv}.

The context of degree k ≥ 1 (or k-context) is Conk(B) = {(u′, v′) | u′ ∈ Σk ∪
⊥Σj , v′ ∈ Σk∪Σj⊥, with 0 ≤ j < k; (u, v) ∈ Con(B), u′ is a suffix of u, v′ is a prefix
of v}.

Definition 10 (pattern set) Let h : (V ∪ Σ)∗ → (∆ ∪ Σ)∗ be the alphabetic homo-
morphism defined as h(B) = ∆ for B ∈ V , h(v) = v for v ∈ Σ. For a nonterminal
B ∈ V , the pattern set of B is defined as Pat(B) = {h(α) | B → α ∈ P ∧ α /∈ V }.

The last condition α /∈ V is to disregard the copy-rules of G, which otherwise would
generate the useless pattern [∆].

Let G = (V, Σ, P, S) be a reduced CF grammar, structurally equivalent to an ALD
A of degree k. The next statements hold.

Statement 4 (relations between a CF grammar and its structurally equivalent
ALD)

(i) ∀B → α ∈ P, α /∈ V , there exists in A a rule u[h(α)]v.

(ii) (u, v) ∈ Conk(B).

4It corresponds to the definition of pattern in [10], which has nothing to do with the “pattern”
of ALD.

13

(iii) For every pair of rules B → β ∈ P, C → γ ∈ P, β, γ /∈ V , let u[h(β)]v, x[h(γ)]y
be in A. If there exists in P a copy rule B → C then the permissible contexts
of h(γ) are included in the permissible contexts of h(β).

Proof. (i) Since G is reduced and A is its structurally equivalent ALD, every h(α),
with D → α ∈ P, α /∈ V , is required as pattern of A. Therefore, the set of patterns
of A equals

⋃

D∈V Pat(D). (ii) Since G is reduced, h(β) and h(γ) are required as
patterns of A. (iii) The derivations S →∗ B → β and S →∗ B → C → γ prove the
inclusion. 2

Therefore, the structurally equivalent ALD is A = {x[z]y | B ∈ V ∧ (x, y) ∈
Conk(B)∧z ∈ Pat(B)}, to be also abbreviated as A = {(Conk(B), Pat(B)) | B ∈ V }.

A first comparison of the relative size of ALD and CF grammars follows immedi-
ately from the definition of the homomorphism h and of the set Pat(B), B ∈ V :

Statement 5 For every nonterminal B ∈ V , |Pat(B)| ≤ |{α | B → α ∈ P}|.

Therefore, the number of distinct patterns of A is less than or equal to the number
of productions of G. It is equally important to examine the number of permissible
contexts of the ALD.

Statement 6 For an ALD A = {(Conk(B), Pat(B)) | B ∈ V }, the cardinality of the
set {Conk(B) | B ∈ V } (distinct permissible context sets) is |V |.

Proof. Let B, C ∈ V . It is known ([10]) that B is equivalent to C iff Con(B) =
Con(C). From the existence of the k-degree ALD A structurally equivalent to G, it
follows that Con(B) = Con(C) iff Conk(B) = Conk(C), because the contexts can be
truncated to the k characters preceding and following B and C. Since G is reduced,
there are no equivalent nonterminals. Therefore, we have: ∀B, C ∈ V (B 6= C ⇒
Conk(B) 6= Conk(C)), which is our statement. 2

Cartesian Products

Cartesian products of left and right context sets are usually extensively exploited (see
Section 3). This simple technique is enabled by the next statement.

Consider a CF grammar as in Statement 1, and its structurally equivalent ALD of
degree k. Let L(Conk(B)) (resp. R(Conk(B))) denote the projection of Conk(B) on
the left (resp. right) component.

Statement 7 Consider a nonterminal B and the corresponding ALD rule
(Conk(B), Pat(B)). If for every nonterminal C 6= B the following condition holds
Conk(B) ∩ Conk(C) = (L(Conk(B)) × R(Conk(B))) ∩ Conk(C), then the rule
(Conk(B), Pat(B)) can be replaced by (L(Conk(B)), Pat(B),R(Conk(B))), i.e., the
permissible contexts of Pat(B) are all the pairs in the Cartesian product.

Notice that the conditions prevent the unwanted interchange between B and C. An
example can be found in the definition of the array, file and set constructs of Pascal.

14

5. Size comparisons for some ubiquitous syntax structures

In what follows we apply the previous results to a typical structure that occurs,
disguised under different concrete syntaxes, in many artificial languages. We refine
the results by counting the number of symbols in both CF and ALD descriptions.

Actually, at the symbol level the dimension of a grammar strongly depends on
the chosen representation, since various compression techniques can be used. For
example, every language designer knows that copy rules are a very effective method
for reducing the size of CF grammars, especially when they feature some sort of
hierarchical structure. An analogous technique for ALD is based on the concept of
context-inheritance (introduced in Section 3).

The next definitions (adapted to ALD from [11]) are needed to compare sizes.

Definition 11 (size, norm) The size |H| of a CF/ALD grammar H is the sum of
the lengths of their rules, considering only the symbols in Sym = V ∪Σ ∪ {ε} for the
CF case and in Sym = {∆,⊥,⇑, ε} ∪ Σ for the ALD case. The norm of a CF/ALD
grammar H is defined by ||H|| = |H| log|Sym|.

The size expresses the grammar length in symbols, while the norm expresses its
length in bits. The latter measure in our case is no more informative than the former,
because in our examples |V | is always proportional to |Σ|, and the CF grammar
alphabet uses at most |V | more symbols than the ALD grammar. This difference
appears as an argument of the logarithm: log|V ∪Σ| is always O(log(|V |)). Therefore
we will only compare the size.

The abstract syntax structures to be compared occur in various incarnations such
as:

• Parentheses structures featuring different pairs of parenthesis, ranked into a
hierarchy. The typical example is HTML, an instance of the generalised mark-
up languages SGML or XML.

• Arithmetical (or Boolean) expressions with operators ranked into n precedence
levels; examples occur in predicate calculus and in the arithmetical part of any
programming language.

Actually, the simplified version of the first family that we consider here is regu-
lar. Nonetheless, its inherent hierarchical structure is more naturally and concisely
described using tree structures or CF productions, rather than by Chomsky’s type 3
productions.

To focus on one concrete case, consider the language with n > 1 pairs of parentheses
ranked by level, in which a pair of level i may only contain parentheses of strictly
lower levels. The terminal alphabet is Σ = {<1, >1, . . . , <n, >n}. An instance of a
valid string, with n = 3, is: <1>1<3<2>2<1>1>3<2>2.

The ALD of degree 1 has n rules and size 1/2n2 + 9/2n:

[ε | <n 〈∆〉 >n 〈∆〉]⊥;

[<n−i 〈∆〉 >n−i 〈∆〉]⊥| >n | . . . | >n−i+1 (where 1 ≤ i ≤ n− 2); (1)

15

[<1>1 〈∆〉]⊥| >2 | . . . | >n

The contexts are included one in the other, from top to bottom. This hierarchy
of contexts can be concisely represented using context-inheritance, encoded by ⇑ (see
Section 3).

Using inheritance the previous ALD becomes:

[ε | <n 〈∆〉 >n 〈∆〉]⊥

[<n−i 〈∆〉 >n−i 〈∆〉] ⇑ | >n−i+1 (where 1 ≤ i ≤ n− 2) (2)

[<1>1 〈∆〉] ⇑ | >2

Note that the size of this grammar is linear with respect to n: the size of (2) is
6n− 1.

We now compare (2) with different CF grammar versions for the same language.
First, we consider a structurally equivalent CF grammar, reduced and copy-free

with Nn as axiom:

Ni →<i Ni−1 >i Nn |<i−1 Ni−2 >i−1 Nn | . . .

| <1>1 Nn | ε (where 1 ≤ i ≤ n) (3)

The size of this grammar is 2n2 + 3n. This size is comparable with the size of the
ALD (1).

We can build a smaller CF grammar, using copy rules:

N1 →<1>1 Nn | ε

Ni →<i Ni−1 >i Nn | Ni−1 (where 2 ≤ i ≤ n) (4)

The size is 6n− 1, exactly the same of (2), the ALD with inheritance.

Analogous quantitative results hold for examples of the ubiquitous case of expres-
sions with operators ranked by precedence. In this abstract syntax paradigm we admit
one type of parenthesis.

Consider the generalized expression language with n levels of operators (denoted
by #1, . . . , #n), defined by the ALD with inheritance:

(| ⊥[∆#n∆]

⇑ | #n[∆#n−1∆] . . . (5)

⇑ | #2[∆#1a | a | (∆)]

Clearly, its abstract structure is very similar to that of (2). Correspondingly, a
structurally equivalent CF grammar with copy rules is the following:

N1 → N1#na | a | (Nn)

Ni → Ni#iNi−1 | Ni−1 (where 2 ≤ i ≤ n) (6)

16

and its structure is almost the same of (4).
The size comparisons between the various CF and ALD grammars are collected in

the next table.
Hierarchical Parentheses Expressions with operator precedence

CF / ALD Context Free ALD Context Free ALD
copy-free / stand. 2n2 + 3n 1/2n2 + 9/2n 3/2n2 + 13/2n 1/2n2 + 9/2n + 4
copy-rules / inher. 6n− 1 6n− 1 5n + 3 5n + 4

In conclusion, the descriptional complexity of hierarchically nested constructs in
the above examples is essentially the same for CF and ALD representations, and both
benefit from the use of sub-categorization, be it in the form of copy rules or of context
inheritance.

6. Conclusions

We have shown that a complete programming language can be defined using ALD
expressions with rather short contexts. The relative sizes of ALD and CF definitions
have been found to be essentially the same, for Pascal and for the hierarchical struc-
tures occurring in HTML and in other common constructs of computer languages.
Another valuable property of the model is the essential uniqueness of the ALD defin-
ing a set of trees.

After these findings, it would be interesting to experiment with the use of ALD in
compilers, and related applications, but for that we need efficient parsing algorithms.
In principle the classical CF parsing methods could be used for ALDs’ too, by first
converting an ALD into a structurally equivalent CF grammar, then constructing a
parser using a parser generator. But direct construction of deterministic parsers from
an ALD definition is more attractive, since the mechanically-generated, equivalent
CF grammar may be very large. Research in this direction is in progress.

Finally we mention that the ALD design steps outlined at the end of Section 3
can be viewed as the blueprint of a simple grammar inference procedure. Grammar
inference is the process that constructs a grammar by examining the examples of
sentences (and non-sentences) provided by an informant. There are real situations,
as in marked up XML documents, where a language grammar is not available, but it
has to be discovered by examining examples of structured sentences (trees).

Acknowledgements To V. Braitenberg and to F. Pulvenmüller for stimulating
discussions on the role and potential of associative language models in brain theory.
To A. Cherubini for important contributions to the study of the formal properties of
the ALD family.

References

[1] S. Crespi Reghizzi, M. Pradella, P. San Pietro, Conciseness of Asso-
ciative Language Descriptions, Proc. of International Workshop on Descritional
Complexity of Automata, Grammars and Related Structures (DCAGRS’99), J.
Dassow and D. Wotschke (eds.), July 20-23, 1999, p 99-108.

17

[2] A. Cherubini, S. Crespi Reghizzi, P. San Pietro, Associative Language
Descriptions, to appear in Theoretical Computer Science.

[3] A. Cherubini, S. Crespi Reghizzi, P. San Pietro, Languages based on struc-
tural local testability, in C. S. Calude and M.J. Dinnen (eds.), Combinatorics,
Computation and Logic, Proceedings of DMTCS99, Auckland, New Zealand, 18-
21 January 1999, Springer-Verlag.

[4] A. Ehrenfeucht, G. Paun and G. Rozenberg, Contextual grammars and
formal languages, Handbook of formal languages (Eds. G.Rozenberg, A.Saloma) ,
Vol.II, Ch.6, Springer (1997), 237-290.

[5] S. Crespi Reghizzi, G. Guida, D. Mandrioli, Non-counting context-free lan-
guages, Journ. ACM, 25 (1978), 4, 571-580.

[6] S. A. Greibach, The Hardest Context-free Language, SIAM J. Comp., 2, (1973),
304-310.

[7] S. Crespi Reghizzi, V. Braitenberg, Towards a brain compatible theory of
language based on local testability, in C. Martin-Vide and V. Mitrana (eds) Gram-
mars and Automata for String Processing: from Mathematics and Computer Sci-
ence to Biology, and Back. Gordon and Breach, London, 2001.

[8] K. Jensen and N. Wirth, PASCAL - User manual and report, LNCS, 18, 1974.

[9] R. McNaughton and S. Papert, Counter-Free Automata, MIT Press, Cam-
bridge, Mass., 1971.

[10] R. McNaughton, Parenthesis Grammars, Journal of the ACM, Vol. 14, No. 3,
490-500, July 1967.

[11] S. Sippu, E. Soisalon-Soininen, Parsing Theory, Springer-Verlag (1988).

18

Appendix: the syntax of Pascal

Remark: The degree of the ALD of syntax is measured assuming a token is a length
one character. For instance the key word begin counts as a single character.
Tokens are used for identifiers and constants: id stands for an identifier, cst is a
numerical constant. Names starting with a capital letter always denote sets.
The used context sets are:
CompOp = {=, >, <,>=, <=, <>};
AddOp = {+,−, or};
MultOp = {∗, /, div, mod, and};
GenOp = CompOp ∪AddOp ∪MultOp.

1. ⊥ program id 〈(id ∆)〉 ; ∆ begin ∆ end .

2. (id 〈∆〉 , id

3. ; 〈const ∆ ;〉〈type ∆ ;〉〈var ∆ ;〉〈procedure id ∆ ;〉〈 function id ∆ ;〉 begin

4. const | = cst ; id = cst 〈; ∆〉

5.
type 〈∆ ;〉 id = 〈ˆ〉 ∆ id |

〈∆ ;〉 id = 〈ˆ〉 ∆ record ∆ end

6.
var | 〈∆ ;〉 ∆ : 〈ˆ〉 〈∆〉 id | ¬{:}

record 〈∆ ;〉 ∆ : 〈ˆ〉 〈∆〉 record ∆ end

7.
: | of | 〈 packed 〉 array [∆] of ∆ | id |

= | file of ∆ | record
ˆ set of ∆

8.
〈∆ ,〉 (id ∆) |

array [〈∆ ,〉 id |
〈∆ ,〉 cst .. cst

9. of 〈∆ ;〉 〈∆〉 cst : ∆ end | cst

10. cst , 〈∆〉 cst :

11.
id |

set of (id 〈∆〉) |
cst .. cst

12. id 〈, ∆〉 :

13.
procedure id 〈(∆)〉 ; ∆ begin ∆ end 〈; procedure id ∆〉 |

〈(∆)〉 ; ∆ begin ∆ end ; function id ∆

19

14.
function id 〈(∆)〉 : id ; ∆ begin ∆ end 〈; function id ∆〉 |

〈(∆)〉 : id ; ∆ begin ∆ end ; procedure id ∆

15.
function id (| 〈∆ ;〉 〈var〉 ∆ : ∆ id |
procedure id (〈∆ ;〉 〈var〉 ∆ : ∆ record ∆ end

16.

〈cst :〉 id 〈 .id 〈∆〉〉 := ∆ 〈; ∆〉 |
begin | 〈cst :〉 idˆ〈∆〉 := ∆ 〈; ∆〉 |

; | 〈cst :〉 id [∆] 〈∆〉 := ∆ 〈; ∆〉 | ; |
do | 〈cst :〉 id (∆) 〈; ∆〉 | end |

then | 〈cst :〉 for id := ∆ to ∆ do ∆ 〈; ∆〉 | else |
else | 〈cst :〉 if ∆ then ∆ 〈else ∆〉 〈; ∆〉 | until

repeat | 〈cst :〉 while ∆ do ∆ 〈; ∆〉 |
: 〈cst :〉 repeat ∆ until ∆ 〈; ∆〉 |

〈cst :〉 goto cst 〈; ∆〉 |
〈cst :〉 case ∆ of ∆ end 〈; ∆〉 |
〈cst :〉 with ∆ do ∆ 〈; ∆〉

17.
.id | .id 〈∆〉 |
] | ˆ〈∆〉 |
ˆ [∆] 〈∆〉

18.
〈∆ ,〉 id 〈.id 〈∆〉〉 |

with 〈∆ ,〉 idˆ〈∆〉 |
〈∆ ,〉 id [∆] 〈∆〉

19. ¬{function | procedure} id (| , | id [∆ , ∆) |]

20.
⇑ | := | if | while | until | case | ∆ CompOp ∆ ; | end | else | until |

{GenOp | := | , | (} (then | do |) |] | of

21.
⇑ | CompOp | {+ | -} ∆ | ⇑ |

AddOp 〈{+ | -}〉 ∆ AddOp ∆ CompOp

22. ⇑ | MultOp ∆ MultOp ∆ ⇑ | AddOp

23.

〈 not 〉 cst |
〈 not 〉 id 〈 .id 〈∆〉〉 |

⇑ 〈 not 〉 idˆ〈∆〉 | ⇑ |
〈 not 〉 id [∆] 〈∆〉 | MultOp
〈 not 〉 id (∆) |

(∆)

