
Tile Rewriting Grammars?

Stefano Crespi Reghizzi?? and Matteo Pradella

DEI - Politecnico di Milano and
CNR IEIIT-MI,

Piazza Leonardo da Vinci, 32,
I-20133 Milano, Italy

e-mail: {crespi, pradella}@elet.polimi.it

Abstract

Past proposals for applying to pictures or 2D languages the generative grammar
approach do not match in our opinion the elegance and descriptive adequacy
that made Context Free grammars so successful for 1D languages. In a renewed
attempt, a model named Tile Rewriting Grammar is introduced combining the
rewriting rules with the Tiling System of Giammaresi and Restivo which define
the family of Recognizable 2D languages. The new grammars have isometric
rewriting rules which for string languages are equivalent to CF rules. TRG have
the capacity to generate a sort of 2D analogues of Dyck languages. Closure
properties of TRG are proved for some basic operations. TRG strictly include
TS as well as the context-free picture grammars of Matz.

1 Introduction

In the past several proposals have been made for applying to pictures or 2D
languages the generative grammar approach but in our opinion none of them
matches the elegance and descriptive adequacy that made Context Free (CF)
grammars so successful for 1D i.e. string languages. A picture is a rectangular
array of symbols (the pixels) from a finite alphabet.

A survey of formal definition models for picture languages is [3] where dif-
ferent approaches are compared and related: tiling systems, cellular automata,
and grammars. The latter had been surveyed in more detail by [6]. Classical 2D
grammars can be grouped in two categories1 called matrix and array grammars
respectively.

The matrix grammars, introduced by A. Rosenfeld, impose the constraint
that the left and right parts of a rewriting rule must be isometric arrays; this

? Work partially supported by MIUR, Progetto Linguaggi formali e automi, teoria e
applicazioni.

?? Lecturer of Formal Languages, Università della Svizzera Italiana.
1 Leaving aside the graph grammar models because they generate graphs, not 2D

matrices.

condition overcomes the inherent problem of “shearing” which pops up while
substituting a subarray in a host array.

Siromoney’s array grammars are parallel-sequential in nature, in the sense
that first a horizontal string of nonterminals is derived sequentially, using the
horizontal productions; and then the vertical derivations proceed in parallel,
applying a set of vertical productions. Several variations have been made, for
instance [1]. A particular case are the two dimensional right-linear grammars
studied in [3].

More recently Matz [5] has proposed a new approach relying on the notion of
row and column concatenation and their closures. A production of his context-
free picture grammars is similar to a classical 1D Context Free (CF) production,
with the difference that the right part is a 2D regular expression. The shearing
difficulty does not arise because, say, row concatenation is a partial operation
which is only defined on matrices of identical width.

Exploring a different course, our new model is introduced, named Tile Rewrit-
ing Grammar (TRG), intuitively combining Rosenfeld’s isometric rewriting rules
with the Tiling System (TS) of Giammaresi and Restivo [2]. The latter defines
the family of Recognizable 2D languages (the same as those accepted by so called
on-line tessellation automata of Inoue and Nakamura [4]).

A TRG production is a schema having to the left a nonterminal symbol and
to the right a local 2D language over terminals and nonterminals; that is the
right part is specified by a set of fixed size tiles.

Similar to Rosenfeld’s matrix grammars, the shearing problem is solved by
a isometric constraint on the left and right parts, but a TRG production is not
compelled to have a fixed rectangular size. The left part denotes a rectangle of
any size filled with the same nonterminal. Whatever size the left part takes, the
same size is assigned to the right part. Viewing rewriting from right to left, the
effect is to replace each pixel of the right picture by the same nonterminal. To
make this simple idea effective, it is necessary to impose a tree partial order
on the areas which are rewritten, thus moving from the syntax tree of string
languages to some sort of well nested prisms. A simple nonterminal marking
device implements the partial ordering.

To our knowledge this approach is novel and is able to generate an interesting
gamut of pictures, grids, spirals, and in particular a language of nested frames
which is in some way the analogue of a Dyck language.

Some formal properties of the new model are here proved. Derivations can be
computed in a canonical order. The family is closed with respect to some basic
operations: row/column concatenation and closures, union, and rotation.

Comparing with other families, TRGs’ generative capacity is stronger than
that of Tiling Systems, as shown by the non-TS language made by the vertical
concatenation of two specularly symmetrical squares. TRG grammars are proved
more powerful than Matz’s CF picture grammars.

In Sect. 2 we gradually and informally introduce the isometric productions
and marking device for string languages. Then we list the basic definitions for

picture languages, and we define our model and show the closure properties. In
Sect. 3 the family of TRG pictures is compared with the other families.

2 Tile Rewriting Grammars

2.1 Introducing one dimensional isometric grammars

For a gradual presentation we first sketch the TRG model for string grammars,
showing it is tantamount to a notational variant of classical CF grammars. The
essential features are that rewriting rules are isometric and of unbounded length.
These properties set the ground for exploiting the model in two dimensions in
the next section: because isometric rules matching arrays of unbounded size are
exempt from the problems (shearing and narrow scope) encountered by early
attempts at using phrase structure grammars for pictures.

Consider a CF grammar G = (Σ,N, S,R) in Chomsky normal form with
rules of the forms A → b and A → BC, where b is a terminal and A,B,C are
nonterminals.

For a derivation

S
∗
⇒G uAv

∗
⇒G uzv ∈ Σ+, A ∈ N

we associate to each nonterminal an attribute, the length of the terminal string
generated, writing

(S, n)
∗
⇒G u(A, j)v

∗
⇒G uzv ∈ Σ+

where n = |uzv| and j = |z|.
An isometric grammar GI = (Σ,N, S,RI) consists of a countable set of rules

corresponding to the rules of G as specified in the table:

CF rule Isometric rule
A → b A

︸︷︷︸
→ b

A → BC AA
︸︷︷︸

→ B
︸︷︷︸

C
︸︷︷︸

AAA
︸ ︷︷ ︸

→ BB
︸︷︷︸

C
︸︷︷︸

AAA
︸ ︷︷ ︸

→ B
︸︷︷︸

CC
︸︷︷︸

. . .
An

︸︷︷︸
→ Bp

︸︷︷︸
Cq

︸︷︷︸
,∀n, p, q : n ≥ 2, n = p + q

An underbraced string must be rewritten all at once, so that the derivations of
a isometric grammar are in step by step correspondence with CF derivations.
More precisely, it is clear that the CF derivation

(S,m)
∗
⇒G u(A,n)v ⇒G u(B, p)(C, q)v

∗
⇒G uzv ∈ Σm, |z| = n = p + q

exists iff the isometric derivation exists

Sm

︸︷︷︸

∗
⇒GI

u An

︸︷︷︸
v ⇒GI

u Bp

︸︷︷︸
Cq

︸︷︷︸
v

∗
⇒GI

uzv

Therefore the isometric grammar is just a notational variant of the CF grammar
and defines the same language.

The semigraphical representation using underbraces has to be abandoned for
a symbolic notation, that will be more convenient for the 2D case. Symbols in
the right part of a rule are marked by natural indices, qualified as update indices
and used to denote underbraces, so that the CF rule A → BC produces the set
of isometric rules

An → B1
pC2

q, ∀n, p, q : n ≥ 2, n = p + q (1)

A nonterminal previously underbraced is marked by distinct index, called
area index. An area index updating rule is added to a derivation step.

Initially the axiom has area index 0, and the derivation starts from (S0)
m.

Assume a string γ = α(Ai)
nβ deriving from (S0)

m is such that the nonterminals
that would be underbraced carry the same index i, which differs from all other
indices. Moreover neither α nor β contain Ai, that is (Ai)

n is the largest substring
containing Ai. Let µ(γ) be the maximum area index present in γ. Then when a
derivation step is performed, applying the rewriting rule (1), the indices of the
right hand side symbols are incremented by µ(γ):

α(Ai)
nβ ⇒ α(Br)

p(Cs)
qβ

n = p + q, r = 1 + µ(γ), s = 2 + µ(γ)

As a consequence, the area indices of the resulting string preserve the divi-
sions.

Example 1. Consider the following CF grammar: S → SS;S → AB;A →
a;B → b. We can write it as follows:

Sn → (S1)
p(S2)

q; Sn → (A1)
p(B2)

q, ∀n, p, q : n = p + q ≥ 2
A → a0; B → b0

Notice that we use update index 0 for terminals.
The CF derivation (with sizes):

(S, 4) ⇒ (S, 2)(S, 2) ⇒ (A, 1)(B, 1)(S, 2)
2
⇒ abS ⇒ ab(A, 1)(B, 1)

2
⇒ abab.

corresponds to the derivation with indexed symbols:

(S0)
4 ⇒ (S1)

2(S2)
2 ⇒ A3B4(S2)

2 2
⇒ a3b4(S2)

2 ⇒ a3b4A5B6
2
⇒ a3b4a5b6.

Since the right hand side of (1) is a locally testable language over {B1, C1},
the set of rules will be defined in closed form by listing the substrings of length
two (or tiles) which may occur:

A → {B1C2}; A → {B1B1, B1C2}; A → {B1C2, C2C2};
A → {B1B1, B1C2, C2C2}

Notice that by the isometric hypothesis the left hand side is assumed to
match the length of the right hand side, and its length is not specified.

Although this technique is clumsy for string languages, it permits to do
without 2D bracketing in picture languages.

2.2 Basic Definitions

We list the preliminary notation and definitions, most of them as well as the
omitted ones are in [3].

Definition 2. For a terminal alphabet Σ, the set of pictures is Σ∗∗. For h, k ≥ 1,
Σ(h,k) denotes the set of pictures of size (h, k) (i.e. |p| = (h, k)):

p ∈ Σ(h,k) ⇐⇒ p =

p(1, 1) . . . p(1, k)
...

. . .
...

p(h, 1) . . . p(h, k)

Row and column concatenations are denoted 	 and :, respectively. p 	 q is
defined iff p and q have the same number of columns; the resulting picture is the
vertical juxtaposition of p over q. pk	 is the vertical juxtaposition of k copies of
p; p∗	 is the corresponding closure. :,k: ,∗:, are the column analogous.

Definition 3. The (vertical) mirror image and the (clockwise) rotation of a
picture p (with |p| = (h, k)), respectively, are defined as follows:

Mirror(p) =

p(h, 1) . . . p(h, k)
...

. . .
...

p(1, 1) . . . p(1, k)

; pR =

p(h, 1) . . . p(1, 1)
...

. . .
...

p(h, k) . . . p(1, k)

Definition 4. Let p ∈ Σ(h,k), q ∈ Σ(h′,k′), h′ ≤ h, k′ ≤ k. q is called a subpic-
ture (or window) of p at position (i, j) (also written q E(i,j) p) iff:

∀i′, j′(i′ ≤ h′ ∧ j′ ≤ k′ ∧ i < h − h′ ∧ j < k − k′ ⇒ p(i + i′, j + j′) = q(i′, j′))

We will use the shortcut q E p, for ∃i, j(q E(i,j) p).

Definition 5. For a picture p ∈ H∗∗ the set of subpictures with size (h, k) is:

Bh,k(p) = {q ∈ H(h,k) | q E p}

We assume B1,k to be only defined on Σ(1,∗) (horizontal string), and Bh,1 on
Σ(∗,1) (vertical string).

Definition 6. Consider a set ω of pictures t ∈ Σ(i,j). The locally testable lan-
guage defined by ω (called LOC(ω)) is the set of pictures p ∈ Σ∗∗ such that
Bi,j(p) = ω.

Moreover the locally testable language in the strict sense defined by ω (written
LOCss(ω)) is the set of pictures p ∈ Σ∗∗ such that Bi,j(p) ⊆ ω

Definition 7. Substitution. If p, q, q′ are pictures, q E(i,j) p, and q, q′ have the
same size, then p[q′/q(i,j)] denotes the picture obtained by replacing the occur-
rence of q at position (i, j) in p with q′.

For simplicity, we shall drop the subscript (i, j) when there is a single occur-
rence of q in p.

The main definition follows.

Definition 8. A Tile Rewriting Grammar (TRG) is a tuple (Σ,N, S,R), where
Σ is the terminal alphabet, N is a set of nonterminal symbols, S ∈ N is the
starting symbol, R is a set of rules.

An indexed symbol is an element from I = (Σ × {0}) ∪ (N × N≥1).
R may contain two kinds of rules:

Type 1: A → t, where A ∈ N , t ∈ I(h,k), with h, k > 0;
Type 2: A → ω, where A ∈ N and ω ⊆ {t | t ∈ I(i,j)}, with i, j > 0.

Notice that type 1 is not a special case of type 2. Moreover, the update index
used for terminals is 0, while indices for nonterminals are greater than 0.

Intuitively a rule of type 1 is intended to match a subpicture of small bounded
size, identical to the right part t. A rule of type 2 matches any subpicture of any
size which can be tiled using all the elements t of the tile set ω.

We define a procedure to be used in the derivation step.

Definition 9. Rewrite procedure. Consider a TRG G = (Σ,N, S,R), a rule
ρ ∈ R, and a picture p ∈ ((Σ ∪ N) × N)∗∗. Then its maximum index (written
µ(p)) is defined as: µ(p) = Max{k | p(i, j) = (χ, k), χ ∈ Σ ∪ N}.

Rewrite(in ρ, p; out q)
1: Find a maximal2 r ∈ (A, k)∗∗, where A is the left part of ρ, such that rE(m,n)

p, for some m,n. r is called the application area.
2: If ρ = A → ω (i.e. ρ is a type 2 rule), then choose a picture s ∈ LOC(ω),

with |s| = |r|.
Otherwise if ρ = A → t (type 1), set s := t, the right part of ρ.

3: Let s′ be the picture defined by ∀i, j : s(i, j) = (χ, l), χ ∈ Σ ∪ N ⇒ s′(i, j) =
(χ, l + µ(p)). That is, s′ is computed incrementing the indices in s by µ(p).

4: Return q = p[s′/r(m,n)].
end.

Definition 10. A derivation in one step is a relation

⇒G ⊆ ((Σ ∪ N) × N)(h,k) × ((Σ ∪ N) × N)(h,k)

Then p ⇒G q iff there exists a rule ρ ∈ R such that Rewrite(ρ, p, q).

We say that q is derivable from p in n step, in symbols p
n
⇒G q, iff p = q, when

n = 0, or there is a picture r ∈ ((Σ ∪ N) × N)(h,k) such that p
n−1
⇒ G r and

r ⇒G q. As usual p
∗
⇒G q says that p

n
⇒G q, for some n ≥ 0.

Definition 11. The picture language defined by a TRG G (written L(G)) is the

set of p ∈ Σ∗∗ such that, if |p| = (h, k), then (S, 0)(h,k) ∗
⇒G p|1, where |1 denotes

the projection on Σ of the elements in Σ × N. For short we write S
∗
⇒G p.

2 i.e. it is not the case that ∃q 6= r such that q ∈ (A, k)∗∗ and r E q.

The following obvious statements may be viewed as a 2D formulation of well
known properties of 1D CF derivations.

Let p1 ⇒ p2 ⇒ . . . ⇒ pn be a derivation, and α(p1), α(p2), . . . α(pn−1) the
corresponding application areas.

Disjointness of application areas: For any pi, pj , i < j, either α(pi)Eα(pj),
or α(pi), α(pj) are disjoint.

Canonical derivation: Let ci = (xi, yi) be the coordinates of the top left-
most corner of the application area α(pi). The previous derivation is lexi-
cographic iff i < j implies ci ≤lex cj (where ≤lex is the usual lexicographic
order). Then

L(G) ≡ {p | S
∗
⇒G p and

∗
⇒G is a lexicographic derivation}

To simplify the notation, in the sequel we will use subscripts for indexed
symbols (e.g. S1 instead of (S, 1)). Moreover, we will drop the index when
possible, for terminals and in rules where all nonterminals have the same index.

To illustrate we present two examples.

Example 12. Chinese boxes. G = (Σ,N, S,R), where Σ = {p, q, x, y, ◦}, N =
{S}, and R consists of the rules:

S →
p q

x y
; S →

{
p ◦
◦ S

,
◦ S
x ◦

,
◦ S
◦ S

,
S S
◦ ◦

,
◦ ◦
S S

,
S S
S S

,
◦ q

S ◦
,

S ◦
S ◦

,
S ◦
◦ y

}

(where indices have been dropped).
A picture in L(G) is:

p ◦ ◦ ◦ ◦ q

◦ p ◦ ◦ q ◦
◦ ◦ p q ◦ ◦
◦ ◦ x y ◦ ◦
◦ x ◦ ◦ y ◦
x ◦ ◦ ◦ ◦ y

For convenience, we will often specify a set of tiles by a sample picture ex-
hibiting the tiles as its subpictures (using Bh,k - see Definition 5). We write | to
separate alternative right parts of rules with the same left part (analogously to
string grammars). Therefore, the previous grammar becomes:

S →
p q

x y
| B2,2







p ◦ ◦ q

◦ S S ◦
◦ S S ◦
x ◦ ◦ y







Example 13. 2D Dyck analogue. The next language Lbox, a superset of Chinese
boxes, can be defined by a sort of cancellation rule. But since terminals cannot
be cancelled without shearing the picture, we replace them by a character b, the
blank or background.

Empty frame: Let k ≥ 0. An empty frame is a picture defined by the regu-
lar expression: (p:(◦)k:

:q) 	 (◦ : bk:
: ◦)k	 	 (x:(◦)k:

:y), i.e. a box
containing just b’s.

Cancellation: The cancellation of an empty frame p is the picture del(p) ob-
tained by applying the projection del(x) = b, x ∈ Σ ∪ {b}.

A picture p is in Lbox iff by repeatedly applying del on subpictures which are
emply frames, an empty frame is obtained, as in the picture:

p ◦ ◦ ◦ ◦ q p ◦ ◦ q

◦ p q p q ◦ ◦ p q ◦
◦ x y x y ◦ ◦ x y ◦
x ◦ ◦ ◦ ◦ y x ◦ ◦ y

This time we need to use indices in the productions of the grammar:

S → B2,2

(
S1 S1 S2 S2

S1 S1 S2 S2

)

| B2,2







S1 S1

S1 S1

S2 S2

S2 S2







To illustrate we list the derivation steps of the previous picture:

S0 S0 S0 S0 S0 S0 S0 S0 S0 S0

S0 S0 S0 S0 S0 S0 S0 S0 S0 S0

S0 S0 S0 S0 S0 S0 S0 S0 S0 S0

S0 S0 S0 S0 S0 S0 S0 S0 S0 S0

⇒G

S1 S1 S1 S1 S1 S1 S2 S2 S2 S2

S1 S1 S1 S1 S1 S1 S2 S2 S2 S2

S1 S1 S1 S1 S1 S1 S2 S2 S2 S2

S1 S1 S1 S1 S1 S1 S2 S2 S2 S2

2
⇒G

p ◦ ◦ ◦ ◦ q p ◦ ◦ q

◦ S3 S3 S3 S3 ◦ ◦ S4 S4 ◦
◦ S3 S3 S3 S3 ◦ ◦ S4 S4 ◦
x ◦ ◦ ◦ ◦ y x ◦ ◦ y

⇒G

p ◦ ◦ ◦ ◦ q p ◦ ◦ q

◦ S5 S5 S6 S6 ◦ ◦ S4 S4 ◦
◦ S5 S5 S6 S6 ◦ ◦ S4 S4 ◦
x ◦ ◦ ◦ ◦ y x ◦ ◦ y

⇒G

p ◦ ◦ ◦ ◦ q p ◦ ◦ q

◦ p q S6 S6 ◦ ◦ S4 S4 ◦
◦ x y S6 S6 ◦ ◦ S4 S4 ◦
x ◦ ◦ ◦ ◦ y x ◦ ◦ y

2
⇒G

p ◦ ◦ ◦ ◦ q p ◦ ◦ q

◦ p q p q ◦ ◦ p q ◦
◦ x y x y ◦ ◦ x y ◦
x ◦ ◦ ◦ ◦ y x ◦ ◦ y

Although this language can be viewed as a 2D analogue of a Dyck’s string
language, variations are possible and we do not claim the same algebraic prop-
erties as in 1D.

2.3 Closure Properties

For simplicity, in the following theorem we suppose that L(G1), L(G2) contain
pictures of size at least (2,2).

Theorem 14. The family L(TRG) is closed under union, column/row concate-
nation, column/row closure operations, rotation, and alphabetical mapping (or
projection).

Proof. Consider two grammars G1 = (Σ,N1, A,R1) and G2 = (Σ,N2, B,R2).
Suppose for simplicity that N1 ∩ N2 = ∅, and S /∈ N1 ∪ N2. Then it is easy to
show that the grammar G = (Σ,N1 ∪ N2 ∪ {S}, S,R1 ∪ R2 ∪ R), where

Union ∪:

R =

{

S → B2,2

(
A A
A A

)

, S → B2,2

(
B B
B B

)}

is such that L(G) = L(G1) ∪ L(G2).
Concatenation :/	:

R =

{

S → B2,2

(
A A B B
A A B B

)}

is such that L(G) = L(G1):L(G2). The row concatenation case is analogous.
Closures ∗:/∗	:

G = (Σ,N1 ∪ {S}, S,R1 ∪ R)

where

R =

{

S → B2,2

(
S1 S1 S2 S2

S1 S1 S2 S2

)}

is such that L(G) = L(G1)
∗:. The row closure case is analogous.

Rotation R : Construct the grammar G = (Σ,N,A,R′), where R′ is such
that, if B → t ∈ R1 is a type 1 rule, then B → tR is in R′; if B → ω ∈ R1 is
a type 2 rule, then B → ω′ is in R′, with t ∈ ω implies tR ∈ ω′. It is easy to
verify that L(G) = L(G1)

R.
Projection π : Consider a grammar G = (Σ1, N, S,R) and a projection π :

Σ1 → Σ2. It is possible to build a grammar G′ = (Σ2, N
′, S,R′), such that

L(G′) = π(L(G)). Indeed, let Σ′
1 be a set of new nonterminals corresponding

to elements in Σ1, then N ′ = N ∪Σ′
1; R′ = φ(R)∪R′′, where φ : Σ1×{0} →

Σ′
1 × {k} is the alphabetical mapping φ(a) = a′

k, where k is a fixed unused
updating index, and it is naturally extended to TRG rules. Moreover, we
need the additional projection rules R′′ (where v = π(a)):

a′ → v0 |

{
v0 v0

v0 v0

}

|
{

v0 v0

}
|

{
v0

v0

}

3 Comparison with other models

We first compare with Tiling Systems, then with Matz’s CF grammars.

Theorem 15.

L(LOCss) ⊆ L(TRG)

Proof. Consider a local two-dimensional language over Σ defined by the set of
allowed blocks Θ.

Let Θ0 = {
x0 y0

z0 w0
|

x y
z w

∈ Θ}, then an equivalent TRG is G = (Σ, {S}, S,R),

where R is the set {S → θ | θ ⊆ Θ0}.

The following theorem is a consequence of the fact that L(TRG) is the closure
of L(LOCss) with respect to projection.

Theorem 16.

L(TS) ⊆ L(TRG)

The following strict inclusion is an immediate consequence of the fact that,
for 1D languages, L(TS) ⊂ L(CF), and L(TRG) = L(CF). But we prefer to
prove it by exhibit an interesting picture language, namely a language made by
the vertical concatenation of two specularly symmetrical rectangles.

Theorem 17.

L(TS) 6= L(TRG)

Proof. Let Σ = {a, b}. Consider the language L = {p | p = s	Mirror(s) and s ∈
Σ(h,k), h > 1, k ≥ 1}. We prove that L /∈ L(TS) using a technique very similar
to that of Theorem 7.5 in [3].

Consider the grammar G:

A →
a
a
|

b
b
| B2,1







a
A
A
a







| B2,1







b
A
A
b







S → B2,2

(
A S S
A S S

)

| B2,1

(
A
A

)

Without proof, it is easy to see that L(G) = L.
We prove by contradiction that L /∈ L(TS). Suppose that L ∈ L(TS), therefore
L is a projection of a local language L′ defined over some alphabet Γ . Let σ = |Σ|
and γ = |Γ |, with σ ≤ γ. For an integer n, let:

Ln = {p | p = s 	 Mirror(s) and |s| = (n, n)}.

Clearly, |Ln| = σn2

. Let L′
n be the set of pictures in L′ over Γ whose projec-

tions are in Ln. By choice of γ and by construction of Ln there are at most γn

possibilities for the n-th and (n + 1)-th rows in the pictures of L′
n, because this

is the number of mirrored stripe pictures of size (2, n) on Γ .

For n sufficiently large σn2

≥ γn. Therefore, for such n, there will be two
different pictures p = sp 	 Mirror(sp), q = sq 	 Mirror(sq) such that the
corresponding p′ = s′p 	 s′′p , q′ = s′q 	 s′′q have the same n-th and (n+1)-th rows.
This implies that, by definition of local language, pictures v′ = s′p 	 s′′q , w′ =
s′q 	 s′′p belong to L′

n, too. Therefore, pictures π(v′) = sp 	 Mirror(sq), and
π(w′) = sq 	 Mirror(sp) belong to Ln. But this is a contradiction.

The other family of languages to be compared are a different generalisation
of CF grammars in two dimensions, Matz’s CF Picture Grammars (CFPG)[5].
These grammars are syntactically very similar to 1D CFs. The main difference is

that their right parts use :,	 operators. Nonterminals denote unbound rectan-
gular pictures. Derivation is analogous to 1D, but the resulting regular expression
may or may not define a picture (e.g. a : (b	 b) does not generate any picture).

Theorem 18.

L(CFPG) ⊆ L(TRG)

Hint of the proof. Consider now a Matz’s CFPG grammar in Chomsky Nor-
mal Form. It may contain three types of rules: A → B :C; A → B	C; A → a.
Then, A → B : C corresponds to the following TRG rules:

A → B2,2

(
B B C C
B B C C

)

| B2,2

(
B C C
B C C

)

| B2,2

(
B B C
B B C

)

|

B C | B1,2

(
B B C C

)
| B1,2

(
B C C

)
| B1,2

(
B B C

)

Notice that a CFPG production A → B : B, with two copies of the same
nonterminal B, imposes the use of indices in the corresponding TRG productions:

A → B2,2

(
B1 B1 B2 B2

B1 B1 B2 B2

)

| . . .

The 	 case is analogous, while A → a is trivial.

Theorem 19.

L(CFPG) 6= L(TRG)

Proof. It is a consequence of Theorems 16, 17, and 18, and the fact that L(TS) 6⊆
L(CFPG), as reported in [5].

An example of a TRG but not CFPG language is the following. We know
from [5] that the language which consists of a thin cross of b’s on a field of a’s is
not in L(CFPG). It is easy to show that the following TRG defines the “cross”
language:

S → B2,2







B B A A
B B A A
C C D D
C C D D







;
B → B2,2





a a
a a
b b



 ; A → B2,2





b a a
b a a
b b b





C → B2,2

(
a a
a a

)

; D → B2,2

(
b a a
b a a

)

4 Conclusions

The new TRG grammar model extends the context-free string grammars to two
dimensions. As the application area of a rewriting rule is an unbounded subpic-
ture, we use tiling to specify it. In a derivation the application areas rewritten
are partially ordered by the subpicture relation, as in a syntax tree. In three
dimensions a derivation can be depicted as a set of prisms whose bases are the

application areas of the productions, the analogue of the syntax tree for strings.
The Dyck strings then become the picture language of well nested boxes, in one
of several possible variations.

The expressive power of TRG is greater than of two previous models: the
Tiling Systems of [2] which define 2D recognizable languages; and Matz’s con-
text free picture grammars, another generalisation of context free grammars.
More work is needed to compare with other grammar families and to assess the
suitability of TRG for practical applications.

The analogy with CF string grammars raises to the educated formal lin-
guists many obvious questions, such as the formulation of a pumping lemma, of
Chomsky-Schutzenberger theorem, etc.

It would be also interesting to define a type 1 TRG model in the sense of
Chomsky’s hierarchy.

Acknowledgement

We thank Antonio Restivo for calling our attention to the problem of inventing a
class of grammars suitable to define “2D Dyck languages”. We thank Alessandra
Cherubini and Pierluigi San Pietro for their comments, and the anonymous
referees for helpful suggestions.

References

1. H. Fernau and R. Freund. Bounded parallelism in array grammars used for character
recognition. In P. Perner, P. Wang, and A. Rosenfeld, editors, Advances in Structural
and Syntactical Pattern Recognition (Proceedings of the SSPR’96), volume 1121,
pages 40–49. Berlin: Springer, 1996.

2. D. Giammarresi and A. Restivo. Recognizable picture languages. International
Journal Pattern Recognition and Artificial Intelligence, 6(2-3):241–256, 1992. Spe-
cial Issue on Parallel Image Processing. M. Nivat, A. Saoudi and P.S.P. Wangs
(Eds.).

3. D. Giammarresi and A. Restivo. Two-dimensional languages. In A. Salomaa and
G. Rozenberg, editors, Handbook of Formal Languages, volume 3, Beyond Words,
pages 215–267. Springer-Verlag, Berlin, 1997.

4. K. Inoue and A. Nakamura. Some properties of two-dimensional on-line tessellation
acceptors. Information Sciences, 13:95–121, 1977.

5. Oliver Matz. Regular expressions and context-free grammars for picture languages.
In 14th Annual Symposium on Theoretical Aspects of Computer Science, volume
1200 of lncs, pages 283–294, Lübeck, Germany, 27 February–March 1 1997. Springer.

6. Rani Siromoney. Advances in Array Languages. In Hartmut Ehrig, Manfred Nagl,
Grzegorz Rozenberg, and Azriel Rosenfeld, editors, Proc. 3rd Int. Workshop on
Graph-Grammars and Their Application to Computer Science, volume 291 of Lec-
ture Notes in Computer Science, pages 549–563. Springer-Verlag, 1987.

