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Abstract. For multimedia applications, loop buffering is an efficient
mechanism to reduce the power in the instruction memory of embed-
ded processors. Especially software controlled loop buffers are energy
efficient. However current compilers do not fully take advantage of the
possibilities of such loop buffers. This paper presents an algorithm the
explore for an application or a set of applications what is the optimal
loop buffer configuration and the optimal way to use this configuration.
Results for the MediaBench application suite show an additional 35%
reduction (on average) in energy in the instruction memory hierarchy
as compared to traditional approaches to the loop buffer without any
performance implications.

1 Introduction and motivation

Low energy is one of the key design goals of the current embedded systems for
multimedia applications. Typically the core of such systems are programmable
processors. VLIW DSP’s in particular are known to be very effective in achieving
high performance and sometimes low power for our domain of interest [10].
Examples of such processors are the Trimedia [17] processor from Philips or the
’C6x processors from Texas Instruments [18]. However, power analysis of such
processors indicates that a significant amount of power is consumed in the on-
chip (instruction) memory hierarchy: 30% of the total power according to [4]. If
the appropriate data memory hierarchy mapping techniques are applied first [7,
16], and if all methods to reduce power in the data path are applied [5], we have
performed experiments that show this number goes up to 50% if nothing is done
here. Hence, reducing this part of the budget is crucial in reducing the overall
power consumption of the system.

Loop buffering is an effective scheme to reduce energy consumption in the
instruction memory hierarchy [15]. In any typical multimedia application, signif-
icant amount of execution time is spent in small program segments. By storing
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them in a small loop buffer (also called L0 buffer) instead of the big instruction
cache (IL1), energy can be reduced. However, even the current way of applying
this with a single central loop buffer and a standard compiler still leads to a
total power contribution of more than 20%.

An important way to reduce this further is by more effectively managing
these loop buffers through a dedicated pre-compiler. The pre-compiler should
be responsible for mapping the appropriate parts of the application onto these
L0 buffers. However, to the best of our knowledge there has been little work
on algorithms and tools that use the information available in the application to
effectively profit from a software controlled loop buffer. As will be shown, the
instruction memory energy consumption can be significantly reduced when the
appropriate loop buffer configuration is used in the appropriate way.

An algorithm to explore the loop buffer design space is presented. In that,
given a program (e.g. in C), the algorithm finds the most energy efficient loop
buffer configuration and also decides what loops should be mapped to the loop
buffer. Results show an average reduction in instruction memory energy con-
sumption for typical multimedia applications of 35% as compared to a simple
loop buffer mapping method currently applied in existing work.

The rest of this paper is organized as follows: A brief account of the related
work is presented in Section 2. In Section 3 the software controlled loop buffer
organization is described. In Section 4 the energy model under consideration for
our exploration tool is outlined. Section 5 describes the loop buffer exploration
algorithm, which is our main contribution. Section 6 presents the simulation
results and Section 7 is the conclusion.

2 Related Work

Several loop buffering schemes have been proposed in the past [12, 1, 2] An
overview of the options can be found in [14]. Initially only inner loops with-
out any control constructs could be mapped to the loop buffer. In [9] support
is added for control constructs such as if-then-else, subroutine calls and nested
loops. Our loop buffer architecture also supports conditional constructs, as well
as mapping a set of nested loops. What is not discussed in [9] are the method-
ologies on how to efficiently use these new features.

Our main reason to use a software controlled loop buffer is to exploit knowl-
edge about the program in the compiler to reduce power. But, as is discussed
in [15], software controlled loop buffers also do not need the energy consuming
tag memories. Furthermore, they do not suffer any cycle penalty.

The idea to add compiler support has already been proposed in [3]. In that
paper, however, a regular cache is used (with tags) and no energy model is used
directly in the exploration framework.

The creation of a custom memory hierarchy has already been explored ex-
tensively in a data memory context [7, 16]. For instruction memory, [8] presents
tuning of the loop buffer size for simple loop buffer architectures, only supporting
inner loops.



3 Operation of the low loop buffer organization

Figure 1 illustrates the essentials of the low power loop buffer under considera-
tion. Instructions are fed to the processing unit either from the level 1 instruction
cache or through the loop buffer.

Initially the loop buffer is turned off and the program executes via IL1 (Fig-
ure 1, left). When a special instruction is encountered marking the beginning
of the loop that has to be mapped to the loop buffer, the loop buffer will
be turned on. The form of this special instruction is lbon <startaddress >,

<endaddress >, where startaddress is the address of the first instruction of the
loop and endaddress that of the last one. These values are stored in the local
controller (LC) and will be used during the execution of the loop.
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Fig. 1. The processor operates in three phases controlled by the local controller (LC):
normal operation, filling of the Loop Buffer and Loop Buffer operation

If a lbon is encountered and no startaddress is stored in the local controller,
or the startaddress in the LC is different from the one in the lbon instruction,
the first iteration will be used to fill the loop buffer. The instruction stream
will go from IL1 both to the loop buffer and to the processing unit (Figure 1,
middle). After the first iteration the IL1 can be put into low power mode and
only the loop buffer will be used (Figure 1, right).

When the loop buffer is used, a local controller will translate the program
counter to an index in the loop buffer by using the stored startaddress. This
mechanism reduces the power by avoiding the expensive tag memory found in
normal caches.

When the LC detects the program counter is bigger than endaddress, the
loop buffer will be turned off.

FOR i = 0 to 9

FOR j = 0 to 9

/* ... */

END FOR

FOR i = 10 to 99

FOR j = 0 to 9

/* ... */

END FOR
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Fig. 2. Loop nest, corresponding tree representation and two possible mappings. A is
the parent of B. B is the child of A. B and C are siblings.



4 Energy dissipation model

A tree like representation for the loops, as shown in Figure 2, is extracted from
the source code of the application. From this representation we can identify
different mappings of loops on the loop buffer. The figure shows two possible
configurations for a given program, both leading to different loop buffer sizes and
different energy consumptions. In the first configuration B and C are mapped
to different locations in the loop buffer, leading to a bigger size. In the second,
loops B and C are loaded each time the loop starts, leading to more loads from
IL1. For a given mapping of loops, the energy E is:

E =
∑l

l∈unmapped Nexec(l) × Eaccess(IL1) (1)

+
∑l

l∈mapped Nload(l) × Eaccess(IL1) (2)

+
∑l

l∈mapped Nexec(l) × Eaccess(lb) (3)

(1)

The three sums correspond to the three places in the instruction memory
where energy is consumed (see also Figure 1):

1. Executing instructions from IL1.
2. Loading the instructions into the loop buffer from IL1.
3. Executing instruction from the loop buffer on the processor core.

Loops that are mapped contribute to the last two terms, loop that are not
mapped (unmapped) to the first term. N is the number of accesses to memory
(loop buffer or IL1) due to the loading or execution of the loop. Eaccess is the
energy per access of the loop buffer or the instruction level 1 cache. The value
of Eaccess(lb) depends on the size of the loop buffer, which on itself can be
calculated when you know what loops are currently mapped and if loops are
mapped together or reloaded each time the loops is invoked.

The energy values we have used for the memories (Eaccess) are calculated
using the Wattch [6] power models. For the IL1 we used a regular cache, for
the loop buffer we used a cache without tags. Although the Wattch model has
some known limitations, it is still suited for our purpose since we only need good
relative energy values.

5 Design Space Exploration

Since the compiler is responsible for inserting the lbon instructions, it should
decide what is the most energy efficient way to do so. This leads to a design
space exploration problem with the following goals:

1. What is the optimal loop buffer size? If the loop buffer is too small, not
enough loops fit and there will be too many access to the IL1 cache. If the
loop buffer is too big the energy per access of the loop buffer will be too big.

2. What is the best way to map the loops that fit? If we decide to use the
loop buffer for a certain loop, we still have several options: Do we map the
loop entirely or only parts of the loop? If we load two loops like B and C in
Figure 2, do we put them in the same address space or in different address



spaces? The former will save us space in the loop buffer, we will have to load
the loop each time it starts. The latter case needs a bigger loop buffer, but
will save us accesses to IL1 to load the loops (as can be seen from the energy
model from the previous section).

5.1 Size of the design space

Using a brute force approach to find the optimal mapping of loops to the loop
buffer by trying all the configurations is not feasible. The number of combinations
you would have to try for the outer-most loops of the program is:

#Sol(OuterLoop) = 2 +
∏

C∈Child Loops

#Sol(C) (2)

We count the two basic solutions (mapping the loop completely or not mapping
the loop at all), plus all the combinations of possible solutions of the immediately
nested loops (children). For MPEG2 encoding, for example, this would lead to
more than 1048 combinations. It’s clear that we need an effective heuristic to
find an optimal mapping.

5.2 Exploration algorithm

Instead of the brute force approach, we use a recursive algorithm to explore our
design space in a more intelligent way (see Algorithm 1). The loops of a program
are represented as a tree as already presented in Figure 2. The Algorithm works
like this: the procedure Find Mappings will be called with the top loop of the
tree as an argument. If the program has multiple top loops, a dummy loop with
iteration count of one, can be assumed around the whole program.

Two basic solutions exist for a loop passed to Find Mappings: mapping the
loop completely or not mapping the loop at all. Both solutions are kept since they
will have a different energy consumption and required loop buffer size. If the loop
has children, Find Mappings is called recursively to find the solutions of the child
loops. These solutions are then combined in the procedure Filter Solution.
Here a heuristic is used to prune the design space: if for a certain loop and loop
buffer size several solutions exist, we only keep one solution for each possible size,
namely, the most energy efficient solution. Although we do not have a proof, we
believe that only this solution might lead to the optimum for the top loop. For
several small examples we did an exhaustive search, and for these our assumption
was indeed true. Using this heuristic, the number of solutions you have to keep
is limited to the number of different loop buffer sizes you will encounter. For a
typical application this will be less than 1000 combinations, which is much less
than the total number of combinations of Equation 2.

5.3 Extension: partial mapping of loops

We have extended the algorithm to support partial mapping of loops. If a certain
loop body contains basic blocks that are almost never executed (they contain for
example exception handling code), it does not make sense to map those to the
loop buffer. To add support for this we had to make a minor modification to the



Algorithm 1 Design space exploration to map a given set of loops to a loop
buffer. Energy and needed loop buffer size are calculated using Equation 1

Procedure: Find Mappings
Input: Loop l

Output: Set of solutions S = {(z1, E1), (z2, E2), ...(zn, En)} such that for each
possible loop buffer size zi, Ei is the minimal energy for that size}
Begin

/* 2 base solutions */
S ⇐ {( 0, Compute Energy(l, unmapped) )}
S ⇐ S ∪ {( size(l), Compute Energy(L, mapped) )}

/* Find the solutions of the children */
let {c1, c2, ..., cn} ← children of l

for i = 0 to n do

Soli ← Find Mappings(ci)
end for

Filter Solutions(S, Sol1 × Sol2 × ...× Soln)
End

Procedure: Filter Solutions
Input: Sol1 × Sol2 × ...× Soln, Set of Solutions S

Output: Updated set of Solutions S

Begin

/* Combine the solutions of the children */
/* filtering out the not needed solutions */
for all (sol1, sol2, ..., soln) ∈ Sol1 × Sol2 × ...× Soln do

let (z, energy current)⇐ New solution by combining s1, s2, ..., sn

/* We only keep one (the best) solution per size */
let (z, energy optimal)⇐ Current solution with size z

if energy optimal does not exist yet then

S ⇐ S ∪ {(z, energy current)}
else if energy current < energy optimal then

S ⇐ S \ {(z, energy optimal)} ∪ {(z, energy current)}
end if

end for

End

algorithm. Instead of only two basic solutions – mapping the loop completely
or not mapping the loop – we now also consider all possibilities in between. We
start with no basic blocks mapped, and for each new possibility we add the block
that is executed the most amongst all of them that are not mapped yet. The
solution generated last is precisely the one where the whole loop is mapped.

This scheme can be handled with our loop buffer hardware since the compiler
we use applies trace-based code layout [19]. The blocks of the most frequently
executed trace are grouped together at the beginning of the procedure. The less
executed code is put at the end of the instruction layout. By changing the value
of endaddress of the lbon instruction, you decide what basic blocks are mapped.



6 Results and discussion

We have used the MediaBench [13] application suite to compare our work, both
mapping of only complete and partial loops, to existing implementations of the
loop buffer. Table 1 shows the benchmarks we used, and the optimal loop buffer
size (in number of instructions) for each benchmark in terms of energy.

Table 1. List of benchmarks used, and optimal loop buffer size

Benchmark Description Opt. Size Benchmark Description Opt. Size

ADPCM decode Audio 45 ADPCM encode Audio 53
AES Encryption 88 Blowfish encode Encryption 51
JPEG decode Image 128 JPEG encode Image 59
EPIC Image 55 g721 decode Audio 144
g721 encode Audio 155 ghostscript Image 85
gsm decode Audio 81 gsm encode Audio 81
H.263 Video 182 mesa osdemo 3D graphics 64
MPEG2 decode Video 57 MPEG2 encode Video 76
Rasta Speech Recogn. 76 SHA Encryption 25
Snake 3D graphics 179 Overall Optimum 99

6.1 Energy versus loop buffer size

Figure 3 (left) shows for an example application the loop buffer size versus the
energy of the optimal mapping on a loop buffer of that size. Since the algorithm
we use (the extended one of Section 5.3) only generates solutions for certain loop
buffer sizes, the graph is discrete. Figure 3 (right) shows the same information
but for all applications tested together. For all sizes between 0 and 255 we took
the energy of optimal solutions for that size of all applications. The sum of those
values leads for the optimal solution for each size.
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Fig. 3. Instruction memory energy consumption versus the loop buffer size, for one
specific benchmark (left) and for all benchmarks together (right)

The graph also shows you can indeed efficiently explore the energy-size trade-
off with the algorithm. For small sizes the total energy is dominated by the IL1



energy. As the loop buffer size increases more loops will be mapped to the small
loop buffer and the IL1 energy will go down. With the size, also the energy per
access of the loop buffer increases, until at a certain point the most energy will
be consumed in the loop buffer itself. Generally, this will happen in the knee of
the ”% Mapped”-curve, where it does not pay off anymore to map more loops
to the loop buffer.

An interesting feature to notice in the left graph, is that the algorithm pro-
duces two solutions with the same loops mapped. One solution needs a size of
43, the other a size of 86. This is because the program has two loops of the
same size (43), and they can be mapped to different locations in the loop buffer,
needing a loop buffer of size 86, or they can be mapped on the same location.
For this last solution you are required to load the loop each time you enter it,
resulting in more loads from IL1 to the loop buffer. You cannot say beforehand
what will be the most energy efficient solution in such case, since this depends
on the behavior of the program.

The other graph shows the global energy behavior of all applications together.
The minimal energy is consumed for a loop buffer of size 99. So if you would like
to build one loop buffer for the whole application domain, 99 would be the best
choice.

6.2 Comparison of different mapping strategies

Figure 4 shows the normalized energy consumption in the instruction memory
of the optimal mapping according to five different mapping strategies:
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– no loop buffer: All loops are executed from the IL1 memory. Since much
previous work has been done on loop buffers and it is well known that mul-
timedia applications contain a lot of loops, making them very suitable for
use with a loop buffer, has been done it would not be fair to use this case
(no loop buffer) as our reference case. What can be seen, however, is that
by simply using a loop buffer, although maybe in a not so clever way, you
can already reduce the energy in instruction memory significantly (72% on
average).

– inner loops: This strategy only maps the most inner loops to the loop buffer.
Since this is what is implemented in existing loop buffer architectures, the
other energy values are normalized against this strategy.

– whole loops: This is the basic version of the algorithm, as described in
Section 5.2. The average gain amongst all benchmarks as compared to the
previous strategy is 35%, with maxima for some benchmarks of up to 88%.
This gain has two main reasons: the first reason for energy reduction is the
fact that not only inner loops but also the outer loops can be mapped. If the
inner loops have a too low iteration count, we can also map the surrounding
loop(s), because we have support in our loop buffer for nested loops. For
this reason simple applications with mostly inner loops, such as ADPCM
and SHA, perform already very well with the strategy that only maps inner
loops. For complex applications, such as MPEG2 and JPEG, taking into
account all the loops and not just the inner one, has indeed a big impact (a
gain of a factor 2 or more). The other main reason is the fact that we explore
the trade off between mapping two sibling loops separately or together on
the loop buffer.

– partial loops: This is the extended version of our algorithm, that is able
to map loops only partially. For certain benchmarks, such as ghostscript
or MPEG2 Decoding, there are loops that contain less frequently executed
basic blocks. For these benchmarks not mapping the whole loop gives a
significant gain. Averaged over all applications the gain compared to the
previous strategy is limited, only 7%.

– fixed size: As can been seen in Figure 3, the overall optimal size over all
benchmarks is 99 instructions. We have fixed this size and calculated the opti-
mal mapping for all benchmarks. For some benchmarks the optimal mapping
(with a free-to-choose loop buffer size, cf. Table 1) is close to 99. For these
benchmarks the penalty for not being able to choose the size of the loop
buffer is small. For others, however there is a penalty because 99 instruc-
tions is not enough or too much for these benchmarks. The average penalty
as compared to partial loops is 20%. A solution here is to perform additional
code transformations to make your application more suitable for a specific
loop buffer configuration.

7 Conclusion and Future Work

This paper presented loop buffer exploration tool based on detailed analytical
energy models for software controlled loop buffers. An algorithm was presented to



find a good loop buffer configuration and an optimal mapping for an application
on the loop buffer. The knowledge the compiler has about the application is
exploited to make the right decisions. Different loop buffers can be evaluated
allowing the user to make the trade-off between the size of the loop buffer and
the consumed energy.

The algorithm was demonstrated using MediaBench, giving an average of
65% reduction in energy consumption, with peaks of 88% for some applications.
The algorithm also allows designers to find the best loop buffer configuration for
an application domain instead of one single application.

After these optimizations the original contribution of the instruction memory
to the total processor power has gone down from 53% to 20%. This means that
there is still room for improvement. Since the loop buffer is now the hot spot

of the instruction memory, clustering [11] can be applied to the loop buffer to
further reduce the energy. How to optimally use a software controlled, clustered
loop buffer will be the subject of future work.

References
1. Tim Anderson and Sanjive Agarwala. Effective hardware-based two-way loop cache for high

performance low power processors. In Proc of ICCD, September 2000.
2. R. S. Bajwa and et al. Instruction buffering to reduce power in processors for signal processing.

IEEE Transactions on VLSI, 5(4):417–424, December 1997.
3. Nikolaos Bellas, Ibrahim Hajj, Constantine Polychronopoulos, and George Stamoulis. Architec-

tural and compiler support for energy reduction in the memory hierarchy of high performance
microprocessors. In Proc of ISLPED, August 1998.

4. L. Benini, D. Bruni, M. Chinosi, C. Silvano, V. Zaccaria, and R. Zafalon. A power modeling and
estimation framework for vliw-based embedded systems. In in Proc. Int. Workshop on Power
And Timing Modeling, Optimization and Simulation PATMOS, September 2001.

5. Luca Benini and Giovanni de Micheli. Sysmtem-level power optimization: Techniques and tools.
ACM TODAES, 5(2):115–192, April 2000.

6. David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A framework for architectural-
level power analysis and optimizations. In Proc of ISCA, pages 83–94, June 2000.

7. Francky Catthoor, Koen Danckaert, Chidamber Kulkarni, Erik Brockmeyer, Per Gunnar Kjelds-
berg, Tanja Van Achteren, and Thierry Omnes. Data access and storage management for
embedded programmable processors. Kluwer Academic Publishers, March 2002.

8. S. Cotterell and F. Vahid. Tuning of loop cache architectures to programs in embedded system
design. In Proc of International Symposium on System Synthesis (ISSS), October 2002.

9. A. Gordon-Ross, S. Cotterell, and F. Vahid. Exploiting fixed programs in embedded systems:
A loop cache example. In Proc of IEEE Computer Architecture Letters, Jan 2002.

10. Margarida F. Jacome and Gustavo de Veciana. Design challenges for new application-specific
processors. Special issue on Design of Embedded Systems in IEEE Design & Test of Com-
puters, April-June 2000.

11. Murali Jayapala, Francisco Barat, Pieter OpDeBeeck, Francky Catthoor, Geert Deconinck, and
Henk Corporaal. A low energy clustered instruction memory hierarchy for long instruction word
processors. In Proc of PATMOS, September 2002.

12. Johnson Kin, Munish Gupta, and William H. Mangione-Smith. Filtering memory references to
increase energy efficiency. IEEE Transactions on Computers, 49(1):1–15, January 2000.

13. Chunho Lee and et al. Mediabench: A tool for evaluating and synthesizing multimedia and
communicatons systems. In International Symposium on Microarchitecture, pages 330–335,
1997.

14. Lea Hwang Lee, Bill Moyer, John Arends, and Ann Arbor. Low-cost embedded program loop
caching - revisited. Technical report, EECS, University of Michigan, December 1999.

15. Lea Hwang Lee, William Moyer, and John Arends. Instruction fetch energy reduction using loop
caches for embedded applications with small tight loops. In Proc of ISLPED, August 1999.

16. Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau. Memory data organization for
improved cache performance in embedded processor applications. ACM TODAES, 2(4):384–
409, 1997.

17. G.A. Slavenburg, S. Rathnam, and H. Dijkstra. The Trimedia TM-1 PCI VLIW media processor.
In Proceedings Hot Chips VIII Conference, 1996.

18. Texas Instruments Inc., http://www.ti.com. TMS320 DSP Family Overview.
19. Trimaran group, http://www.trimaran.org. Trimaran: An Infrastructure for Research in

Instruction-Level Parallelism, 1999.


