
Low Power Coarse-Grained
Reconfigurable Instruction Set Processor

Francisco Barat Murali Jayapala Tom Vander Aa Geert Deconinck Rudy Lauwereins
Henk Corporaal

Abstract— In this paper, we present a novel coarse-grained re-
configurable processor and study its power consumption. Prelimi-
nary results show that the presented coarse-grained processor can
achieve on average 2.5x the performance of a RISC processor at
an 18% overhead in energy consumption.

I. INTRODUCTION

This paper presents CRISP, a coarse-grained reconfigurable
instruction set processor designed for multimedia applications
that can accelerate multimedia applications in a power efficient
manner. The power of this architecture lies in the reconfig-
urable logic, which is composed of complex blocks such as
ALUs or multipliers, that operate on the data sizes typically
found in multimedia applications (8 to 32 bits), and is divided
in independently enabled slices in order to reduce overall en-
ergy consumption and reconfiguration times. Also important
is the tight coupling to the main microprocessor (the reconfig-
urable logic is seen as an extra functional unit) that allows quick
control and data communication between the processor and the
reconfigurable logic. Results on a set of multimedia applica-
tions show that the reconfigurable processor is able to achieve
on average 2.5 times the performance of a RISC processor with
just an average of 18% energy overhead.

II. A LOW POWER RECONFIGURABLE ARCHITECTURE

CRISP (Coarse-grained Reconfigurable Instruction Set Pro-
cessor) is an instruction set processor composed of a main pro-
cessor core tightly coupled to some coarse-grained reconfig-
urable logic. The coarse-grained reconfigurable logic is placed
in a reconfigurable functional unit (RFU), and just like any
other functional unit, an operation can be issued to it every
clock cycle. The RFU reads/ writes data from/ to the main reg-
ister file. The main processor can be any type of processor,
though in this paper we will assume the processor is a simple
RISC (Reduced Instruction Set Computer) processor.

Figure 1 presents the overall architecture of the complete pro-
cessor. The main processor core reads its instructions from the
level 1 instruction cache and obtains data via the level 1 data
cache. Both caches are connected to a unified level 2 cache,
which is in turn connected to an external memory. The reconfig-
urable fabric, in the center of the figure and directly controlled

F. Barat, M. Jayapala, T. Vander Aa and G. Deconinck are with
ESAT/K.U.Leuven, Belgium. email: firstname.lastname@esat.kuleuven.ac.be

R. Lauwereins is with Imec, Belgium. email: lauwerei@imec.be
H. Corporaal is with T.U.Eindhoven, The Netherlands. email:

h.corporaal@tue.nl

PE PE PE PEConf. RF
Mem.

Slice 0

PE PE PE PEConf. RF
Mem.

Slice 1

PE PE PE PEConf. RF
Mem.

Slice 2

PE PE PE PEConf. RF
Mem.

Slice 3

Processor CoreInstruction L1 Cache

Unified L2 Cache

Data L1 Cache

To External Memory

Fig. 1. Example CRISP instance (RFU: Reconfigurable Functional Unit, PE:
Processing Element, FU: Functional Unit)

PE PE PE PE

InterconnectTo other
slices

To other
slices

RF

Fig. 2. Internals of a reconfigurable slice

by the main processor core, contains configuration memory that
is loaded via the unified level 2 cache (this allows reuse of con-
figurations loaded from external memory and reduces reconfig-
uration times). The reconfigurable fabric can directly access
the data cache via several data ports. Additionally, the recon-
figurable logic communicates with the main processor core via
a functional unit interface.

As shown in figure 1, the reconfigurable functional unit is di-
vided in reconfigurable slices, one of which is shown with more
detail on figure 2. Each slice contains several coarse-grained
processing elements (PEs), a register file, interconnect, and a
small configuration memory. Each processing element is ei-
ther an ALU, shifter, multiplier or memory unit. Such complex
processing elements are better suited than the traditional logic
blocks based on look up tables (LUTs) for the execution of the
operations typically found in multimedia applications, which
are word-oriented and not bit-oriented. These complex PEs al-
low the reconfigurable logic to operate at higher frequencies
with lower power consumption when compared to traditional
FPGAs.



The processing elements inside a slice are connected together
through programmable interconnect. This interconnect is a full
crossbar that operates on words and has the same complexity
as the bypass network typically found in current VLIW (Very
Long Instruction Word) microprocessors. This crossbar can
connect the output of any processing element to the input of any
other processing element. It also connects the processing ele-
ments to the register file and to the other slices. In most cases,
each processing element writes its output to the register file of
the slice, but this behavior can be optionally bypassed, just like
in traditional FPGAs, and the result routed to a different pro-
cessing element. By combining this optional register write and
the interconnect crossbar, it is possible to perform spatial com-
putation such that elements in a data flow chain are connected
together through the crossbar. The processing element at the
end of the chain is connected to the register file.

Each reconfigurable slice also contains a configuration mem-
ory. This configuration memory stores the configuration for the
slice’s datapath components. Since the typical loop requires
several configurations to be quickly alternated (as will be dis-
cussed in section III), the configuration memory must be multi-
contexted, (i.e. it must be able to store several configurations).
Switching from one context (or configuration) to another takes
just one clock cycle and is equivalent to reading from a shallow
and wide memory. In the case of a slice with four process-
ing elements, the width of this configuration memory is around
128 bits, much less than the bits required for a slice of a typ-
ical FPGA. The number of configurations in the configuration
memory typically ranges between 8 and 32 contexts. Ideally,
the number of contexts should be kept as small as possible to
reduce the energy consumption of the configuration memory.

The reconfigurable functional unit is activated via a special
reconfigurable instruction as shown in Figure 3. This recon-
figurable instruction contains two main pieces of information.
First, it contains a reconfigurable instruction identifier (RID)
that specifies which of the many available configurations must
be used. This identifier can select among a larger number of
configurations than the number of contexts available in the con-
figuration memory. If the required configuration is not currently
loaded in the configuration memory, which behaves like a small
cache indexed by this RID, the system is halted and the ade-
quate configuration is loaded from the unified level 2 cache.

Aside from the RID, the reconfigurable instruction includes
several fields of one bit length that specify which slices are go-
ing to be activated. Figure 3 shows these slice enable fields
(named ENx in the figure). For those parts of the application
that require a small number of processing elements, only the
first slice will be activated. For those parts with higher paral-
lelism requirements, more slices will be used. This mechanism,
which can be considered as a form of partial reconfiguration, re-
duces the size of the configuration stream that must be loaded in
the case of a configuration miss. Additionally, the slices of the
reconfigurable datapath that are not required can be switched
off, thus providing an effective form of energy consumption
control.

PE PE PE PEConf. RF
Mem.

Slice 0

PE PE PE PEConf. RF
Mem.

Slice 1

PE PE PE PEConf. RF
Mem.

Slice 2

PE PE PE PEConf. RF
Mem.

Slice 3

Reconfigurable Instruction

EN3 EN2 EN1 EN0 RID

Fig. 3. Fields of a reconfigurable instruction. EN: slice enable bit, RID:
reconfigurable instruction identifier

III. COMPILATION TECHNIQUES

Code generation for any reconfigurable instruction set pro-
cessor involves main two steps: synthesis of the different con-
figurations for the reconfigurable array and generation of the
code for the main processor (not mapped to the reconfigurable
array). In the case of CRISP, with processing elements of
complexity similar to standard functional units, existing VLIW
techniques have been reused.

On our research compiler (based on Trimaran [1]), code gen-
eration for loops is based on software pipelining. In software
pipelining, iterations are initiated at regular intervals and exe-
cute simultaneously but in different stages of the computation.
This allows mapping the available parallelism onto the num-
ber of resources of CRISP. With this technique [2], the code
generated for a loop will contain as many configurations as the
initiation interval of the loop (the number of cycles of the loop
kernel). It is therefore important to check that an iteration does
not last more than the number of available contexts in the con-
figuration cache. If this was not the case, the generated code
would need constant reconfiguration and performance would
fall down.

Software pipelining can also be modified to exploit the abil-
ity to perform spatial computation by chaining operations [2].
This allows a reduction of the critical path length of inner loops,
with the corresponding decrease in execution time. The process
of code generation with spatial computation requires a proper
model of the timing delay of the processing elements and the
interconnect, since the process is similar to the place and route
stage in FPGAs.

Additionally, our compiler studies for each loop the required
number of slices. Only the necessary number of slices are used,
in order to reduce both reconfiguration times and energy con-
sumption.

IV. RESULTS

We evaluated a set of multimedia applications on a simulated
processor. We have used Wattch [3] as a starting point for our
power calculations. Figure 4 shows the normalized execution
time of the set of benchmarks in several configurations. RISC
represents the baseline RISC processor and the other entries
represent the RISC processor with the number of reconfigurable
slices ranging from 1 to 4. From this graph we can see that as
the number of slices is increased, the execution time drops un-
til the curve saturates. After this saturation point adding extra



Fig. 4. Normalized execution time versus number of reconfigurable slices

Fig. 5. Normalized execution time versus number of reconfigurable slices

slices does not improve the performance. The saturation point
depends on characteristics of the benchmark. ADPCM encode
saturates with just one cluster, while others like ADPCM de-
code or mpeg2dec profit with 3 or more clusters. From this
figure we see that the average performance increase is 2.5 and
the maximum is 5.

Figure 4 shows the normalized energy consumption for the
benchmark set. In general, the total energy consumption in-
creases as more resources are added to the processor. The fact
that the increase in energy consumption is not as fast as one
might expect is derived from a better utilization of the process-
ing elements of the processor as more slices are added. Af-
ter the performance saturation point, the energy consumption
is only increased by the extra load in the clock network (better
clock gating would reduce this effect). The extra slices that are
not using are basically shut off and hence their contribution to
the energy consumption is negligible.

Figure 6 shows the normalized energy delay product (calcu-
lated as application execution time in cycles times the applica-
tion energy consumption). It can be observed from there that
all reconfigurable processors have a better energy delay prod-
uct than the baseline RISC. The reason for this is that the re-
configurable processors are able to exploit the parallelism in
the application reducing the number of instructions that need to
executed.

Figure 7 shows the different components to the energy con-
sumption of the RISC processor and a RISC processor with 3
slices for the benchmark AES. The benchmark AES runs at 2.5
the speed of the RISC processor and consumes only around
15% more energy consumption. We can see that a significant
part of the energy consumption of the RISC processor is trans-
fered to the reconfigurable components in the reconfigurable
processor. Energy in the instruction memory decreases at an in-
crease in the energy of the configuration memory. Energy from
the functional units decreases and is transfered to the processing
elements (resulting in almost the same energy consumption). In

Fig. 6. Energy-delay product versus number of reconfigurable slices

Fig. 7. normalized energy distribution for a RISC processor and a RISC pro-
cessor with 3 slices for benchmark AES (right)

the case of the register file energy, the energy in all register files
(processor core plus reconfigurable logic) is increased due to
the usage of more power consuming units in the reconfigurable
logic (multiported register files). Finally, the clock power is
also increased, and from what can be seen from the figure, rep-
resents a significant amount of the energy consumption.

V. CONCLUSIONS

This paper has presented a coarse-grained architecture de-
signed for low power multimedia applications. The recon-
figurable logic is divided in slices that can be independently
activated to reduce the power consumption of the processor.
The processor achieves an average 2.5 performance increase
over a standard RISC processor with just an 18% energy over-
head. The reasons for the low power are the following; coarse-
grained datapath elements, small and sliced configuration mem-
ory, sliced datapath and energy aware compiler.

Future work will study in more detail the power consump-
tion of the processor. Also, we will study the effects of spatial
computation on the performance and power consumption of the
processor.

Acknowledgements

This work is in part supported by MESA under MEDEA+.

REFERENCES

[1] “Trimaran: An infrastructure for instruction level parallelism.”
http://www.trimaran.org, 1999.

[2] F. Barat, M. Jayapala, P. O. de Beeck, and G. Deconinck, “Software
pipelining for coarse-grained reconfigurable instruction set processors,” in
Proc. ASP-DAC, pp. 338–344, Jan. 2002.

[3] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimizations,” in Proc. 27th Int’l
Symp. Computer Architecture (ISCA 2000), pp. 83–94, June 2000.


