
Exploiting loop-level parallelism on coarse-grained
reconfigurable architectures using modulo
scheduling

B. Mei, S. Vernalde, D. Verkest, H. De Man and R. Lauwereins

Abstract: Coarse-grained reconfigurable architectures have become increasingly important in
recent years. Automatic design or compilation tools are essential to their success. A modulo
scheduling algorithm to exploit loop-level parallelism for coarse-grained reconfigurable
architectures is presented. This algorithm is a key part of a dynamically reconfigurable embedded
systems compiler (DRESC). It is capable of solving placement, scheduling and routing of
operations simultaneously in a modulo-constrained 3D space and uses an abstract architecture
representation to model a wide class of coarse-grained architectures. The experimental results show
high performance and efficient resource utilisation on tested kernels.

1 Introduction

Coarse-grained reconfigurable architectures have become
increasingly important in recent years. Various architectures
have been proposed [1–4]. These architectures often consist
of tens to hundreds of functional units (FUs), which are
capable of executing word- or subword-level operations
instead of bit-level ones found in common FPGAs. This
coarse granularity greatly reduces the delay, area, power
and configuration time compared with FPGAs, but at the
expense of flexibility. Other features include predictable
timing, a small configuration storage space, flexible
topology, combination with a general-purpose processor
etc. On the other hand, compared with a traditional ‘coarse-
grained’ very long instruction word (VLIW), the partial
connectivity of coarse-grained reconfigurable architectures
makes them scalable but still cost- and power-efficient.

The target applications of these architectures, e.g.
telecommunications and multimedia applications, often
spend most of their time executing a few time-critical
code segments with well-defined characteristics. So the
performance of a whole application may be improved
considerably by mapping these critical segments, typically
loops, on a hardware accelerator. Moreover, these compu-
tation-intensive segments often exhibit a high degree of
inherent parallelism. This makes it possible to use the
abundant computation resources available in coarse-grained
architectures.

Unfortunately, few automatic design and compilation
tools have been developed to exploit the massive

parallelism found in applications and extensive computation
resources found in coarse-grained reconfigurable architec-
tures. Some research [1, 4] uses structure- or GUI-based
design tools to manually generate a design, which obviously
limits the size of the design that can be handled. Some
researchers [5, 6] focus on instruction-level parallelism
(ILP) in limited scope, fail to make use of the coarse-grained
architecture efficiently and in principle cannot reach higher
parallelism than a VLIW. Some recent research has started
to exploit loop-level parallelism (LLP) by applying
pipelining techniques [7–10], but still suffers from severe
limitations in terms of architecture or applicability (see
Section 6).

To address these problems, this paper presents a modulo
scheduling algorithm, which is a key part of our DRESC
framework [11], to exploit LLP on coarse-grained archi-
tectures. Modulo scheduling is a software pipelining
technique used in ILP processors such as VLIW to improve
parallelism by executing different loop iterations in parallel
[12]. Applied to coarse-grained architectures, modulo
scheduling becomes more complex, being a combination
of placement and routing (P&R) in a modulo-constrained
3D space. To the best of our knowledge, modulo scheduling
has not been successfully applied to arbitrarily connected
coarse-grained architectures. We propose an abstract
architecture representation, modulo routing resource graph
(MRRG), to enforce modulo constraints and describe the
architecture. The algorithm combines ideas from FPGA
P&R and modulo scheduling from VLIW compilation. The
algorithm has been tested on a set of benchmarks, which are
all derived from C reference code of TI’s DSP benchmarks
[13], and results show high performance and efficient
resource utilisation on an 8 � 8 coarse-grained architecture.

2 Target architecture

Our target platforms are a family of coarse-grained
reconfigurable architectures. As long as certain features
are supported (see later), there is no hard constraint on the
number of FUs and register files, and the interconnection
topology of the matrix. This approach is similar to the work
on KressArray [14]. The difference is that we integrate
predicate support, distributed register files and configuration

q IEE, 2003

IEE Proceedings online no. 20030833

doi: 10.1049/ip-cdt:20030833

The authors are with IMEC vzw, Kapeldreef 75, B-3001, Leuven, Belgium

B. Mei, D. Verkest, H. De Man and R. Lauwereins are also with the
Department of Electrical Engineering, Katholic Universiteit Leuven,
Leuven, Belgium

D. Verkest is also with the Department of Electrical Engineering, Vrije
Universiteit Brussel, Brussel, Belgium

Paper received 15th May 2003

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003 255

RAM to make the architecture template more generally
applicable and efficient.

Basically, the target architecture is a regular array of
functional units and register files. The FUs are capable of
executing a number of operations, which can be hetero-
geneous among different FUs. To be applicable to different
types of loops, the FU supports predicate operation. Hence,
through if-conversion and hyperblock construction [15],
while-loops and loops containing conditional statements are
supported by the architectures. Moreover, predicate support
is also essential in order to remove the loop-back operation
and explicit prologue and epilogue. Register files (RF)
provide small local storage space. The configuration RAM
controls how the FU and multiplexers are configured, pretty
much like instructions for processors. A few configurations
are stored locally to allow rapid reconfiguration. Figure 1
depicts one example of organisation of FU and register file.
Each FU has three input operands and three outputs. Each
input operand can come from different sources, e.g. register
file or bus, by using multiplexers. Similarly the output of a
FU can be routed to various destinations such as inputs of
neighbour FUs. It should be noted that the architecture
template does not impose any constraint on the internal
organisation of the FU and RF. Figure 1 is just one example
of organisation of FU and RF. Other organisations are
possible, e.g. two FUs sharing one register file.

At the top level, the FUs and RFs are connected through
point-to-point connections or a shared bus for communi-
cation. Again, a very flexible topology is possible. Figure 2
shows two examples. In Fig. 2a, all neighbouring tiles have
direct connections. In Fig. 2b, column and row buses are
used to connect tiles within the same row and column.
Using this template we can mimic many coarse-grained

architectures found in the literature and also perform
architecture exploration within the DRESC design space.

3 Modulo scheduling

The objective of modulo scheduling is to engineer a
schedule for one iteration of the loop such that this same
schedule is repeated at regular intervals with respect to
intra- and inter-iteration dependency and resource con-
straints. This interval is termed the initiation interval (II),
essentially reflecting the performance of the scheduled loop.
Various effective heuristics have been developed to solve
this problem for both unified and clustered VLIW [16–19].
However, they cannot be applied to a coarse-grained
reconfigurable architecture because the nature of the
problem becomes more difficult, as illustrated next.

3.1 Problem illustrated

To illustrate the problem, consider a simple dependency
graph, representing a loop body, in Fig. 3a and a 2 � 2
matrix in Fig. 3b. The scheduled loop is depicted in Fig. 4a,
where the 2 � 2 matrix is flattened to 1 � 4 for convenience
of drawing; however, the topology remains the same.

Figure 4a is a space-time representation of the scheduling
space. From Fig. 4a, we see that modulo scheduling on
coarse-grained architectures is a combination of three sub-
problems: placement, routing and scheduling. Placement
determines on which FU of a 2D matrix to place one
operation. Scheduling, in its literal meaning, determines in
which cycle to execute that operation. Routing connects the
placed and scheduled operations according to their data
dependencies. If we view time as an axis of 3D space, the
modulo scheduling can be simplified as a placement and
routing problem in a modulo-constrained 3D space, where
the routing resources are asymmetric because any data can
only be routed from smaller time to bigger time, as shown in
Fig. 4a. Moreover, all resources are modulo-constrained
because the execution of consecutive iterations that are in
distinct stages is overlapped. The number of stages in one
iteration is termed stage count (SC). In this example, II ¼ 1
and SC ¼ 3: The schedule on the 2 � 2 matrix is shown in
Fig. 4b. fu1 to fu4 are configured to execute n2, n4, n1 and
n3, respectively. In this example, there is only one
configuration. In general, the number of configurations
that need to be loaded cyclically is equal to II.

By overlapping different iterations of a loop, we are able
to exploit a higher degree of ILP. In this simple example, the
instruction per cycle (IPC) is 4. As a comparison, it takes
three cycles to execute one iteration in a non-pipelined
schedule due to the data dependencies, corresponding to an
IPC of 1.33, no matter how many FUs are in the matrix.

Fig. 3

a Simple dataflow graph
b 2 � 2 reconfigurable matrix

Fig. 1 Example of FU and register file

Fig. 2 Examples of interconnection

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003256

3.2 Modulo routing resource graph

As shown in the previous Section, the modulo scheduling
problem for coarse-grained architectures is essentially a
P&R problem in a modulo-constrained 3D space. One
difficult problem is how to model all heterogeneous routing
resources in the 3D space. For example, FU may be used as
routing resource. It can take data from one source port and
copy it to the output port. RF can also serve as a routing
resource. Data is written into an RF through one input port,
and is read out later. This is essentially a routing capability
along the time axis. Another problem is how to enforce the

modulo constraint to make any modulo scheduling algor-
ithm easier.

To address these problems, we propose a graph
representation, namely modulo routing resource graph
(MRRG), to model the architecture internally for the
modulo scheduling algorithm. MRRG combines features
of the modulo reservation table (MRT) [12] for software
pipelining and the routing resource graph [20] used in
FPGA P&R, and only exposes the necessary information to
the modulo scheduling algorithm. A MRRG is a directed
graph G ¼ fV ;E; IIg; which is constructed by composing

Fig. 4

a Modulo scheduling example
b Configuration for 2 � 2 matrix

Fig. 5 MRRG representation of DRESC architecture parts

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003 257

sub-graphs representing the different resources of the
DRESC architecture. Because the MRRG is a time–space
representation of the architecture, every subgraph is
replicated each cycle along the time axis. Hence each
node v in the set of nodes V is a tuple (r, t) where r refers to
the port of resource and t refers to the time stamp. The edge
set E ¼ fðvm; vnÞ j tðvmÞ <¼ tðvnÞg corresponds to switches
that connect these nodes—the restriction tðvmÞ <¼ tðvnÞ
modelling the asymmetric nature of the MRRG. Finally,
II refers to the initiation interval. MRRG has two important
properties. First, it is a modulo graph. If scheduling an
operation involves the use of node ðr; tjÞ; all the nodes
fðr; tkÞ j tj mod II ¼ tk mod IIg are used too. Second, it is an
asymmetric graph. It is impossible to find a route from node
vi to vj; where tðviÞ > tðvjÞ: As we will see in Section 3.4,
this asymmetric nature imposes big constraints on the
scheduling algorithm.

During scheduling we start with a minimal II and
iteratively increase the II until we find a valid schedule
(see section 3.4). The MRRG is constructed from the
architecture specification and the II to try. Each component
of the DRESC architecture is converted to a subgraph in
MRRG.

Figure 5 shows some examples. Figure 5a is a 2D view of
an MRRG subgraph corresponding to an FU, which means,
in the real MRRG graph with time dimension, all the
subgraphs have to be replicated each cycle along the time
axis. For FU, all the input and output ports have
corresponding nodes in the MRRG graph. Virtual edges
are created between src1 and dst, src2 and dst etc. to model
the fact that an FU can be used as routing resource to
connect src1 or src2 directly to dst acting just like a
multiplexer or demultiplexer. In addition, two types of
artificial nodes are created, namely source and sink. When a
commutative operation, e.g. add, is scheduled on this FU,
the source or sink node are used are used as routing
terminals instead of the nodes representing ports. Thus the
router can freely choose which port to use. This technique
improves the flexibility of the routing algorithm, and leads
to higher routability.

Fig. 5b shows a space–time MRRG subgraph for an RF
with one write port and two read ports. The idea is partly
from [21]. Similar to the FU, the subgraph has nodes
corresponding to each input and output port, which are
replicated over each cycle. Additionally, an internal node is
created to represent the capacity of the register file. All
internal nodes along the time axis are connected one by one.
The input nodes are connected to the internal node of next
cycle, whereas the output nodes are connected to the
internal node of this cycle. In this way, the routing
capability of the register file is effectively modelled out of
its write-store-read functionality. Moreover, a cap property
is associated with the internal node, which is equal to the
capacity of the RF. Therefore, the register allocation
problem is implicitly solved by our scheduling algorithm
(see Section 3.4).

Other types of components such as bus and multiplexer
can be modelled in a similar way. By this abstraction, all
routing resources, whether physical or virtual, are modelled
in a universal way using nodes and edges. This unified
abstract view of the architecture only exposes necessary
information to the scheduler and greatly reduces the
complexity of the scheduling algorithm.

3.3 Prepare data dependency graph

The modulo scheduling algorithm takes a data dependency
graph (DDG) representing the loop body and an MRRG

representing the architecture as inputs. We use the IMPACT
compiler framework [22, 23] as a frontend to parse C source
code, do some optimisation and analysis, construct the
required hyperblock [15] and emit the intermediate
representation (IR), which is called lcode. Then various
transformation and analysis passes are conducted to
generate the DDG for detected pipelineable loops. Since
the target reconfigurable architectures are different from
traditional processors, we have developed some new
techniques [11], e.g. a new method of removing prologue
and epilogue code. Other transformations are borrowed
from the VLIW compilation domain.

3.4 Modulo scheduling algorithm

By using MRRG, the three sub-problems (placement,
routing and scheduling) are reduced to two sub-problems
(placement and routing), and modulo constraint is enforced
automatically. However, it is still more complex than
traditional FPGA P&R problem due to the modulo and
asymmetric nature of the P&R space and scarce routing
resources available. In FPGA P&R algorithms, we can
comfortably run the placement algorithm first by minimis-
ing a good cost function that measures the quality of
placement. After minimal cost is reached, the routing
algorithm connects placed nodes. The coupling between
these two sub-problems is very loose. In our case, we can
hardly separate placement and routing as two independent
problems. It is almost impossible to find a placement
algorithm and cost function that can foresee the routability
during the routing phase. Therefore, we propose a novel
approach to solve these two sub-problems in one frame-
work. The algorithm is described in Fig. 6.

First all operations are ordered by the technique described
in [17]. Priority is given to operations on the critical path
and an operation is placed as close as possible to both its
predecessors and successors, which effectively reduces the
routing length between operations. Like other modulo
scheduling algorithms, the outermost loop tries successively
larger II, starting with an initial value equal to the minimal II
(MII), until the loop has been scheduled. The MII is
computed using the algorithm in [16].

For each II, our algorithm first generates an initial
schedule which respects dependency constraints, but may
overuse resources ((1) in Fig. 6). For example, more than
one operation may be scheduled on one FU in the same
cycle. In the inner loop (2), the algorithm iteratively reduces
resource overuse and tries to come up with a legal schedule.
At every iteration, an operation is ripped up from the
existing schedule and is placed randomly (3). The connected
nets are rerouted accordingly. Next, a cost function is
computed to evaluate the new placement and routing (4).
The cost is computed by accumulating the cost of all used
MRRG nodes incurred by the new placement and routing of
the operation. The cost function of each MRRG node is
shown in the first equation. It is constructed by taking into
account the penalty of overused resources. In the equation,
there is a basic cost(base_cost) associated with each MRRG
node. The occ represents the occupancy of that node. The
cap refers to the capacity of that node. Most MRRG nodes
have a capacity of 1, whereas a few types of nodes such as
the internal node of a register file have a capacity larger than
one. The penalty factor associated with overused resources
is increased at the end of each iteration (7). The second
equation shows a simple scheme to update the penalty.
Through a higher and higher overuse penalty, placer and
router will try to find alternatives to avoid congestion.
However, the penalty is increased gradually to avoid abrupt
increase of the overused cost that may trap solutions into

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003258

local minima. This idea is borrowed from the Pathfinder
algorithm [20], which is used in FPGA P&R problems:

cost ¼ base cost � occ þ ðocc 	 capÞ � penalty

penalty ¼ penalty � multi factor

In order to help solutions to escape from local minima, we
uses a simulated annealing strategy to decide whether each
move is accepted or not (5). In this stategy, if the new cost is
lower than the old one, the new P&R of this operation will
be accepted. On the other hand, even if the new cost is
higher, there is still a chance to accept the move, depending
on temperature. At the beginning, the temperature is very
high so that almost every move is accepted. The temperature
is decreased at the end of the each iteration (8). Therefore,
the operation is increasingly difficult to move around. One
key issue of simulated annealing is how the temperature is
decreased. To achieve a good balance of quality and speed,
we use an adaptive annealing technique [24] to update
temperature:

T ¼

T � 0:5; accept rate
 0:96

T � 0:9; 0:8 � accept rate < 0:96

T � 0:98; 0:15 � accept rate < 0:8
T � 0:95; accept rate < 0:15

8>><
>>:

In this scheme, the accept rate is used to select a annealing
rate among several ones (0.5 to 0.95), obtained from
experiments. When the accept rate is in the middle range,
the temperature is decreased slowly to ensure quality by

exploiting an extensive search. When the accept rate is in
the higher or lower range, the temperature decreases more
rapidly to speed up the scheduling process.

In the end, if the stop criteria is met without finding a
valid schedule (6), i.e., the scheduler can not reduce
overused nodes after a number of iterations, the schedule
algorithm starts with the next II.

According to [14], the maximum number of simul-
taneously live values at any cycle can approximate the
number of registers required, which is called MaxLive. With
the register file modeling discussed in section 3.2 and the
scheduling algorithm described in this section, we can make
sure the MaxLive is less than the capacity of the register file
if we do find a valid schedule. Therefore, the register
allocation problem is solved implicitly by the scheduler.

4 Codesign considerations

Usually pipelineable kernels only make up small portions of
the application in terms of code size. The rest code is often
control-intensive and executed by a processor. It is a kind of
codesign problem in which an application is partitioned
among the software and ‘hardware’, i.e. the reconfigurable
matrix part. The communication and co-operation between
these two parts are important issues. The DRESC frame-
work is developed from the beginning with codesign in
mind. We target a complete application instead of only
pipelineable loops. When a high-level language is compiled
to a processor, the local variables are normally allocated in
the register file, whereas the static variables and arrays are
allocated in the memory space. Some variables are accessed
by both the pipelined kernels and the rest code, hence they
serve as a communication channel between the software and
‘hardware’ parts. In the architecture, we assume that there is
a register file that can be accessed by both the processor and
the reconfigurable matrix.

During the preparation of the data dependency graph, the
live-in and the live-out variables are identified. The live-in
variables resemble input parameters, whereas live-out ones
are like return values. Some variables can be both live-in
and live-out. These variables have to be allocated in the
shared register file so that they can be accessed by both the
processor and the reconfigurable matrix. As described in
previous Sections, the register file is modelled as a kind of
routing resource. The scheduler can use it freely in the most
favourable condition. This idea is in conflict with the fixed
register allocation for live-in and live-out variables. There-
fore, the modulo scheduling algorithm has to be adapted.

Fig. 6 Modulo scheduling algorithm for coarse-grained reconfi-
gurable architecture

Fig. 7 Transform live-in and live-out variables to pseudo
operations

a Original DDG
b Transformed DDG

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003 259

In practice, we developed a technique to transform these
variables to pseudo operations, namely REG_SOURCE,
REG_SINK and REG_BIDIR operations. For example, in
Fig. 7, the data dependency graph is transformed to a graph
that only consists of operations and connecting edges.
During the scheduling, these pseudo operations are treated
and scheduled as normal operations with the extra constraint
that they can only be assigned to and ‘executed’ by the
shared register file. In this way, do not need to change the
overall framework of the modulo scheduling algorithm.
Those live-in and live-out variables are forced to stay in the
shared register file, whereas the other variables may be
allocated elsewhere, depending on how the scheduler routes
the data dependency edge.

5 Experimental results

5.1 Experiment setup

We have tested our algorithm on an architecture that
resembles the organisation or Morphosys [1]. In this
configuration, a total of 64 FUs is divided into four tiles,
each of which consists of 4 � 4 FUs. Each FU is connected
to a local register file of size 8. Each FU is not only
connected to the four nearest neighbour FUs, but also to all
FUs within the same row or column in this tile. In addition,
there are row buses and column buses across the matrix. All
the FUs in the same row or column are connected to the
corresponding bus. However, there are still significant
differences with Morphosys. In Morphosys, the system
consists of a general-purpose processor and a reconfigurable
matrix. Our test architecture is a convergence of a VLIW
processor and a reconfigurable matrix. The first row of FUs
can work as a VLIW processor with the support of a multi-
ported register file. Whenever the pipelined code is
executed, the first row works co-operatively with the rest
of matrix. For the other code, the first row acts like a normal
VLIW processor, where instruction-level parallelism is
exploited. The advantage of this convergence is twofold.
First, since the FUs in a VLIW processor and reconfigurable
matrix are similar, we can reuse many resources such as FUs
and memory ports. Secondly, this convergence helps better
integration of the reconfigurable matrix, which only
accelerates certain kernels, and the rest of system. For
example, live-in and live-out variables can be directly
assigned to the VLIW register file, i.e. the one in the first
row. The data copy cost between processor and matrix is
therefore eliminated.

The testbench consists of four programs, which are all
derived from the C reference code of TI’s DSP benchmarks
[13]. The idct_ver and idct_hor are vertical and horizontal
loops of a is a 8 � 8 inverse discrete cosine transformation,
where a simple optimisation is applied to transform nested
loops to single-level ones. The fft refers to a radix-4 fast
Fourier transformation. The corr computes 3 � 3 corre-
lation. The latanal is a lattice analysis function. They are

typical multimedia and digital processing applications with
abundant inherent parallelism.

5.2 Scheduling results

The schedule results are shown in Table 1. The second
column refers to the total number of operations within
pipelined loops. The minimal initiation interval is the lower
bound of achievable II, constrained by resources and
recursive dependence, whereas the initiation interval is the
value actually achieved during scheduling. The instructions
per cycle (IPC) reflects how many operations are executed in
one cycle on average. Scheduling density is equal to IPC/
number of FUs. It reflects the actual utilisation of all FUs,
excluding those used for routing. The last column is the CPU
time to compute the schedule on a Pentium 4 1.7 GHz PC.

The IPC is high, ranging from 12 to 42. It is well above
what can be obtained with any typical VLIW processor. For
idct_hor, the IPC is especially high because its data
dependency is mainly local. For latanal, the IPC is
relatively low because it is constrained by MII. The CPU
time to calculate the schedule is relatively long because of
its SA-based search strategy and computational cost of each
iteration.

5.3 Current limitations

Our scheduling algorithm has some limitations. First, it is
relatively time-consuming compared with a typical sche-
duling algorithm of a compiler. Typically it takes minutes to
schedule a loop of medium size. Secondly, at present it
cannot handle some architecture constraints, e.g. pipelined
FUs. Additionally, due to the way that the IMPACT front
end constructs the hyperblock for a loop body [15], our
scheduling algorithm can only handle the inner loop of a
loop nest. This has an adverse impact on the overall
performance of an application.

6 Related work

Several research projects have tried to apply pipelining
techniques to reconfigurable architectures in order to obtain
high performance. KressArray [7] uses simulated annealing
to simultaneously solve the placement and routing sub-
problems as well. However, it only handles the special case
where II is equal to 1 because KressArray doesn’t support
multiple configurations for one loop. RaPiD [3] has a linear
datapath that is a different approach compared with
2-dimensional meshes of processing elements. This restric-
tion simplifies application mapping but restricts the design
space dramatically. Similarly, Garp [8] also features a row-
based architecture allowing direct implementation of a
pipeline. It does not support multiplexing, so the implemen-
tation is inefficient when the II is bigger than 1. Recent work
[9] tried to map loops directly to datapaths in a pipelined
way. Lacking advanced scheduling techniques, it either uses

Table 1: Schedule results

Kernel

Number of

operations

minimum

initiation

interval

initiation

interval

instructions

per cycle

Scheduling

density Time, s

idct_ver 93 2 3 31 44.8% 1446

idct_hor 168 3 4 42 65.6% 1728

fft 70 3 3 23.3 36.5% 1995

corr 56 1 2 28 43.8% 264

latanal 12 1 1 12 18.8% 6.5

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003260

a full-connected crossbar, or generates a dedicated datapath
for several dataflow graphs, none of which is a good
solution. PipeRench [10] uses a clever pipeline reconfigura-
tion technique. The architecture is connected in a ring-like
mode. Therefore, virtual pipeline stages can be mapped to
physical pipeline stages in an efficient way. However, their
technique is limited to very specific architectures, and thus
cannot be applied to other coarse-grained reconfigurable
architectures. Modulo scheduling algorithms on clustered
VLIW architecture [18, 19] normally target a specific class
of architectures and cannot handle arbitrarily connected
architectures. In addition, the routing problem is virtually
absent or rather easy to solve in clustered VLIW
architectures.

7 Conclusions and future work

Coarse-grained reconfigurable architectures have advan-
tages over traditional FPGAs in terms of delay, area and
power consumption. In addition, they are more compiler-
friendly because they possess features such as word- or
subword-level operations and predictable timing. To exploit
fully the potential of coarse-grained reconfigurable archi-
tectures, big problems to solve are: what kind of parallelism
to exploit and how to extract it automatically.

We have developed a modulo scheduling algorithm to
exploit loop-level parallelism on coarse-grained reconfigur-
able architectures, which resembles P&R algorithms for
FPGAs. The results show up to 42 IPC and 65.6% FU utilisa-
tion for tested kernels, proving the potential for both coarse-
grained reconfigurable architecture and our algorithm.

Overcoming the limitations of the modulo scheduling
algorithm and better integration into the DRESC design
flow will be our main focus in the future. For example, in
order to handle nested loops, we have experimented with
some source level transformations to replace a nested loop
with a single loop. The preliminary results are very
promising. The resource utilisation and parallelism for an
IDCT kernel are improved by 3.64%, and the prologue and
epilogue overhead is also reduced.

8 Acknowledgments

The authors would like to thank Prof. Henk Corporaal and
Prof. Francky Cathoor for the insightful discussion about
this work. This work is supported by a scholarship from the
Katholieke Universiteit Leuven and IMEC, Belgium.

9 References

1 Singh, H., Lee, M.-H., Lu, G., Kurdahi, F.J., Bagherzadeh, N., and
Chaves Filho, E.M.: ‘Morphosys: an integrated reconfigurable system
for data-parallel and computation-intensive applications’, IEEE Trans.
Comput., 2000, 49, (5), pp. 465–481

2 Mirsky, E., and DeHon, A.: ‘MATRIX: a reconfigurable computing
architecture with configurable instruction distribution and deployable

resources’. Proc. IEEE Symp. on FPGAs for custom computing
machines, Napa Valley, CA, 17–19 April 1996, pp. 157–166

3 Ebeling, C., Cronquist, D., and Franklin, P.: ‘RaPiD—reconfigurable
pipelined datapath’. Proc. Int. Workshop on Field programmable logic
and applications, Darmstadt, Germany, 23–25 September 1996,
pp. 126–135

4 PACT XPP Technologies, http://www.pactcorp.com, accessed 2003
5 Callahan, T.J., and Wawrzynek, J.: ‘Instruction-level parallelism for

reconfigurable computing’. Proc. Int. Workshop on Field program-
mable logic, Tallinn, Estonia, 31 August– 1 September 1998,
pp. 248–257

6 Lee, W., Barua, R., Frank, M., Srikrishna, D., Babb, J., Sarkar, V., and
Amarasinghe, S.P.: ‘Space-time scheduling of instruction-level paral-
lelism on a RAW machine’. Proc. Architectural support for program-
ming languages and operating systems (ASPLOS-VIII), San Jose, CA,
4–7 October 1998, pp. 46–57

7 Reiner Hartenstein and Rainer Kress, ‘A datapath synthesis system for
the reconfigurable datapath architecture’, Proc. ASP-DAC, Mukukari,
Japan, 29 August–1 September 1995, pp. 478–484

8 Callahan, T., and Wawrzynek, J.: ‘Adapting software pipelining for
reconfigurable computing’. Proc. Int. Conf. Compilers, architecture
and synthesis for embedded systems (CASES), San Jose, CA, USA,
17–18 November 2000, pp. 57–64

9 Huang, Z., and Malik, S.: ‘Exploiting operation level parallelism
through dynamically reconfigurable datapath’. Proc. Design Auto-
mation Conference (DAC), New Orleans, LA, 2002, pp. 337–342

10 Schmit, H., Whelihan, D., Tsai, A., Moe, M., Levine, B., and Taylor,
R.R.: ‘PipeRench: a virtualized programmable datapath in 0.18 micron
technology’. Proc. IEEE Custom Integrated Circuits Conference,
Orlando, FL, 12–15 May 2002, pp. 63–66

11 Mei, B., Vernalde, S., Verkest, D., De Man, H., and Lauwereins, R.:
‘DRESC: a retargetable compiler for coarse-grained reconfigurable
architectures’. Proc. Int. Conf. on Field Programmable Technology,
Hong Kong, 16–18 December 2002, pp. 166–173

12 Lam, M.S.: ‘Software pipelining: an effective scheduling technique for
VLIW machines’. Proc. ACM SIGPLAN Conference on Programming
language design and implementation, Atlanta, GA, 22–24 June 1988,
pp. 318–327

13 TI Inc., 2002, http://www.ti.com/, accessed 2002
14 Hartenstein, R., Hertz, M., Hoffmann, Th., and Nageldinger, U.:

‘KressArray Xplorer: a new CAD environment to optimize reconfigur-
able datapath array architectures’. Proc. ASP-Design Automation
Conference, Yokohama, Japan, 25–28 January 2000, pp. 163–168

15 Mahike, S.A., Lin, D.C., Chen, W.Y., Hank, R.E., and Bringmann,
R.A.: ‘Effective compiler support for predicated execution using the
hyperblock’. Proc. 25th Annual Int. Symp. on Microarchitecture,
Portland, OR, 1–4 December 1992, pp. 45–54

16 Ramakrishna Rau, B.: ‘Iterative modulo scheduling’. Hawlett-Packard
Lab: HPL-94-115, 1995

17 Llosa, J., Ayguade, E., Gonzalez, A., Valero, M., and Eckhardt, J.:
‘Lifetime-sensitive modulo scheduling in a production environment’,
IEEE Trans. Comput., 2001, 50, (3), pp. 234–249

18 Akturan, C., and Jacome, M.F.: ‘CALiBeR: a software pipelining
algorithm for clustered embedded VLIW processor’. Proc. Int. Conf.
on Computer Aided Design, San Jose, CA, 4–8 November 2001,
pp. 112–118

19 Fernandes, M.M., Llosa, J., and Topham, N.P.: ‘Distributed modulo
scheduling’. HPCA, Orlando, FL, 9–12 January 1999, pp. 130–134

20 Ebeling, C., McMurchie, L., Hauck, S., and Burns, S.: ‘Placement and
routing tools for the Triptych FPGA’, IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., 1995, 3, pp. 473–482

21 Roos, S.: ‘Scheduling for ReMove and other partially connected
architectures’. Laboratory of Computer Engineering, Delft University
of Technology, Netherlands, 2001

22 ‘The IMPACT group’. http://www.crhc.uiuc.edu/impact, accessed
2002

23 Chang, P.P., Mahike, S.A., Chen, W.Y., Warter, N.J., and Hwu, W.W.:
‘IMPACT: an architectural framework for multiple-instruction-issue
processors’. Proc. 18th Int. Symp. Computer Architecture (ISCA),
Toronto, Canada, 27–30 May 1991, pp. 266–275

24 Betz, V., Rose, J., and Marguardt, A.: ‘Architecture and CAD
for deep submicron FPGAs’ (Kluwer Academic Publishers, Boston,
MA, 1999)

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003 261

http://www.pactcorp.com
http://www.ti.com/
http://www.crhc.uiuc.edu/impact

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

