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ABSTRACT

Today’s DSP processors are so complex, it has become impossi-
ble to program them using assembly. To get the maximum per-
formance out of the applications running on such devices very
good compilers are needed. This paper analyzes the capabilities
of those compilers by optimizing a compute-intensive 3D-image
reconstruction algorithm on the TMS320C6701 ('C67) DSP pro-
cessor from Texas Instruments.

Because the "C67 is a VLIW processor, performance depends
on the ability of the compiler to detect parallelism. By rewriting
the C source code, we made it clear to the compiler which code
was not data dependent, and thus could be executed in parallel.
Over all optimizations the average instructions per cycle rose from
0.41 to 2.61 (x6) and the number of instructions to be executed
was divided by 3.6. The net result was a performance increase of
2200%.

For every discussed optimization step we state the problem
that prevented efficient code generation by the compiler and say
how we overcame this problem. We show that for a lot of the steps
the performance problem was caused by a lack of provisions to
efficiently communicate between the user and compiler. We had to
trick the compiler in doing the optimizations we wanted by writing
the program the right way. This was a long and tedious process.
Therefore, we look at what provisions should be added to improve
communication and reduce development time and time to market.

1. INTRODUCTION

The TMS320C6701 DSP from Texas Instruments is a VLIW pro-
cessor that can execute up to 8 RISC-like instructions in parallel. It
is difficult to get high performance when programming fora VLIW
processor like this one, because its performance depends heavily
on the compiler. If the compiler is able to extract the parallelism
available in the program, it can use the true power of this proces-
sor. If the compiler cannot detect the parallelism (even though it
might be available), the performance will be crippled. Getting the
compiler to understand your program is a long and tedious process.

On the other hand time-to-market is becoming increasingly
important, so any means to speed-up this process is welcome. In
this paper, we make suggestions to make the programmer and the
compiler better understand each other and come to a satisfying
solution faster.

There are two models to build a compiler. The first model
looks at a compiler as a black box: source code goes in; object
code comes out. The second model considers the compiler as
white box: total exposure of the inner workings. Neither model
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Fig. 1. A one shot 3D acquisition algorithm; a. image, with pro-
jected grid; b. reconstructed third dimension

is useful. The black box provides no information at all, so the user
does not know what is going wrong. The white box compiler is too
complex and would take months to understand. What is needed is
a compiler that outputs only the information that is relevant to the
programmer. In the rest of this paper we will try to find out what
this relevant information is.

The rest of this paper is organized as follows. In section 2 we
introduce the algorithm and in section 3 the hardware platform.
Section 4 defines the cost function we want to use. The optimiza-
tions are described in section 5 and evaluated in section 6 on the
"C67. The conclusion is sectjon 7.

2. A 3D-IMAGE RECONSTRUCTION ALGORITHM

The algorithm under consideration is a one-shot 3D acquisition
system, which generates 3D shape descriptions from a single im-
age, taken of a scene on which a simple grid is projected [5].
Viewed from a different angle, the grid appears deformed in the
image, from which the three-dimensional shape can be extracted

(see Figure 1).

The algorithm can be divided in roughly three steps. First, the
crosspoints of the grid in the image are detected with pixel preci-
sion. A second step improves the accuracy of the grid with sub-
pixel precision by applying an iterative energy minimizing snake-
like process. The last step is the actual 3D shape extraction from
the detected crosspoint coordinates. A description of the different
steps in the algorithm, and how the crosspoint coordinates yield
3D shape can be found in {5] and [6].

Snake Algorithm: The snake process, essential for a good 3D
reconstruction, is the most time consuming part of the algorithm.
It changes the grid to let it more closely follow the pattern lines,



L

Fig. 2. Inner loops

1 slope = compute_slope_of begin_end line ();

2 for (length = begin; length <=end; length++)
3

4 t x0 = compute_x0(slope, begin, end);

5 pix\x = (int)x0;

6 while ( (w = gauss (x0—pix_x)) > 0.0001) {

7 sum += wximage[width]{length];

8 norm += w;

9 width——;

10 }

width = (int)x0 + 1; .
while ( (w = gauss(width—x0)) > 0.0001 ) {
sum += wximage[width][length];
norm += w,
width++;

17 }

integral = sum / norm;

Fig. 3. Inner loops, (pseudo-) source code

minimizing the energy E, where

Ng Ns
E=) I(Cp,Ep)+ ) I(Cp,Sp)+ST
p=1 p=1

with Ng and Ns the numbers of crosspoints with E and S neigh-
bors, respectively, and where I(Cp, Xp) denotes the average in-
tensity along the line segment between the center crosspoint Cp
and the neighboring crosspoint Xp in E or .S direction. Smooth-
ing terms (ST) are added to keep the grid from becoming too ir-
regular. Maximization of E moves the grid towards the darker
positions in the image, i.e. the line centers.

Inner Loops: 98% of the total runtime in the SNAKE is spent in
its two most inner loops. In these two loops one integral (I() in the
above formula) is calculated. Therefore all optimizations focus the
inner loops. We will explain this code briefly.

As depicted in Figure 2 graphically and in 3 as source code,
the second most inner loop iterates over the connection line be-
tween two crosspoints (Length loop, statement 2 in Figure 3),
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while the most inner loop iterates perpendicular to this connection
line (width loop, statements 6 and 13 in Figure 3). The width
loop calculates the average intensity, weighted with a gauss-like
function, around.one pixel (at coordinate {width]{length], line 7).
The 1ength loop sums all these values to make the complete in-
tegral I(). Both iteration spaces are data dependent: the outer one
depends on the position of the crosspoints at pixel level, the in-
ner one on the position of the connection line at sub pixel level.
Note that x0, which is the intersection of the interconnection line
between the two crosspoints and the horizontal ‘pixel’ line, see
Figure 2, is calculated as a floating-point value. This results in
sub-pixel level calculations.

3. THE TARGET PLATFORM

The 'C67 is a modern VLIW processor [3]. It has two identical
banks of four functional units. Each unit has a specific task (branch
unit, logic unit, multiplication unit and shift unit} and executes a
RISC-like instruction every clock cycle. Each bank is connected
to a file of 16 32-bit registers. The register files are connected to
the internal memory via a very high bandwidth bus.

The pipeline of the 'C67 is divided into three stages [9]: fetch,
decode and execute. In the fetch stage a fetch packet that contains
8 instructions of 32 bits is retrieved from the program memory. In
this packet there is indicated what instructions have to be executed
in parallel. A new packet is not fetched until all instructions from
the previous fetch packet are executed. The execute stage varies in
length: 5 cycles for integer operations and 10 cycles for floating
point operations. This means that a floating point result is only
written to the register file 9 cycles after the source operands were
read. Internally these stages are fully pipelined, such that a new
floating point instruction can be started every cycle. A branch op-
eration (5-cycle execution phase) has 4 delay slots: 4 slots of each
8 instructions that immediately follow the branch, are always exe-
cuted, whether the branch is taken or not. This means the compiler
has to fill these slots with instructions that are independent of the
outcome of the branch.

There is no hardware support for detecting data dependencies
which are all left to the compiler to solve. This makes it almost
impossible to program this processor in assembly, since the pro-
grammer has to keep track of all the instructions that are being
executed. With a pipeline depth of 10 and up to 8 instructions
executing in parallel this is too much information to handle.

4. THE COST FUNCTION

We want to minimize the runtime of our 3D-image reconstruction
algorithm. The factors involved in this cost function are:

1. The chosen algorithm. The algorithm says in what way the
output of the program for a given input is calculated. We
might be able to improve here, if we are able to change the
algorithm but still can keep the output within the desired
limits.

2. The implementation, which is the description (in our case in
C) of the algorithm in such a way that the compiler can un-
derstand it. The better the compiler understands our imple-
mentation, the faster it will run on the target platform. We
can divide our optimizations here into two categories. First
of all we can change the implementation in such a way that



it will run faster on any target platform (p/atform indepen-
dent optimizations), but we can also take the target platform
into account and do platform specific optimizations.

3. The target platform. Given that we cannot change this, we
cannot alter this part of the cost function.

So the three categories we will divide our optimizations in are:
algorithmic changes (cat. 1), platform independent implementa-
tion changes (cat. 2) and platform specific implementation changes
(cat. 3).

Comparing the gain for those three categories, we saw we had
the most benefit from optimizations of category 3 (66%), while
categories 1 and 2 only contributed 19% and 15%, respectively.
From now on we will only consider these platform specific opti-
mizations.

5. OPTIMIZATIONS

We use an approach with a closed loop interaction between the pro-
grammer (who knows the algorithm) and the compiler (that knows
the hardware) in which the feedback in both ways is essential. The
compiler should report to the user what optimizations it can and
cannot do and why. The user uses this feedback to change and
annotate the source code so the compiler can do a better job.

For every discussed optimization we first state the problem that
prevented efficient code generation by the compiler and say how
we solved this problem. For a lot of the steps the performance
problem is caused by a lack of provisions to efficiently commu-
nicate between the user and compiler. Often the compiler has to
assume worst case in places where the user knows better. The user
is unaware of such assumptions because the compiler does not tell
him. Other times the user knows what the compiler is doing wrong,
but has no means of telling him otherwise. We say what provisions
should be added to improve communication (suggestion). Finally,
we also mention the resulting speed up (relative to the previous
step).

Note that (as said in section 4), all the optimizations are plat-
form specific optimizations.

5.1. Signal Type Refinement

Specification of the algorithm includes signal type refinement. In
this part the important signals are analyzed. The minimal number
of bits to achieve sufficient precision is determined. If necessary
this also includes specifying rounding modes, overflow behavior,
etc.

Signal type refinement should be done in a platform indepen-
dent way. Once the platform is known an efficient way has to
be found to map these refined types into types supported by the
platform. The next paragraph will show that both signal type re-
finement and its mapping have great influence on performance.

5.1.1. 32-bit Floating Point

Problem: The main calculations in the inner loops are floating
point calculations. Originally the algorithm was implemented on
variables of the type double. Later the variables were converted to
floats (32bit, floating point, with less precision than doubles, but
still sufficient for this algorithm).

However, only the declarations were changed from double to
float. This created very inefficient code where constants were
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used: by defauit constants, written in the form 1234.5678, are
treated as 64-bit floating point constants of the type double [4].
This would lead to superfluous conversions from double to float
and vice versa. For example,

(w = gauss (width—yo)) > 0.0001
would be treated by the c-compiler as if it said

(double) (w = gauss (width—yo)) > 0.0001

Solution: The correct way is for the user to write 1234.5678F
such that the compiler recognizes the constant as being 32-bit float.

Suggestion: The compiler should be more verbose in such cases.
Speed-Up: 17%

5.1.2. Fixed Point

Problem: On this platform (and most other), floating point op-
erations are more expensive than integer operations, because the
pipelines of the floating point functional units are much deeper
(cf. Section 3).

Solution: Fixed point variables have more precision than their
floating point counterparts when using an equal number of bits.
The drawback is that for fixed point numbers the dynamic range
is more limited. So when the dynamic range of the variables is
known beforehand, fixed point numbers should be used. If the
range is unknown, floating point has to be used. Fixed point num-
bers are implemented as integers with an imaginary binary point
on this platform.

There are a number of cases in the algorithm where fixed point
can be used (cf. Figure 2):

1. The length loop iterates over the pixels between two cross-
points. This is done by setting up the line between the cross-
points in floating point calculus and determining the pixels
nearest to this line. But since pixel-coordinates are suffi-
ciently small (i.e. their range is equal to the image dimen-
sions) you can use fixed point calculation. As a bonus you
avoid expensive floating point (f1oat) to integer (int)
conversions (line 5 and 12 of Figure 3).

2. Every integral is a weighted sum, where the weights w are
stored in a look-up table. The look-up table has a granular-
ity of 200 elements per unit and a range between -5.0F and
5.0F.

3. The values in the look-up table are also floating point and
limited (from -1.0to 1.0). If we convert them to fixed point
we’'ll go from a float-integer multiplication to an integer-
integer multiplication (line 7 and 14 of Figure 3).

Speed-Up: 58%

Suggestion: The compiler should provide a mechanism to refine
and map the type of each variable. A pragma could be use to anno-
tate the variable declaration with the refined type and the mapping
onto the hardware supported type. In this way the original algo-
rithm is not changed but merely extended with pragmas.



5.2. Using Intrinsics

Problem: The 'C67 does not have a division instruction. If one
would write, for example,

_y2-yl

@ z2 — =zl

the compiler would generate a function call to the _fdiv function,
which would cause significant overhead.

Solution: A better way is to use intrinsics [T]. They instruct the
compiler to use an instruction that otherwise could have not been
expressed as a regular C expression. There is an instruction for the
reciprocal (rcp). The above example becomes

a = (y2 ~ yl1) x rep(z2 — x1)

Suggestion: The compiler should give a warning when it gen-
erates the _fdiv-call. Furthermore the use of intrinsics should be
avoided as much as possible, because it makes the code less porta-
ble. Better would be to use a pragma to say this division should be
done using the _rcp instruction.

Speed-Up: : 30%

5.3. Software Pipelining
5.3.1. Enabling software pipelining

Software pipelining [1] is the most important step to get maximum
performance out of the 'C67 (as documented in {8]). If the com-
piler detects that it is possible it overlaps the different iterations
of the most inner loop of the program to get optimal parallelism.
The only condition that has to be satisfied is that it has to know the
minimal amount of iterations in the loop, so that it can determine
the amount of overlap.

Problem: The original inner loop (width) contains a data-depen-
dent while statement, which makes it impossible for the compiler
to software pipeline it. If we convert the while loop to a for loop,
with constant bounds the compiler instantly does a much better
job.

We will show why we can do this. For sufficiently accurate
results the loop has to be executed 3 or 4 times, depending on the
input data. If we take the upper bound (4) we will certainly be
accurate enough. The loss due to the extra iteration in some (rare)
cases is heavily compensated by the improved parallelism, as can
be seen from the speed-up of 60%.

Speed-Up: 60%

5.3.2. Improving performance of the pipeline

The performance of the “software pipeline” depends on two things:

1. The number of iterations in parallel : the more stages in
parallel the faster of course. This is limited by a number of
hardware parameters (e.g. the number of functional units
in the 'C67, the number of memory paths) and by the pro-
gram (e.g. how well the instructions can be mapped onto
the different functional units)

2. The total number of iterations : if this is too low the
pipeline will never be completely filled up and operate at
full speed, because most of the time the loop will be in the
prologue or epilogue phase, where parallelism is low.
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Fig. 4. Branch with delay cycles

1 for (i
2 = (float)i;

3 yo = yl + ax(x—x1);
+ j =(int) floor (yo);
5 sum = norm = 0.0;
1]

7

8

9

begin; i <=end; i++) {

for (k=0; k<4; k++) {
w = gauss(yo—j);
sum += wxPIX(i, j—-);
10 }
11 }

Fig. 5. Code before branch optimization

Problem: Our software pipeline is too small because the loop
body only contains one multiplication, one addition, while the
'C67 contains 2 multiply and 2 add units.

Solution: We could remedy this by unrolling the inner loop once
and doing two iterations in parallel but then the number of itera-
tions (4) would be too small and pipeline would not get filled.

A better solution is to unroll the Jength-loop and merge two
iterations of this loop into one. This way the compiler can put
twice as much instructions in the inner loop, possible doubling the
parallelism.

Speed-Up 7% for this last solution (unrolling the length: loop).

Compiler feedback: Here the compiler provided excellent feed-
back about how it did software pipelining. This way the program-
mer can easily make the trade-offs.

5.4. Branches

Problem: Branches on the 'C67 have 4 delay slots [9]. This
means that the instruction flow changes 4 cycles after the branch
occurs in the code. This also means that the 4 instructions after the
branch are executed whether the branch is taken or not. Figure 4
shows example code.

If there are two nested loops, like in Figure 5, the outer loop
will not be software pipelined. Therefore it is better to move as



x = ( float)i; ‘
" yo =yl + ax(x—xl1);
j = (int) floor (yo);”

sum = norm = 0.0;

for (i = begin; i <=end; i++) {
for (k=0; k<4; k++) {
w = gauss(yo—j);
sum += wxPIX (i, j——);

}
n x = (float)i;
2 yo=yl+ax(x—xl);
1 . j = (int) floor (yo);
1 sum = norm = 0.0;

Fig. 6. Code after branch optimization

much code as possible before the branch of the outer for-loop.
These instructions can then be used to fill the delay cycles of the
branch (Figure 6). :

Speed-Up: 2%

Suggestion: Better feedback is needed from the compiler. The
compiler can reorder instructions to be placed in the delay slots,
but its knowledge is limited. If the programmer knows where ex-
actly the problem lies, he might be able to identify and mark (using
pragmas) independent instructions.

6. RESULTS

In this section we will discuss the impact of the optimizations de-
scribed in the previous section.

For compilation, we used the Code Composer Studio version
" 1.00 [10], which uses the TI compiler version 3.01: This was the
compiler available at the time these experiments were done. When
the newer compiler (v4.00) became available we also tested our
optimizations with it. The new compiler provided a consistent gain
of approximately 10% on each version of the code. The original
version was 10% faster and the final version too, so the overall
speed up was the same. Compiler options used are: -mv6700 to
generate 'C67-specific code, full optimizations (-03) and all the
options to get compiler feedback (-kss -alsx -mw -os -on2).

To obtain the results, we used the built-in hardware counters of
the 'C67 to measure clock cycles, NOP and non-NOP instructions.
We also analyzed the executables and counted the functional unit
usage for the different versions of the program. The execution
count of each loop was calculated using the basic block profiling
tool bprof [2]. This way we could calculate the Instructions Per
Cycle (IPC) for the 'C67.

The numbers reported are for an image containing 465 x 320
pixels.

6.1. General Speed-Up

The total speed-up is a factor is 22. This means that the total al-
gorithm, which originally took 9 seconds per reconstructed image,
now can do 2.5 images per second. This makes it suitable for daily
use, in - for example — a hand held 3D camera. :

Nr. | Optimization Step

Relative Speed Up
1 | Software Pipelining 60%
2 | Fixed Point : 58%
3 | Using Intrinsics : 30%
4 | Floating Point Annotation 17%
5 | Improved Software Pipelining 7%
6 | Avoiding NOPs 2%

Table 1. Performance improvements of the different optimiza-
tions. Numbers shown are the relative improvements compared
to the result of the previous optimization step.

18%

Fig. 7. Relative speed-up per category; Cat. 1: Change the algo-
rithm; Cat. 2: Change the implementation, HW independent; Cat.
3: Change the implementation, HW dependent

Table 1 shows an overview of the Platform Specific Optimiza-
tions (cat.3). The biggest improvement is Software Pipelining,
which is also the biggest gain overall (all categories). This con-
firms our theory that architecture specific optimizations give the
best results. Indeed if we divide the gain in to the same three cat-
egories (Figure 7), we see that 65% is due to architecture specific
optimizations.

We will see in the next section why the "C67 is so sensitive to
these optimizations.

6.2. Improved parallelism

The number of NOPs in the initial version (Figure 8a) is over 60%.
This means that more than 60% of the time none of the 8 functional
units is performing an operation. NOPs are inserted because a re-

14% b)

Fig. 8. IPC: original (a) versus optimized (b) version. The integer
number indicates the number of functional units that are used. The
percentage indicates in how many times this occurs.



sult that is needed for the next calculation is still in the pipeline.
Since pipelines are so long on the 'C67, a lot of NOPs are in-
serted. These two architectural facts (deep pipelines and heavily
parallel architecture) combined with the big amount of NOPs, in-
dicate much potential of the *C67 is unused in the initial program.

The final version has much fewer NOPs (Figure 8b). While in
the original version the IPC ((average) Instructions per Cycle) is
only 0.41, the optimal has an IPC of 2.61, with peaks of 7 in 12%
of the code.

7. CONCLUSION

Because of the high complexity of today’s DSP processors, it has
become impossible to program them using assembly. To get the
maximum performance out of the applications running on such
devices very good compilers are needed. This paper has analyzed
the capabilities of those compilers by implementing a compute-
intensive 3D-image reconstruction algorithm on the TI 'C67 DSP
processor.

The conclusion was, that if the programmer is not careful, the
output of the compiler is disappointing. While with assistance
from the programmer, the compiler can do a very good job. Indeed,
66% of the total gain was achieved by the programmer’s combined
knowledge of both the algorithm and the architecture. Because of
its limited view of the program, the compiler has to make subop-
timal or even worst-case assumptions. The programmer has better
knowledge of the application. If he is able to communicate this in-
formation to the compiler, this will result in higher parallelism and
performance. We we able to bring this information to the compiler
by doing source-to-source transformations on the program. This
way we were able to speed up the implementation with a factor of
22, making it usable in real-time applications.

Because exposing the parallelism this way is a long and cum-
bersome task, we wrote down several possible improvements to
the way the compiler works. These improvements should facil-
itate the communication between the programmer and the tools.
This speeds up development and reduces the time to market.
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