
Reconfigurable Instruction Set Processors
from a Hardware/Software Perspective

Francisco Barat, Student Member, IEEE, Rudy Lauwereins, Senior Member, IEEE, and

Geert Deconinck, Senior Member, IEEE

Abstract—This paper presents the design alternatives for reconfigurable instruction set processors (RISP) from a hardware/software

point of view. Reconfigurable instruction set processors are programmable processors that contain reconfigurable logic in one or more

of its functional units. Hardware design of such a type of processors can be split in two main tasks: the design of the reconfigurable

logic and the design of the interfacing mechanisms of this logic to the rest of the processor. Among the most important design

parameters are: the granularity of the reconfigurable logic, the structure of the configuration memory, the instruction encoding format,

and the type of instructions supported. On the software side, code generation tools require new techniques to cope with the

reconfigurability of the processor. Aside from traditional techniques, code generation requires the creation and evaluation of new

reconfigurable instructions and the selection of instructions to minimize reconfiguration time. The most important design alternative on

the software side is the degree of automatization present in the code generation tools.

Index Terms—Reconfigurable instruction set processor overview, reconfigurable logic, microprocessor, compiler.

�

1 INTRODUCTION

EMBEDDED systems today are composed of many hard-
ware and software components interacting with each

other. The balance between these components will deter-
mine the success of the system. Due to the nature of
software, software components are easier to modify than
the hardware ones. Thanks to this flexibility, software
components, running on programmable processors, pro-
vide an easy way to eliminate bugs, to change the
application, to reuse components, to differentiate a product,
or to reduce the ever more important time to market.
However, when compared to pure hardware solutions,
software components are slower and consume more power.
Hardware components are used when speed and power
consumption are critical. Unfortunately, hardware compo-
nents require a lengthy and expensive design process.
Additionally, typical hardware components cannot be
modified after they have been manufactured. The task of
the system designer is to find an adequate balance between
these components, which interact very closely.

The interaction between software and hardware compo-

nents is very tight, especially in the case of embedded

systems, where cost efficient solutions are a must. Applica-

tion specific instruction set processors (ASIPs) and reconfi-

gurable instruction set processors (RISPs) are a fine example

of the interaction of the hardware and software components

since they contain specialized hardware and software

components interacting very closely. Traditional program-
mable processors do not have this type of interaction due to
the generic nature of the processors. As the processor
becomes more specialized, so does the interaction between
hardware and software. Designing a system with such a
type of processors requires a methodology that encom-
passes both software and hardware aspects.

An ASIP [1] is a hybrid between a programmable
processor and custom logic. Noncritical parts of the
application are implemented using the standard instruction
set (with the more traditional functional units of the
processor). Critical parts are implemented using a specia-
lized instruction set, typically using one or more specialized
functional units custom designed for the application. These
functional units, thus, implement a specialized instruction
set. This specialization permits reduced code size, reduced
power consumption, and/or higher processing power.
Implementing an application on an ASIP involves the
design of the custom functional units and the mapping of
the software algorithms to this custom units. Both must be
done concurrently to obtain a good solution, but due to the
nature of hardware and software development this is not
always possible.

A reconfigurable instruction set processor (RISP), the
topic of this paper, consists of a microprocessor core that
has been extended with reconfigurable logic. It is similar to
an ASIP but instead of specialized functional units, it
contains reconfigurable functional units. The reconfigurable
functional units provide the adaptation of the processor to
the application, while the processor core provides software
programmability. Fig. 1 presents the floor plan of a
hypothetical RISP. RISPs execute instructions, just as
normal processors and ASIPs, though the main difference
is that the instruction set of a RISP is divided in two sets:
1) the fixed instruction set, which is implemented in fixed
hardware, and 2) the reconfigurable instruction set, which is

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 9, SEPTEMBER 2002 847

. F. Barat and G. Deconinck are with the Department of Electrical
Engineering, K.U.Leuven, Kasteelpark Arenberg 10, Leuven-Heverlee
3001, Belgium.
E-mail: f-barat@ieee.org, Geert.Deconinck@esat.kuleuven.ac.be.

. R. Lauwereins is with Imec, Kapeldreef 75, Leuven-Heverlee 3001,
Belgium. E-mail: lauwerei@imec.be.

Manuscript received 1 Oct. 2000; revised 1 July 2001; accepted 1 Jan. 2002.
Recommended for acceptance by Luqi.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 116426.

0098-5589/02/$17.00 � 2002 IEEE

implemented in the reconfigurable logic and can change
during runtime. This reconfigurable instruction set is
equivalent to the specialized instruction set of the ASIP
but with the ability to be modified after the processor has
been manufactured.

The cost of designing a microprocessor core is reduced

by reusing it in many different applications. In ASIPs, the

cost for each new generation comes from the redesign of the

specialized functional units, which can be quite high. Rapid

prototyping techniques are essential for reducing the cost

and time required for the redesign. A RISP can be used as a

prototyping device for a family of ASIP processors that

share the same basic core or fixed instruction set. In this

sense, it can be viewed as a field programmable gate array

(FPGA) specialized for ASIP design. RISPs provide a better

prototyping platform than a pure FPGA for a set of ASIP

cores thanks to the specialized elements it contains. As can

be seen from Fig. 1, a RISP already contains data and

program memory, one or more register files, control logic,

and other processor specific elements. These elements are

optimized for a processor implementation, which is not the

case for FPGA technology. RISP programming tools can

also help in the design of ASIPs. New specialized functional

units must be designed for an ASIP, as we will see later in

Section 3, RISP programming tools should do this auto-

matically. These tools can also be used to instantiate an

ASIP, which can be viewed as the nonreconfigurable

version of a RISP.
RISPs do not only provide benefits in the prototyping

field. In fact, the first models of a product can use a RISP
instead of a more expensive ASIP. As the product matures,
transition to an ASIP can be done in a convenient manner.
This allows the product to evolve without a significant risk
and also allows a smaller time to market. We can observe a
similar trend in the ASIC and FPGA markets. Additionally,
in many cases, it is now more cost effective to use FPGAs
instead of ASICs. Furthermore, in some applications, RISPs
would be the processor of choice. Evolving standards,
unknown applications, and a broad diversity of algorithms

are cases where a fixed solution will eventually fail to

deliver the required performance. Evolving standards and

unknown applications make it very difficult to create

specialized hardware for them. Applications with a broad

diversity of algorithms require much specialized hardware

which may be more expensive than a reconfigurable

solution. RISPs offer the flexibility that ASIPs lack.

This paper will describe the design space of RISPs and

discuss the problems associated with each design alter-

native, both hardware and software, and the interactions

between them. As with modern microprocessors, RISP

cannot be designed focusing on the hardware alone. The

success of RISP depends on the quality of the software

development tools available. As will be seen, RISPs are not

easy to program without adequate tools. Without them, the

programmer has not only to program the sequence of

instructions the processor will execute, but also the

instructions themselves. The hardware design of instruc-

tions is a new concept for programmers that can be

simplified with tools.
This paper is divided in two main sections. Section 2

describes the hardware aspects of RISPs, while Section 3

presents software techniques that should be incorporated in

the programming flow of RISP. Finally, Section 4 gives the

conclusions.

2 HARDWARE DESIGN

The hardware design of a reconfigurable processor can be

divided in two main topics. The first one is the interfacing

between the microprocessor and the reconfigurable logic.

This includes all the issues related to how data is

transferred to and from the reconfigurable logic, as well

as synchronization between the two elements. The second

topic is the design of the reconfigurable logic itself.

Granularity, reconfigurability, and interconnection are

issues included in this topic. Table 1 summarizes the key

design issues related to the characteristics of some current

reconfigurable processors.

848 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 9, SEPTEMBER 2002

Fig. 1. Example floor plan of a reconfigurable instruction set processor.

This paper focuses on the design of the reconfigurable

part of the processor. For a discussion of the design issues

related to the nonreconfigurable part of the processors see

[1] and [15].

2.1 Interfacing of the Reconfigurable Unit

In this section, the different methods in which the processor

communicates with the reconfigurable logic are discussed.

The reconfigurable logic will be seen as a piece of hardware

in which any circuit of interest to the application domain

can be implemented. The internal structure will not be the

focus of this section, it will be discussed in Section 2.2.

2.1.1 Coupling the Processor to the

Reconfigurable Logic

Reconfigurable instruction set processors belong to the

family of reconfigurable processors. Even though it is not

the topic of this paper, it is interesting to provide a

BARAT ET AL.: RECONFIGURABLE INSTRUCTION SET PROCESSORS FROM A HARDWARE/SOFTWARE PERSPECTIVE 849

TABLE 1
Characteristics of Some Reconfigurable Processors

taxonomy of reconfigurable processors according to the
coupling of the reconfigurable logic to the processor.
Reconfigurable processors consist of reconfigurable logic
coupled with a microprocessor. The position of the
reconfigurable logic relative to the microprocessor directly
affects the performance of the system and the type of
applications that will benefit from the reconfigurable
hardware. The benefit obtained from executing a piece of
code in the reconfigurable logic depends on two aspects:
communication time and execution time [8]. The time
needed to execute an operation is the sum of the time
needed to transfer the data back and forth, and the time
required to process it. If this total time is smaller than the
time it would normally take using the processor only, then
an improvement is obtained. If the reconfigurable logic was
not yet configured to perform that particular instruction, it
would also be necessary to add the configuration time.

The reconfigurable hardware can be placed in three main
positions relative to the processor [14], as can be seen in
Fig. 2. These configurations are:

. Attached processor. The reconfigurable logic is
placed on some kind of I/O bus (e.g., PCI bus).
Example: PRISM-1 [3].

. Coprocessor. The logic is placed next to the
processor. The communication is done using a
protocol similar to the one used for floating point
coprocessors. Example: Garp [9].

. Reconfigurable functional unit (RFU) or Reconfi-
gurable instruction set processor (RISP). The
reconfigurable logic is placed inside the processor.
The instruction decoder issues instructions to the
reconfigurable unit as if it were one of the standard
functional units of the processor. Example: One-
Chip98 [13].

With the first two coupling schemes, sometimes called
loosely coupled, the speed improvement using the reconfi-
gurable logic has to compensate for the overhead of
transferring the data. For example, in PRISM-I, the round
trip communication cost is 50 cycles. In streaming applica-
tions where a continuous stream of data has to be
processed, this communication cost can be hidden by
pipelining the transfer and processing of data. Through
pipelining, it is possible to achieve high data rates, such as
100MB/s in Splash 2 [2].

Most systems built until recently were of this kind. The
main advantages of this approach are: 1) the ease of

constructing such a system using standard components
(such as Xilinx FPGAs on Splash 2 and PRISM), 2) the fact
that large amounts of reconfigurable hardware can be used
(the only limitation is the board size), and 3) the possibility
of having the microprocessor and the reconfigurable logic
working in different tasks at the same time (though this
requires complex programming).

With the integrated functional unit scheme, sometimes
called tightly coupled scheme, the communication costs are
practically nonexistant and, as a result, it is easier to obtain
an increased speed in a wider range of applications.
Unfortunately, design costs for this configuration are higher
since it is not possible to use standard components. The
amount of reconfigurable hardware is also limited to what
can fit inside a chip, which limits the speed increase. We
will call this functional unit a reconfigurable functional unit
(RFU) and a processor with an RFU, a reconfigurable
instruction set processor (RISP).

A reconfigurable instruction set processor can have one
or more RFUs. As a normal functional unit, an RFU
executes instructions that come from the standard instruc-
tion flow. The pipeline of a typical RISP may look like the
one in Fig. 3. As mentioned before, this paper is only
focused on this type of coupling. Nonetheless, the copro-
cessor approach is very similar to the RISP approach and,
therefore, most of the ideas discussed in this paper also
apply to it.

When reconfigurable logic is placed inside the processor,
it does not have to be placed always inside a functional unit.
Other places of interest are the I/O interface, the decoding
logic, or the control logic. By placing the reconfigurable
logic next to the I/O pins, it is possible to build custom
interfaces to other elements in the system, thus eliminating
the need of external glue logic [11].

2.1.2 Instruction Types

The design of the interface to the reconfigurable unit
depends on the characteristics of the instruction types that
are going to be implemented. Two main types of instruc-
tions can be implemented on an RFU [14]:

. Stream based instructions (or block based instruc-
tions). They process large amounts of data in
sequence or by blocks. Only a small set of applica-
tions can benefit from this type. Most of them are
suitable for a coprocessor approach. Examples: finite
impulse response (FIR) filtering and discrete cosine
transform (DCT).

. Custom instructions. These instructions take small
amounts of data at a time (usually from internal

850 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 9, SEPTEMBER 2002

Fig. 2. Coupling schemes of reconfigurable processors (RFU =

reconfigurable functional unit).

Fig. 3. Pipeline of a RISP.

registers) and produce another small amount of
data. These instructions can be used in almost all
applications as they impose fewer restrictions on the
characteristics of the application; however, the
speedup obtained is usually smaller. Example: bit
reversal, multiply accumulate (MAC), variable
length coding (VLC), and decoding (VLD).

Instructions can also be classified in many other ways,

such as whether the instructions have fixed execution time

or not, whether they can be pipelined or not, whether they

can have internal state, etc. If the type of the reconfigurable

instructions closely resembles the type of the fixed instruc-

tions supported by the microprocessor, the integration

process will be easier. The type of instructions supported

depends on the target application domain.

2.1.3 Instruction Coding

Reconfigurable instructions are usually identified by a

special opcode. Which reconfigurable instruction is exe-

cuted is specified using an extra field in the instruction

word, the reconfigurable instruction number. This extra

field can specify:

. The memory address of the configuration string for
the instruction. Example: DISC [7].

. An instruction identifier of small length that indexes
a configuration table where information, such as the
configuration string address, is stored. Example:
OneChip98 [13].

Fig. 4 shows these two formats. The first approach

usually needs more instruction word bits but has the benefit

that the number of different instructions is not limited by

the size of a table, as in the second case. More instructions

than those that fit in the configuration table can be used if

the contents of table can be changed at runtime. The

drawback of this approach is that specialized scheduling

techniques might need to be used during code generation.

The compiler will have to schedule during the lifetime of

the program what instructions are stored in the configura-

tion table. Nonetheless, in typical applications only a

fraction of the possible instructions are used (typically 200

out of 2,048 instructions in PRISC [6]).

2.1.4 Operands

The instruction word also specifies the operands to be
passed to the RFU. The operands can be immediate values,
addresses, registers, etc. They can be the source or
destination of the operation. There are several ways to
code them:

. Hardwired. The contents of all registers are sent to
the RFU. The registers actually used depend on the
hardware configured inside the RFU. This allows the
RFU to access more registers but makes code
generation more difficult. The actual selection of
registers is done inside the RFU. This is the approach
taken in Chimaera [10], where the eight registers
from the register file can be accessed simultaneously.

. Fixed. The operands are in fixed positions in the
instruction word and are of fixed types. Different

encoding formats would have different opcodes.

This the most common case as seen in Table 1.

Example: OneChip98 [13].
. Flexible. The position of the operands is configur-

able. The degree of configuration can be very broad.

If a configuration table is used, it can be used to

specify the decoding of the operands. Example:

DISC [7].

The register file accessed by the RFU can be shared
with other functional units (such as the integer functional
unit) or dedicated (such as the floating point register file
in some architectures). The dedicated register file needs
fewer ports than if it was shared. This simplifies its
design but complicates code generation because of
register heterogeneity.

BARAT ET AL.: RECONFIGURABLE INSTRUCTION SET PROCESSORS FROM A HARDWARE/SOFTWARE PERSPECTIVE 851

Fig. 4. Fixed instruction selection formats.

As can be seen from Table 1, most current reconfigurable

processors use the same register file for fixed and

reconfigurable instructions. This will most likely change

when more research is done on reconfigurable superscalar

and very long instruction word processors (VLIWs).

Splitting the register file allows to reduce the complexity

of the hardware by increasing the complexity of the

compiler.

2.1.5 Memory Access

By providing access from the RFU to the memory hierarchy,

it is possible to implement specialized load/store opera-

tions or stream-based operations. In many multimedia

applications, data is accessed through complex addressing

schemes [16]. Specialized instructions would make these

accesses more efficient.
There are two main techniques to implement access to

memory on RFUs:

. The RFU as an address generator. The RFU logic is
used to generate the address of the memory position
being accessed. This address is fed into the standard
LD/ST unit.

. The RFU has direct connections to the memory
buses. In this case, the RFU generates the address
bits and reads or writes the data from/into the
memory. With this approach, it is possible to process
the data that is being accessed through the memory.

Fig. 5 presents an RFU with direct access to memory. If

the RFU can access memory, it is important to maintain

consistency between the RFU accesses and the processor
accesses [13] (i.e., caches, prefetch buffers).

2.2 Reconfigurable Logic Design

The focus of this section is the design of the reconfigurable
logic itself. The design of the reconfigurable logic will
determine, among other things, the number of instructions
that can be stored, the size of the configuration stream, the
reconfiguration time, and the type of instructions that will
give the highest performance.

Reconfigurable logic is composed of three layers: proces-
sing layer, interconnect layer, and configuration layer. Fig. 6
presents these layers. The processing layer contains the
actual processing elements. The interconnect layer consists
of programmable interconnections between the processing
elements. Finally, the configuration layer contains memory
elements in which the configuration for the other two layers
is stored. In current FPGAs, the interconnect layer uses
10 times more area than the configuration layer, which, in
turn, uses 10 times more area than the processing layer.

2.2.1 Processing Layer

The processing layer contains the elements that actually
perform the calculations. In some cases, the interconnect
layer performs the desired operation, such as in shifting
operations. The main characteristic of these elements is their
granularity (or size), which is normally classified as fine- or
coarse-grained.

The building blocks for fine-grained logic are gates
(efficient for bit manipulation operations). They are im-
plemented using logic blocks normally composed of lookup
tables (LUTs), flip flops, and multiplexers [17].

In coarse-grained RFUs, the blocks are bigger and
operate simultaneously on wider buses. They are better
suited for bit parallel operations, typically 4 or 8 bits. In
many cases, the building blocks are complete ALUs,
multipliers, shifters, and the like ([18], [19]).

Granularity directly affects the size of the configuration
stream and the configuration time. With fine-grained logic,
more information is needed to describe the instruction (e.g.,
49,152 bits for a single context in Garp [9]). Coarse-grained
logic descriptions are more compact (e.g., 2,048 bits for a
single context in Remarc [12]).

852 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 9, SEPTEMBER 2002

Fig. 5. A reconfigurable functional unit with memory access.

Fig. 6. Layers in the reconfigurable logic of an RFU.

The optimal granularity depends on the application.
When the size of the application data is smaller than that of
the logic, the performance decreases due to unused
resources. When the application data is bigger than that of
the logic, the performance decreases due to an overhead in
reconfigurability and an increase in configuration stream
size. For bit-oriented algorithms, a fine-grained approach is
a better choice if the cost of the higher configuration stream
can be tolerated. For computation intensive applications,
the coarse-grain approach can be a better solution [12].

As can be seen from Table 1, most of the early designs
included standard fine-grained FPGA resources (e.g., DISC
[7], OneChip [8]). In several of the most modern ap-
proaches, the RFU is implemented with nonstandard cell
structures (e.g., Garp [9], Chimaera [10]). Many are still fine-
grained, though a trend towards coarse-grained architec-
tures can be seen (PipeRench [14], REMARC [12]).

2.2.2 Configuration Layer

The configuration layer is used to store the current
configuration of the RFU. It is normally made of SRAM
cells. These cells control the behavior of the processing
elements and the programmable interconnect. If a change in
the behavior of the hardware were needed, a different
configuration string would need to be stored.

Some systems, which are called one-time configurable,
can only be configured at startup. In this type of RFU (e.g.,
Nano Processor [5]), the total number of special instructions
is limited by the size of the reconfigurable logic. This is
equivalent to an ASIP that is customized after being
committed to silicon.

If the RFU can be configured after initialization, the RFU
is dynamically reconfigurable. In this case, the instruction
set can be bigger than the size allowed by the reconfigurable
logic. If we divide the application into functionally different
blocks, the RFU can be reconfigured for the needs of each
individual block. In this manner, the instruction adaptation
is done on a per block basis. Most of the reconfigurable
processors belong to this kind.

The time taken to reconfigure the logic depends on the
size of the configuration string, which itself depends on
the granularity of the processing elements as already
mentioned in Section 2.2.1. On older systems, all the

reconfigurable logic is reconfigured at a time, which leads
to high reconfiguration times (i.e., one second in PRISM-I).
Modern systems use configuration compression, multiple
contexts, and partial reconfiguration to reduce this time
(down to one cycle).

In multiple context RFUs, the configuration layer is
replicated several times. Since only one context is active at a
given time, new configuration data can be loaded to the
other contexts. If the configuration data is already loaded,
changing the active context is a very fast operation (usually
one clock cycle). As the configuration layer typically takes
10 percent of the area, doubling the number of contexts
normally means an extra 10 percent area [20].

Since reconfiguring the RFU can take some time,
prefetching the instruction configuration data can reduce
the time the processor is stalled waiting for reconfiguration.
Software tools should do the insertion of prefetching
instructions automatically (more in Section 3.3).

Partial reconfiguration is another technique to minimize
reconfiguration time and maximize logic usage by reconfi-
guring a small part of the configuration layer. This is
usually done by dividing the RFU in segments (or stripes)
that can be configured independently from each other.
Segments are the minimum hardware unit that can be
configured and assigned to an instruction. They allow a
better utilization of the reconfigurable logic by adapting the
size of the used logic to the size of the instruction. Segments
and contexts can be combined on the same processor. This
leads to the configuration layers in Fig. 7.

2.2.3 Interconnect Layer

The interconnect layer connects the processing elements to
obtain the desired functionality. The interconnect that
connects the elements inside a segment is referred to as
intrasegment interconnect. Intersegment interconnect is
used to connect different segments.

Intrasegment interconnect design depends on the gran-
ularity of the logic and also affects the speed. In fine-
grained RFUs, there are different levels of intrasegment
interconnect, just like in FPGAs. Local routing connects
neighboring elements and global routing, which has longer
delays but reaches a larger number of elements, connects
distant elements [17]. In coarse-grained architectures, the

BARAT ET AL.: RECONFIGURABLE INSTRUCTION SET PROCESSORS FROM A HARDWARE/SOFTWARE PERSPECTIVE 853

Fig. 7. Different configuration layer options: (a) single context, (b) segmented, (c) multiple context, (d) segmented with multiple contexts.

interconnect tends to be done using buses and crossbar
switches, which optimize the interchange of parallel data
lines [12].

Intersegment interconnect only appears in RFUs that
support multiple segments. It is used to transmit data
between the different segments and to the register files
and memory. There are several kinds of intersegment
inteconnect:

. Fixed. The position of the segments of an instruction
inside the RFU is fixed at compile time.

. Relative. The position of the instruction’s segments
is specified relative to each other. This gives a little
slack to position the instruction inside the RFU.

. Relocatable. The position of the segments is not
fixed at all. They can be placed anywhere on the
RFU.

Fig. 8 shows various different configuration options for
an instruction of three segments (Seg0, Seg1, and Seg2) and
an RFU of four segments. With fixed interconnect, there is
only one position where the instruction can be placed (all
close together and starting in segment 0). There are two
possibilities with relative interconnect if the segments must
be kept together. Finally, with relocatable interconnect,
there are many possible configurations (only three are
presented in the figure).

The type of interconnect determines the complexity and
size of the interconnect, the size of the configuration stream
used for interconnect description, and the complexity of the
code generation tools. From a hardware point of view, fixed
interconnect is the simplest and requires the least config-
uration bits. Relative interconnect is very similar to fixed
interconnect in the sense that no extra logic is required and
that the size of the configuration stream is very similar.
Relocatable interconnect is the most expensive one in terms
of area and power. From a software point of view, the best
would be relocatable interconnect, since it simplifies the
placement task.

2.3 Configuration Controller

Reconfiguration times not only depend on the size of the
configuration data, which can be quite large, but also on the

configuration method used. In the PRISC processor [6], the

RFU is configured by copying the configuration data

directly into the configuration memory using normal load

operations. If this task is performed by a configuration

controller that is able to fetch the configuration data while

the processor is executing code, a performance gain can be

obtained. By modifying the configuration interface from bit

serial to bit parallel, the configuration speed can be easily

increased an order of magnitude.
The configuration controller is in charge of managing

and loading the instructions that are active on the RFU. It

can be hardware or software based. In the simplest case, the

one-time configurable RISP, it would read the configuration

from some external source once (e.g., ROM), in a manner

similar to conventional FPGAs. Since this process only

happens once, speed is not an issue.
Fig. 9 presents a complex RFU with a configuration

controller. The configuration controller can read new

configuration data from its memory port to speed up

reconfiguration. As configuration data is normally contig-

uous in memory, the configuration controller can access

external memory using fast memory access modes designed

for high throughput. As the reconfigurable logic is divided

into segments, this reconfiguration process can be done in

parallel to the computations. In many cases, reconfiguration

time can easily take more than twice the processing time

(three times in [7] while still obtaining a total speedup of

more than 20).
A hardware cache can be used to improve reconfigura-

tion times. Each time a reconfigurable instruction is

executed, a configuration table is checked to see if the

instruction is already configured in the RFU. If the

instruction is already configured, it is executed; if it is not

configured, the configuration controller loads the config-

uration data automatically, replacing some segments of the

reconfigurable fabric (usually, the least recently used). This

is the approach taken in [7]. Hardware caching can be

improved by using multiple contexts in the configuration

layer and by having relocatable interconnect and homo-

geneous segments.

854 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 9, SEPTEMBER 2002

Fig. 8. Intersegment interconnection schemes: (a) fixed, (b) relative, (c) relocatable.

2.4 Interrupts

A major problem present with reconfigurable instructions is
that of interrupt processing. Interrupts have to be precise
[21]; that is, interrupts should not affect the behavior of the
code that is being executed. If reconfigurable instructions
only affect registers in the register file, the problem is
simplified. On the other hand, reconfigurable instructions
that have internal state or write to memory are more
difficult to deal with.

If the interrupt is external to the instruction, one
approach can be to ignore the interrupt until the instruction
is completely finished. Otherwise, the internal state of all
RFUs would have to be stored somewhere. VLIW and
superscalar processors have the same problem, but, in RISP,
it is exacerbated due to the bigger size of the internal state in
the RFU.

If the processor is going to be used under a multitasking
environment, the internal state of the RFU and which
instructions are configured should be stored between
context switches. Granting exclusive access to the RFU to
one of the processes or tasks can solve these problems [22].

3 SOFTWARE TOOLS

The main difference between RISP and standard processors
is that the instruction set of RISP changes at runtime; it is
not fixed at design time. This fact makes it necessary to
change the manner in which code for RISP is generated.
Code generation for a RISP involves code generation
techniques and hardware design techniques. This process
is similar to hardware/software codesign, in which an
application is divided into hardware and software compo-
nents. In the case of RISPs, the entire application is executed
in software but with the aid of special instructions
implemented in the reconfigurable hardware that must be
designed specifically for the application.

Many RISP features depend on the availability of good
programming tools in order to obtain good results [23].
More importantly, it is necessary to design the processor
and the programming tools simultaneously and check

regularly that one does not impose severe restrictions on
the other. In this section, we will discuss the main issues
that appear in the design of code generation tools for RISP.

The basic element of a RISP code generation suite is a
high-level language (HLL) compiler that performs auto-
matic hardware/software partitioning. In some cases, such
a complex compiler might not be needed or might not be
feasible, but the concepts presented will usually appear in
some form. Fig. 10 represents the stages of a generic
compiler organization for a RISP ([3], [24], [25]). This figure
will be the reference to discuss the problems encountered
when writing code for a RISP. White blocks represent
traditional compiler blocks and tools. Gray areas represent
new techniques for RISP and black areas represent ”tradi-
tional” hardware synthesis techniques.

This compiler structure can be modified as needed. For
example, if there is a significant binary code base that has to
be translated to a RISP processor, the front-end of the
compiler can be modified to include a parsing mechanism
for assembly files. Some systems use this approach since it
simplifies the process of creating a compiler for the
processor. A normal compiler can be used and then the
code is modified to include reconfigurability. This is done,
for example, in Concise [32].

The compilation process is quite complex and introduces
many new concepts to compiler design. The initial compila-
tion phases are typical of HLL compilers. The source code is
analyzed and an internal representation is obtained,
normally in the form of some sort of control and data flow
graph. The graph is composed of basic blocks, hyper blocks,
regions or any other construct that facilitates compilation.
From now on, they will be referred to as blocks. The size of
the blocks depends on the processor architecture. High-
level optimizing transformations are also done during these
stages.

Table 2 presents a list of compilers for RISP and their
main characteristics. As can be seen, not all phases are
implemented in all compilers. The most automated code
generation tools have most of the phases outlined in Fig. 10.
We will now study each of these phases in more detail.

BARAT ET AL.: RECONFIGURABLE INSTRUCTION SET PROCESSORS FROM A HARDWARE/SOFTWARE PERSPECTIVE 855

Fig. 9. Detailed view of a reconfigurable functional unit.

3.1 Optimization Focusing

Although not strictly a stage in the compiler, optimization

focusing allows faster compilation times by filtering parts of

the code so that they do not go through all of the

optimization stages. These techniques are not specific to

RISP but they are of special relevance to RISP compilation

since reconfiguring the processor for an irrelevant part of

code could have a drastical impact on performance. There

are three main techniques for optimization focusing:

. Manual identification. The programmer annotates

the code with special compiler directives to identify

the places where the compiler should optimize. In C

compilers, this is usually done with the pragma

directive.
. Static identification. By analyzing the code, the

compiler is able to recognize candidate code for

potential optimization (e.g., loops). This approach is

quite limited, since the execution profile of most

programs depends on the inputs (i.e., loop bounds

unknown at compile time).

. Dynamic identification or profiling. The code is
initially compiled without optimizations and opti-
mization potential is identified by executing code on
real data (the code is profiled). This approach is the
most time consuming (usually done by simulation,
as seen in Fig. 10), but can achieve the best results. It
is important to have a significant and relevant data
set in order to get good estimates.

3.2 Instruction Creation

The purpose of the instruction creation phase is to obtain,
on a per block basis, new instructions that will locally
improve the performance of the processor in a block of
code. Most blocks of the original source code will have been
filtered by the optimization focusing presented in the
previous section. Instruction creation is divided in three
closely coupled subtasks:

. Identification. The intermediate representation is
analyzed. New instructions are created by grouping
operators or by performing code transformations.
The result of this phase will be a description of the
new instructions.

856 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 9, SEPTEMBER 2002

Fig. 10. Generic RISP compiler flow.

. Parameter estimation. The instruction description is
processed and important parameters, like instruc-
tion latency and size, are estimated.

. Instruction performance check. This phase checks
that the new instructions improve the execution of
the block. The new instructions are kept if, for that
particular block, the code with the new instructions
has a higher performance than the code without
them.

This instruction creation phase performs an extensive
search and produces a large number of new instructions. To
reduce the number of instructions output to the next stage,
pruning techniques are used. Pruning is performed by the
optimization focusing during identification, as already
mentioned, and by the performance check.

The main output of this phase is a list of instructions per
block that will be used by the backend during code
generation. If the instructions are very specialized, the
backend might not be able to use them directly. In this case,
the data flow graph (DFG) is labeled with the usage of these
new instructions (this is a form of early instruction
selection).

The next sections will discuss these phases in more
detail. Section 3.2.4 will present alternative approaches for
instruction creation.

3.2.1 Identification

The purpose of the instruction identification phase is to find
instruction candidates to be implemented in the RFU. The
method used to identify the instructions depends on the
intermediate representation used. It is thus very important
to use the correct representation.

Automated instruction identification is complex, but
desirable. It enables the acceleration of almost every
program, independently of the programmer’s expertise.
There are two main types of automated instruction
identification techniques:

. Dataflow/general techniques. These techniques look
for patterns or groups of operations that can be
combined to create a new more complex instruction.

. Ad hoc/customized techniques. These are specia-
lized techniques. They look for a special construct in
the application and create a new instruction specifi-
cally for that. For example, we could design a special
technique to optimize switch statements in C code.

An example of a general technique is the study of the
DFG for groups of instructions that can be combined into
one. This usually requires that the group has a limited
number of inputs and one output. These patterns, usually
called MISO (multiple inputs single output), can be
implemented as a single instruction instead of several
instructions [25], leading to an improvement in power
consumption and performance. In Fig. 11, part of a data
flow graph is compressed into a single instruction with two
inputs and one output.

A special case of dataflow techniques is the replication of
standard instructions. If part of the application is addition
intensive, several addition instructions can be implemented.
This only applies to architectures with instruction level
parallelism, such as superscalar and VLIW processors.

More specialized techniques can be built in an ad hoc

manner. For example, switch statements can be directly

implemented by an instruction. This is done in [3], where a

BARAT ET AL.: RECONFIGURABLE INSTRUCTION SET PROCESSORS FROM A HARDWARE/SOFTWARE PERSPECTIVE 857

TABLE 2
Comparison of Code Generation Tools of Some Reconfigurable Processors

set of techniques map certain C constructs onto specialized

instructions. Subword parallelism is another target of

specialized instructions [25]; for example, packing and

unpacking instructions found in multimedia extensions can

be easily mapped onto reconfigurable instructions.

Instruction identification can benefit from code transfor-

mations. A clear example is the hyper-block formation in

the Garp processor [24]. These transformations can increase

the instruction-level parallelism available, increasing the

opportunities to find new instructions.

3.2.2 Parameter Estimation

(Instruction Characterization)

Later stages in the compilation process need a model of the

instruction to see whether or not it is worth using the

instruction. Typical parameters are reconfiguration time,

number of segments used, execution latency, and power

consumption. These parameters can be precisely obtained

by synthesizing the instruction. Unfortunately, synthesis is

usually a time consuming task, making it undesirable to

synthesize instructions that will not be used. Therefore, a

fast method for estimating the working parameters of an

instruction is applied.

To reduce compilation time, this phase produces

estimates of the required parameters without actually doing

the complete synthesis. The quality of the estimator

depends on the complexity of the reconfigurable logic and

on the effort used.
This estimation phase also performs a pruning of

instructions. Instructions that are estimated not to fit inside
the RFU are discarded.

3.2.3 Performance Check

After instructions have been identified and characterized, it
has to be checked if they improve the code produced. The
easiest way to do this is to compile the corresponding block

with the set of instructions currently active. This compila-

tion will give an estimate on the number of cycles (or

power) consumed. This result is then compared with the

general version of the block. If a decrease is obtained, the

instruction is accepted. If not, it is rejected.
This phase will produce several sets of reconfigurable

instructions for each block with different values of speed/

code size or speed/power per set. All possible sets go to the

next stages to allow for global optimization.
It is important to note that the performance measure-

ments are done assuming that the RFU has the correct

configuration. Reconfiguration times will be accounted for

in the instruction selection/configuration scheduling phase.

3.2.4 Simplifications to Instruction Creation

As we have seen, instruction creation is a complex problem.

For this reason, in many cases, designers have taken the

choice to simplify it. There are two alternative methods for

instruction creation:

. Library programming. Reconfigurable instructions
are designed manually and placed into a library that
the programmer can explicitly use.

. Programmer identification. The programmer indi-
cates in the code the parts that should be imple-
mented in hardware.

In the first method, the programmer uses reconfigurable

instructions in the library just like normal functions. The

compiler recognizes these function calls as instructions

instead of functions and treats them as such. Although the

creator of the library has to be proficient in the design of

these instructions, there is no need for the programmer to

know about this task. These designed instructions can be

more efficient than those generated automatically, though

their use is limited to what the designer intended, as occurs

in ASIP design.
This approach is identical to the one used for multimedia

extensions in modern microprocessors. If source code

equivalent to the instruction is available, it allows the

application to be compiled for a different processor, albeit

with a performance penalty. It is also important to have this

equivalent code in the library so that it can be used instead of

the reconfigurable instruction when it is not efficient to use it

in a particular case (i.e., because of reconfiguration time).
This method eliminates instruction identification and

estimation since identification is done directly through the

function call construct. Estimation and synthesis are already

done by the library designer. The performance check can

still be used, depending on the existence of code equivalent

to the instruction.
The second method forces a piece of code to be treated as

a new instruction. The compiler substitutes the code by its

equivalent instruction. It would be a special case of

optimization focusing. The compiler can still choose to

create the instruction or not, depending on the obtained

change in performance.
It is desirable to have these two other methods in a

compiler as a means to increase the level of flexibility for the

programmer.

858 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 9, SEPTEMBER 2002

Fig. 11. Generation of a complex instruction.

3.3 Instruction Selection/Assignment
(Configuration Scheduling)

During the instruction selection phase, the compiler chooses
which of the new instructions will be used for each block.
This selection is done trying to optimize the application
globally, with execution time as the typical metric. There are
two main cases for instruction selection: one time reconfi-
gurable RISP or dynamically reconfigurable RISP.

3.3.1 One-Time Reconfigurable RISP

One-time reconfigurable RISPs are similar to ASIPs. They
have an instruction set that is fixed during the entire
application. In fact, the process of selecting which instruc-
tions are to be used is the same in both types of processors.
Total execution time is minimized by a proper selection of
instructions. This selection process is constrained by the
number of instructions that can be implemented. In an
ASIP, there is an area limit, while, in a RISP, the limit comes
from the size of the RFU.

A simple technique to estimate the total execution time is
based on block frequency estimates. Total execution time is
the time needed to execute each block multiplied by the
number of times the block is executed. Obtaining block
frequency estimates is a very complex analysis that can be
done using static and dynamic information.

As with optimization focusing, static analysis is per-
formed studying the graph representation. The compiler
can make estimates on the number of iterations of loops,
control flow paths and several other aspects that can lead to
a conservative decision. Better results can be obtained by
using profiling. In this manner, a dynamic analysis is
performed on the program, allowing a better estimate of
block frequencies.

3.3.2 Dynamically Reconfigurable RISP

For RISPs in which reconfiguration takes place at runtime,
the instruction selection process is more complex. It does
not suffice to know the block frequencies, it is also
necessary to know the control path taken. Instead of
selecting a globally optimal instruction set, the compiler
has to select locally optimal instruction sets. The locality of
these instruction sets is also not defined and the compiler
must find them itself, which is equivalent to scheduling the
contents of the RFU along all control paths of the
application.

Since the compiler cannot optimize all control paths, it
has to estimate the most common path and optimize it.
Profiling techniques can be used for this. This phase
analyses the control graph of the program and finds an
optimal schedule of instructions inside the RFU. This
optimal schedule has to deal with two main aspects:
1) reconfiguring the RFU takes time and resources and
2) the performance of the code depends on what instruc-
tions are configured on the RFU. The optimal schedule will
reconfigure the RFU the least number of times and the
needed instructions will usually be already on the RFU [33].
In this manner, execution time and power consumption are
reduced to the minimum.

In some RISP compilers, such as [25], selection is not
done at all. For each block, the instructions that optimize the

block are selected. This can lead to solutions in which the
processor spends most of its time reconfiguring the RFU.

3.4 Instruction Synthesis/Compilation

Instruction synthesis takes the description of an instruction
and generates the configuration string needed for the RFU.
The techniques for synthesis used depend on the granular-
ity of the reconfigurable logic.

For fine-grained logic, this process is identical to the
compilation (or synthesis) of hardware with a hardware
description language, such as VHDL or Verilog, onto a
standard FPGA. In fact, the basic techniques are the same.
The main differences deal mainly with the fact that the
interfaces with the rest of the processor are already fixed.
The input language used to describe the instruction can
be specific to the RISP in order to obtain the best
performance [31].

Coarse-grained logic, on the other hand, borrows
techniques from the compiler domain [19]. A coarse-
grained architecture can be viewed as a very complex
clustered VLIW processor. The processing elements can be
viewed as the functional units in the VLIW, the segments
can be considered as clusters of functional units connected
by intra segment interconnect, and the communication
paths between the different clusters can be the inter
segment interconnect. The configuration memory would
store the VLIW code. The length of the instruction word
would be much greater than in common VLIWs.

3.5 Retargetable Backend

The backend of the compiler performs platform specific
optimizations and outputs assembler code. In the case of
RISP, the backend needs to adapt to the new instructions
created in the previous phases; the backend needs to be
retargetable.

There are two main types of retargetability that can be
incorporated on the compiler. Reconfigurable instructions
can be tied to a specific part of the code (this is usually the
case with custom instructions), simplifying code generation.
The DFG is marked with information concerning where to
use such specific instructions. The backend will only have
to schedule the instruction and assign a set of operand
registers, which is a major benefit when compared to ASIPs.
In compilers for ASIPs, the specialized instructions have to
be explicitly used by the programmer since the compiler is
not able to use them automatically.

The backend needs to be truly retargetable for those
instructions that are not tied to a specific part of the code,
such as new addition instructions or a specialized ”multiply
by 5” instruction. This would be the behavior of a
traditional retargetable compiler [34], but the RISP backend
needs to be retargetable at a finer level because the
instruction set changes over time. Therefore, the compiler
should have different instruction sets and change between
them depending on which part of the code is being
generated. These sets are obtained in the previous stages.

For processors in which the reconfigurable logic runs
asynchronously to the processor core, the backend needs to
insert special synchronization instructions. An example is
the Garp compiler [29].

BARAT ET AL.: RECONFIGURABLE INSTRUCTION SET PROCESSORS FROM A HARDWARE/SOFTWARE PERSPECTIVE 859

3.6 Code Transformations

During the compilation process, many code transformations

can be done in order to increase the performance of the

code. Of particular interest are transformations that reduce

the number of times that the RFUs need to be reconfigured

since this is usually the most expensive part.

If the architecture supports prefetching, then prefetch

instructions can be inserted after instruction selection [35].

This will modify the schedule by allowing the RFU to be

reconfigured while some other code is being executed. This

can easily reduce execution time by two [35]. Prefetching

operations can be inserted at compilation time or at runtime

using profiling techniques. If they are inserted at runtime, it

is possible to adapt the program to the data set being

handled.
For complex control paths, an alternative to just

reconfiguring the RFU as needed is to check the state of

the RFU explicitly in the code. Thus, if the next block would

benefit from a certain instruction, and this instruction is

configured in the RFU, optimized code is used. If the RFU

does not have the correct configuration, code with the fixed

instruction set is used instead.

Another type of transformation is instruction merging.

Instruction creation is done locally. This local analysis

might skip opportunities to reduce the number of reconfi-

gurations in the processor. In Fig. 12, two different

instructions are merged into a single instruction that can

perform addition or subtraction in the first node. This

reduces the number of different instructions that have to be

placed in the RFU and, thus, reduces the reconfiguration

time. No work has been found on the literature regarding

this stage, but it is likely that clustering techniques

developed for high-level synthesis will prove useful.

Merging two or more instructions can result in increased

latency, size, or other parameters. If this is the case, a

performance check should be performed with these new

instructions.
During the instruction selection phase, code transforma-

tions can be done to increase the locality of the configura-

tions. These transformations would modify the code so that

uses of an instruction are closer in time. Loop transforma-

tions look specially suited for this task [36].

860 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 9, SEPTEMBER 2002

Fig. 12. Instruction merging.

4 CONCLUSIONS

This paper has presented the different design alternatives

for reconfigurable instruction set processors. As has been

seen, RISP design is not an easy task. The design of the

reconfigurable logic is bound to be completely different

from that of standard FPGAs. The coupling of the processor

to this logic will pose many new problems, such as operand

passing, synchronization, etc. But, the most important

aspect will be the reconfigurability. Reconfiguration times

will have to be minimized in order to obtain a satisfactory

performance. The solution to this problem will be in the

software tools. Code generation for RISP involves many

new issues, and correctly managing the reconfiguration

delay is going to be toughest one. As a matter of fact, the

viability of RISP is mostly based on software technology

and not in hardware technology.
On the other hand, once these problems are solved,

RISPs will become a very good alternative to ASIPs and

general purpose processors. They provide hardware

specialization for compute intensive tasks with, at the

same time, great flexibility. This factor, coupled to the

reduction in power consumption that could be obtained

by this specialization will change the way processors are

built, in a similar way to what is now happening with

VLIW processors.

ACKNOWLEDGMENTS

This work is supported in part by the Institute for the

Promotion of Innovation by Science and Technology in

Flanders (IWT) project Irmut, FWO project G.0036.99, IMEC

and MEDEA+ A.502 (MESA).

REFERENCES

[1] M.F. Jacome and G. de Veciana, “Design Challenges for New
Application-Specific Processors,” IEEE Design & Test of Computers,
vol. 17, no. 2, pp. 40–50, Apr. 2000.

[2] D. Buell, W.J. Kleinfelder, and J.M. Arnold, Splash 2: FPGA’s in a
Custom Computing Machine. IEEE Computer Society Press, 1996.

[3] P.M. Athanas and H.F. Silverman, “Processor Reconfiguration
through Instruction-Set Metamorphosis,” Computer, pp. 11–18,
Mar. 1993

[4] M. Wazlowski, L. Agarwal, A. Smith, E. Lam, P. Athanas, H.
Silverman, and S. Ghosh, “PRISM-II Compiler and Architecture,”
Proc. Workshop FPGAs and Custom Computing Machines (FCCM ’93),
pp. 29–16, 1993.

[5] M.J. Wirthlin, B.L. Hutchings, and K.L. Gilson, “The Nano
Processor: A Low Resource Reconfigurable Processor,” Proc.
Workshop FPGAs and Custom Computing Machines (FCCM ’94),
pp. 23–30, 1994.

[6] R. Razdan and M.D. Smith, “A High-Performance Microarchitec-
ture with Hardware-Programmable Functional Units,” Proc. 27th
Int’l Symp. Microarchitecture (MICRO 27), pp. 172–180, Nov. 1994.

[7] M.J. Wirthlin and B.L. Hutchings, “A Dynamic Instruction Set
Computer,” Proc. Workshop FPGAs and Custom Computing Machines
(FCCM ’95), pp. 99–107, 1995.

[8] R.D. Wittig and P. Chow, “OneChip: An FPGA Processor with
Reconfigurable Logic,” Proc. Workshop FPGAs and Custom Comput-
ing Machines (FCCM ’96), pp. 126–135, 1996.

[9] J.R. Hauser and J. Wawrzynek, “Garp: A MIPS Processor with a
Reconfigurable Coprocessor,” Proc. Workshop FPGAs and Custom
Computing Machines (FCCM ’97), pp. 12–21, 1997.

[10] S. Hauck, T. Fry, M. Hosler, and J. Kao, “The Chimaera
Reconfigurable Functional Unit,” Proc. Workshop FPGAs and
Custom Computing Machines (FCCM ’97), pp. 87–96, 1997.

[11] C.R. Rupp, M. Landguth, T. Garverick, E. Gomersall, and H. Holt,
“The NAPA Adaptive Processing Architecture,” Proc. Workshop
FPGAs and Custom Computing Machines (FCCM ’98), pp. 28–37, 1998.

[12] T. Miyamori and K. Olukotun, “REMARC: Reconfigurable Multi-
media Array Coprocessor,” Proc. Sixth Int’l Symp. Field-Program-
mable Gate Arrays (FPGA ’98), Feb. 1998.

[13] J.A. Jacob and P. Chow, “Memory Interfacing and Instruction
Specification for Reconfigurable Processors,” Proc. Seventh Int’l
Symp. Field-Programmable Gate Arrays (FPGA ’99), pp. 145–154, 1999.

[14] S.C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R.R.
Taylor, and R. Laufer, “PipeRench: A Coprocessor for Streaming
Multimedia Acceleration,” Proc. 26th Int’l Symp. Computer Archi-
tecture (ISCA ’99), pp. 28–39, May 1999.

[15] J.L. Hennessy and D.A. Patterson, Computer Architecture A
Quantitative Approach, second ed. Morgan Kauffmann, 1996.

[16] C. Liem, P. Paulin, and A. Jerraya, “Address Calculation for
Retargetable Compilation and Exploration of Instruction-Set
Architectures,” Proc. Design Automation Conf., pp. 597–600, June
1996.

[17] S. Brown and J. Rose, “Architecture of FPGAs and CPLDs: A
Tutorial,” IEEE Design and Test of Computers, vol. 13, no. 2, pp. 42–
55, 1996.

[18] S. Shrivastava and V. Jain, “Rapid System Prototyping for High
Performance Reconfigurable Computing,” Proc. 10th Int’l Work-
shop Rapid System Prototyping (RSP ’99), pp. 32–37, July 1999.

[19] D.C. Cronquist, P. Franklin, S.G. Berg, and C. Ebeling, “Specifying
and Compiling Applications for RaPiD,” Proc. Workshop FPGAs
and Custom Computing Machines (FCCM ’98), pp. 116–127, 1998.

[20] A. De Hon, “DPGA-Coupled Microprocessors: Commodity ICs
for the Early 21st Century,” Proc. Second Int’l Symp. Field-
Programmable Gate Arrays (FPGA ’94), 1994.

[21] M. Moudgill and S. Vassiliadis, “Precise Interrupts,” IEEE Micro,
vol. 16, no. 1, pp. 58–67, Feb. 1996.

[22] A.A. Chien and J.H. Byun, “Safe and Protected Execution for the
Morph/AMRM Reconfigurable Processor,” Proc. Workshop FPGAs
and Custom Computing Machines (FCCM ’99), pp. 209–221, 1999.

[23] K. Nelson and S. Hauck, “Mapping Methods for the Chimaera
Reconfigurable Functional Unit,” technical report, Northwestern
Univ., 1997.

[24] T.J. Callahan and T. Wawrzynek, “Instruction Level Parallelism
for Reconfigurable Computing,” Proc. Eighth Int’l Workshop Field-
Programmable Logic and Applications (FPL ’98), Hartenstein and
Keevallik, eds., Sept. 1998.

[25] Z.A. Ye, N. Shenoy, and P. Banerjee, “A C Compiler for a
Processor with a Reconfigurable Functional Unit,” Proc. Eighth
Int’l Symp. Field-Programmable Gate Arrays (FPGA ’00), 2000.

[26] R. Razdan, K. Brace, and M.D. Smith, “PRISC Software Accelera-
tion Techniques,” Proc. Int’l Conf. Computer Design: VLSI in
Computers and Processors (ICCD ’94), pp. 145–149, Oct. 1994.

[27] D.A. Clark and B.L. Hutchings, “Supporting FPGA Microproces-
sors Through Retargetable Software Tools,” Proc. Workshop FPGAs
and Custom Computing Machines (FCCM ’96), pp. 195–203, 1996.

[28] M.B. Gokhale and J.M. Stone, “NAPA C: Compiling for a Hybrid
RISC/FPGA Architecture,” Proc. Workshop FPGAs and Custom
Computing Machines (FCCM ’98), pp. 126–135, 1998.

[29] T.J. Callahan, J.R. Hauser, and J. Wawrzynek, “The Garp
Architecture and C Compiler,” Computer, vol. 33, no. 44, pp. 62–
69, Apr. 2000.

[30] S.C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and
R.R. Taylor, “PipeRench: A Reconfigurable Architecture and
Compiler,” Computer, vol. 33, no. 4, pp. 70–77, Apr. 2000.

[31] M. Budiu and S.C. Goldstein, “Fast Compilation for Pipelined
Reconfigurable Fabrics,” Proc. Seventh Int’l Symp. Field-Program-
mable Gate Arrays (FPGA ’99), pp. 195–205, 1999.

[32] B. Kastrup, A. Bink, and J. Hoogerbrugge, “ConCISe: A Compiler-
Driven CPLD-Based Instruction Set Accelerator,” Proc. Workshop
FPGAs and Custom Computing Machines (FCCM ’99), pp. 92–101,
1999.

[33] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “3-D Floorplanning:
Simulated Annealing and Greedy Placement Methods for Re-
configurable Computing Systems,” Proc. 10th Int’l Workshop Rapid
System Prototyping (RSP ’99), pp. 38–43, July 1999.

[34] G. Goossens, J. Van Praet, D. Lanneer, W. Geurts, A. Kifli, C. Liem,
and P.G. Paulin, “Embedded Software in Real-Time Signal
Processing Systems: Design Technologies,” Proc. IEEE, vol. 85,
no. 3, pp. 436–454, Mar. 1997.

BARAT ET AL.: RECONFIGURABLE INSTRUCTION SET PROCESSORS FROM A HARDWARE/SOFTWARE PERSPECTIVE 861

[35] S. Hauck, “Configuration Prefetch for Single Context Reconfigur-
able Coprocessors,” Proc. Sixth Int’l Symp. Field-Programmable Gate
Arrays (FPGA ’98), Feb. 1998.

[36] D.F. Bacon, S.L. Graham, and O.J. Sharp, “Compiler Transforma-
tions for High-Performance Computing,” ACM Computing Sur-
veys, vol. 26, no. 4, pp. 345–420, Dec. 1994.

Francisco Barat received the engineering
degree in telecommunications from the Poly-
technic University of Madrid, Spain, in 1999.
That same year he joined the Katholieke
Universiteit Leuven, Belgium, where he is
currently pursuing a PhD degree in applied
sciences. His current research interests are in
the field of multimedia embedded systems
focusing on microprocessor architectures and
compilation techniques. He is a student member

of the IEEE and the ACM.

Rudy Lauwereins obtained the MEng and PhD
degrees in electrical engineering from the
Katholieke Universiteit Leuven, Belgium, in
1983 and 1989, respectively. In 1991, he was a
visiting researcher at the IBM Almaden Re-
search Center, San Jose, CA on a postdoctoral
NFWO research fellowship. In 1998, he acted as
advisor to the team that won the Northern
European section of the Texas Instruments
DSP Solutions Challenge. In 2000-2001, he

was elected by students as the best teacher of the engineering faculty’s
Master’s curriculum and got a nomination for the same prize in 2001-
2002. He became a professor at the Katholieke Universiteit Leuven,
Belgium, in 1993, and vice-president of Institut Mémoires de l’édition
Contemporaine in 2001. His main research interests are in computer
architectures, implementation of interactive multimedia applications on
dynamically reconfigurable platforms, and wireless communication. In
these fields, he has authored and coauthored more than 250 publications
in international journals and conference proceedings. He is a senior
member of the IEEE.

Geert Deconinck received the MSc degree in
electrical engineering and the PhD degree in
applied sciences from the K.U.Leuven, Belgium,
in 1991 and 1996, respectively. He is a visiting
professor at the Katholieke Universiteit Leuven
(Belgium) since 1999 and a postdoctoral fellow
of the Fund for Scientific Research—Flanders
(Belgium) since 1997. He is working in the
research group ELECTA (Electrical Energy and
Computing Architectures) of the Department of

Electrical Engineering (ESAT). His research interests include the
design, analysis, and assessment of computer architectures to meet
real-time, dependability, and cost constraints for embedded distributed
applications. In this field, he has authored and coauthored more than 75
publications in international journals and conference proceedings. In
1995-1997, he received a grant from the Flemish Institute for the
Promotion of Scientific-Technological Research in Industry (IWT). He is
a certified reliability engineer (ASQ), a member of the Royal Flemish
Engineering Society, a senior member of the IEEE, and of the IEEE
Reliability, Computer, and Power Engineering Societies.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dilb.

862 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 9, SEPTEMBER 2002

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

