Reconfigurable Instruction Set Processors: An Implementation Platform for
Interactive Multimedia Applications

Francisco Barat, Murali Jayapala, Pieter Op de Beeck, Geert Deconinck
ESAT/ACCA, K.U.Leuven, Belgium.
f-barat@ieee.org

, Abstract

Future interactive multimedia applications are
characterized by a large variety of compression algorithms
with highly parallel nested loops. It will not be efficient to
design custom processors suitable for this wide range of
applications due to the uncertainty on what is going to be
executed. Instead, we must find ways to cope with such
dynamic and compute intensive tasks. Reconfigurable
instruction set processors can cope with this dynamism by
specializing the hardware to the algorithm at hand at
runtime. They achieve this thanks to a flexible fabric of
coarse-grained processing elements that can be
reconfigured to perform different complex algorithms.
This paper anabzes the performance improvements
obtained by such programmable structures and discusses
some of the critical issues, such as reconfiguration times.

1 Introduction

Future interactive multimedia applications will be based
on standards like MPEG-4 [1]. Using an object-based
approach to describe and composite an audiovisual scene,
MPEG-4 combines many different coding tools not only
for natural audio and video but also for synthetic objects
and graphics. Objects are coded and transmitted separately
and composed at the decoder side, letting the receiver
interact and influence the way the scene is presented on the
receiving display and speakers. Due to this user
interaction, the number and type of decoders that needs to
be implemented on the system is not known at design time,
but rather at run time [2].

This fact forces the designer of platforms for these
applications to use new approaches. Traditionally,
multimedia applications have been implemented on custom
VLIW processors which provide enough parallelism to
accelerate this computation intensive applications [3],
while at the same time retaining a low power consumption
(when compared to other parallel approaches such as
superscalar processors). Furthermore, in order to increase
even further the computational power of these devices,
they have been enhanced with custom hardware for
acceleration of the most common multimedia operations.

0-7803-7147-X/01/$10.00©2001 IEEE

481

An example of this is the Trimedia processor {4], which
contains specialized units for DCT (Discrete Cosine
Transform) and motion estimation.

Unfortunately, due to the variety of algorithms that can
be used in new interactive applications and the fact that the
actual number and type of objects is not known till run
time, it is no longer economically visble to make
specialized functional units for each algorithm. The
picture is further complicated if we also take into account
that a platform designed for these applications may have to
decode an object encoded with an algorithm for which it
was not conceived. Therefore, in order to maintain power
efficiency and the real time constraints, we need a platform
that can be specialized at run time to the algorithm at hand.
A platform based on a reconfigurable instruction set
processor provides this run time specialization.

When designing such a reconfigurable processor, loops
are the mitial optimization target since typical multimedia
algorithms spend most of the time on nested loops. Figure
1 shows the percentage of time spent inside the inner loops
of some applications taken from the Mediabench [5] set of
benchmarks when compiled with our experimental
compiler. Only loops that could be software pipelined
with our compiler are shown. With adequate program
transformations and a better quality compiler, the
percentage is even greater. As can be seen on the figure,
typically more than 50% of the time is spent in inner loops.

100%

Percentage
g
®

OSeriesd
BSeries2

HERRERD

ADPCM ADPCM JPEG decode JPEG sncode MPEG2 MPEG2
decede ancods dacoda encode

Application

Figure 1 Percentage of loops in some applications

Anocther interesting detail is the amount of parallelism
available inside these loops. If we analyze the loops of the

previous applications, we can calculate the maximum
instruction per cycle. A typical value is over 20
instructions per cycle, much larger than what current
VLIW processors can exploit.

For the rest of the code, the instructions are mostly
sequential, with little or no instruction level parallelism.
These comrespond to data dependent control code. An
example of this is the 32% of non-loop code on MPEG
decoding seen on the previous figure. This corresponds
mainly to the variable length decoding of symbols, which
is a purely sequential task. Typical VLIW processors have
enough parallelism for these parts of the application.

In order to optimize these applications, a processor that
can exploit all the parallelism in the loops and at the same
time reduce the power consumption is needed. Such an
approach can be based on a reconfigurable processor. In
this paper we present CRISP, a reconfigurable processor
designed for these applications.

A reconfigurable processor executing an interactive
application needs run time reconfiguration (also known as
dynamic reconfiguration) in order to adapt to the algorithm
that is required at the moment. This means that the
processor must. be reconfigured for each part of the
application, and this must be done at run time. However,
reconfiguration times in most reconfigurable processors
. are not negligible [6]. Hence, a processor designed for
interactive applications needs a mechanism to reduce or
hide these times. We show that a small configuration
memory significantly reduces the configuration times.

The paper is organized as follows. Section 2 describes
the processor. The next section explains how the
reconfiguration penalty can be solved or hidden with a
simple mechanism, the configuration cache. Results from
some simulations are shown in section 3 and conclusions
are given on section 4.

2 A reconfigurable processor for interactive
multimedia applications

In this section we describe CRISP, which stands for
Configurable and Reconfigurable Instruction Set
Processor. CRISP is a VLIW instruction set processor that
is configurable at design time. It is configured by fixing
parameters such as the number and type of functional units
or the size of the register files. The processor is also
reconfigurable at run time thanks to a coarse grained
reconfigurable fabric. This flexibility allows us to
perform experiments and optimize the processor to a set of
applications or application domain.

482

L
D-Cache

E

L1

I-Cache
Fetch Logic

Instruction Decode

lssue Logic
Register File

Figure 2 Typical CRISP processor instance

CRISP is composed of fixed functional units (FUs) and
a reconfigurable functional unit (RFU). An example
instance can be seen on Figure 2. As all VLIW processors,
the processor executes instructions that are composed of
parallel operations. Operations are executed in the
functional units (both fixed and reconfigurable).

The fixed functional units are the functional units found
in typical VLIW processors, such as integer units,
muitipliers or a load/store units. These are used outside
loops, where not much parallelism is needed. In a sense, if
we only used the fixed functional units, CRISP would
behave like a standard VLIW processor.

2.1 The reconfigurable logic

The reconfigurable unit contains an array of coarse-
grained processing elements (PEs). Since the amray is
designed for multimedia applications, it must efficiently
perform the basic operations found in this type of
algorithms. The processing elements therefore operate on
8, 16 and 32 bit data. The basic operations are addition,
subtraction, multiplication and shifting. This means that
the processing elements have a complexity similar to the
integer functional units.

In order to support loops with control code nside it, the
processing elements are predicated. Predication [7] is a
method for translating control constructs into simple
dataflow operations. It allows the removal of costly
branches in conditional code. A predicated operation
executes if the predicate (one of the inputs of the
operation) is true.

The processing elements are connected together through
a full crossbar (not depicted on Figure 2). This crossbar
can connect the output of any processing element to the
input of any other processing element. It is also possible to
connect a processing element to a register from the main’
register file through the RFU ports. Parameters and results
are passed in this manner. By limiting the interconnect to

a less complex structure, savings in area and power
consumption can be obtained at a cost in compiler
complexity.

Each processing element has a small register file at its
output (see Figure 2) that can be optionally bypassed, just
like flip-flops in traditional FPGAs. By bypassing the
register file, it is possible to connect the output of one
processing element to the input of another processing
element and thus perform spatial computation. Elements
in a data flow chain are connected together through the
crossbar. The processing element at the end of the chain is
registered to combine temporal and spatial computation.
By using spatial computation it is possible to reduce the
critical path in the code at no extra cost than the register
bypass and an increase in compiler complexity.

2.2 The reconfigurable decoder

The reconfigurable fabric provides enough
computational power to execute the inner loops of
multimedia applications. The processing elements of this
fabric can be considered as extra functional units of a
VLIW processor. There is, however, a major difference in
how the elements are controlled. When the RFU needs to
be used, the compiler inserts a special reconfigurable
operation (ROP) in the main instruction word that specifies
which configuration must be used. When the ROP is
executed, the processor loads the adequate configuration
into the RFU and executes it. In this manner, the RFU is
only used when necessary. The ROP specifies the
configuration that must be used, which must be loaded
from a specified memory location. This translation from
ROP to a much longer control word can be viewed in two
manners: as a reconfigurable instruction set or as a
programmable micro coded instruction set.

The compiler (see section 2.3) optimizes the code in
such a manner that a loop might require more than one
configuration. In this case, loading the configurations from
the external memory every cycle of the loop would incur in
a huge time and power consumption overhead. To solve
this, instead of fetching the configuration from the external
memory, the configuration is fetched from a local
configuration memory. This configuration memory is a
memory adapted for the execution of loops. It is very
shatlow, typically 32 words depth, enough to hold the
configurations needed for the most interesting loops, and it
is very wide, proportional to the number of processing
elements in the RFU.

The configuration memory is now accessed by the ROP
code in the main instruction word. The ROP specifies a
configuration memory location, which in turn is going to
specify the control lines of the processing elements.
Figure 3 shows this scheme.

483

ntextj at
address
m = hash(j)

L Programmable Interconnect '

Figure 3 Control decoding in the RFU

The configuration memory is distributed all over the
reconfigurable fabric. This allows the length of the control
lines from the memory to the processing elements to be
minimized. Thanks to these short lines and the
shallowness of the configuration memory, we can achieve
a great saving in power consumption in the control logic of
the RFU.

With this scheme, the user needs to preload the
configuration memory with data before it is actually used.
An alternative mechanism that can be used is to use a
configuration cache instead of a configuration memory.
The ROP now specifies a configuration number (that can
be much bigger than the depth of the configuration cache).
If the configuration is in the configuration cache, it is
accessed. If there is a cache miss, the configuration is
loaded from a slower but bigger memory (placed in a
lower level in the memory hierarchy). The time spent in
this operation is the reconfiguration time.

By making the configuration cache very shallow we are
able to reduce the power consumption. In some
applications, the number of misses on this cache can be
quite high, since not all the loops in an application will be
able to fit in this memory. Adding a second level of
configuration cache allows us to maintain a small
reconfiguration time and at the same time reduced power
consumption. The bigger and less power efficient second
level cache is only accessed at the beginning of the loops.

23 Code generation

Code generation for a reconfigurable instruction set
processor involves two tasks: generation of the different
configurations for the reconfigurable array and generation
of the fixed functional units of the processor. In the case
of CRISP, with processing elements of similar complexity,
common VLIW techniques have been used. On our
research compiler (based on Trimaran [8]), code
generation for loops is based on software pipelining [9].
In software pipelining, iterations are initiated at regular
intervals and execute simultaneously but in different stages

of the computation. This allows mapping the available
parallelism onto the huge number of resources of CRISP.

The code generated for a loop will contain as many
configurations as the iteration interval of the loop. It is
therefore important to check that an iteration does not last
more than the number of available configurations in the
configuration cache. If this was not the case, the generated
code would need constant reconfiguration.

Furthermore, software pipelining can also be modified
to exploit the ability to perform spatial computation by
chaining operations [9]. This allows a reduction of the
critical path length of inner loops, with the corresponding
decrease in execution time. The process of code
generation with spatial computation requires a proper
model of the timing delay of the processing elements and
the interconnect, since the process is similar to the place
and route stage in FPGAs.

3 Results

" We compared the execution time of a VLIW processor
with that of a CRISP processor. Both processors had the
following functional units:

- 5 integer units

- 2load/store units

- 1 branch unit

In addition, the CRISP processor had a reconfigurable
functional unit with 32 processing elements, which could
perform the same operations as the integer units.

Both processors had the following memory hierarchy:

- 16 KB L1 I-cache, 2 cycles access time.

- 16 KB L1 D-cache, 2 cycles access time.

-~ 2 MB L2 unified I and D cache, 8 cycles access

tme.

- 64 bit bus to external bus, pipelined with setup time

18 cycles and sustained transfer 2cycles/transfer

The CRISP processor also included a L1 configuration
cache of 4Kbytes with 32 sets and a L2 configuration
cache of 256KB.

Figure 4 compares the total execution time of some
multimedia decoders. The benchmarks were taken from
the Mediabench set of benchmarks [5]. Even though this
are not real interactive applications, they have similar
workloads. Figure 5 shows the execution improvement on
the inner loops, which is where the optimization target was
set. As we can see from the figures, for one of the
benchmarks (ADPCM encode) no improvement in
execution speed was observed. This was due to the lack of
enough parallelism in this particular benchmark. On
average, the improvement is around 15%. After closely
examining the results, we found out that the limiting factor
was the data memory bandwidth. With only two load store
units, the RFU did not get enough data to exploit all the
available parallelism. Rewriting the code to improve the
way data is accessed will improve the execution speed.

484

Since multimedia applications usually operate on
contiguous data, widening the data memory transfers
would also improve the execution speed.

1,2 1

ovLW
TICRISP

Normallzed execution time
o s
> o

[
1Y
M

ADPCM ADPCM JPEG JPEG MPEG MPEG
decode encods decode encode decode encode

Appfication

Figure 4 Overall execution improvement

B CRISP

Normalized execution time

ADPCM ADPCM JPEG JPEG MPEG MPEG
decode ancode decode encode decode encode

Application

Figure 5 Loop execution improvement

In order to measure the effects of the reconfiguration
time, we measured the applications with three different
configuration memory hierarchies. The first one did not
contain any configuration memory on chip. The second
one contained a small L1 configuration cache (4KB with a
depth of 32 words). The last contained the complete
configuration memory hierarchy: level 1 and level 2
(256KB). Figure 6 compares the execution times of these
three approaches.)

€0 1
E 50
§ an M
3 DNo mem
g s oLt
° oLz
.g 20 1
E
S
€ 10
0 bk L"‘" v ! L"‘ﬁfn*‘—)
ADPCM ADPCHM JREG JPEG MPEG MPEG
decode encode decode encods decods sncode
Application

Figure 6 Effects of configuration memory hierarchy

From the figures, we see that at least a first level of
configuration cache is needed if we want to obtain a fast

execution (without this memory, the execution times were
a lot worse than the standard VLIW processor seen
before). Adding a second level of configuration cache
does not drastically improve the performance (about 0.5%
on average). The reason for this is twofold. First, the
reconfiguration time is small due to the small size of the
configuration stream (1024 bits). And secondly, once a
loop is entered, the reconfiguration cost is quickly hidden
by the execution time of the loop. With a more efficient
compiler and with extra data memory bandwidth, it might
be necessary to include the second level of cache. Also, it
might be interesting to include it for power consumption
reduction.

4 Conclusions

In this paper we have shown that a reconfigurable
instruction set processor based on coarse-grained
reconfigurable logic can reduce the execution time of
interactive multimedia applications. Such a processor is
optimized for two types of code:

Highly parallel loops: these loops can profit from a big
number of processing units and represent a big
fraction of the total execution time. CRISP exploits
the temporal locality in the loops to reduce the power
consumption by using a low power configuration
cache. The high number of processing units allows
reducing the execution times of these loops.
Sequential code: The amount of parallelism in this
type of code does not require a big number of
functional units. For this reason, during these pieces
of code, the reconfigurable functional unit is not used
at all. The processor behaves as a standard VLIW
ProCessor.
Loading the configurations into the configuration
memory is a time consuming task. Using an Ll
configuration cache almost eliminates the reconfiguration
latency. Reconfiguration delays are small because coarse-
grained reconfigurable logic has small configuration size.
A level two of configuration cache does not drastically
improve the performance. It can be used to reduce the off-
chip memory traffic and reduce the power consumption.

By combining the large amount of processing elements
in the reconfigurable logic, the characteristics of
multimedia applications and the ability to quickly
reconfigure the processor, it can be seen that coarse-
grained reconfigurable processors are ideally suited for
interactive multimedia applications. Future work will try
to find out what the ideal type and numbers of processing
elements that should be placed on the reconfigurable logic.
The interconnect structure is also of great importance, as it
will define important parameters such as speed and power
consumption.

485

Acknowledgements

This work is supported in part by MESA from the
MEDEA+ project.

References

(1]
[2]

ISO/IEC 14496, “Information Technology — Coding of
audio-visual objects™, 1999.

Johannes Kneip, Bernd Schmale, Henning Moller,
“Applying and Implementing the MPEG4 Multimedia
Standard”, IEEE Micro November/December 1999 (Vol. 19,
No. 6))

MF. Jacome and G. de Veciana, “Design Challenges for
New Application-Specific Processors” IEEE D&T
Computers, Vol. 17, No. 2, April 2000, pp. 40-50.

Trimedia Technologies Inc., “Trimedia 32 CPU Handbook”,
http://www.trimedia.com

C. Lee, M. Potkonjak and W.H. Mangione-Smith,
“MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems”, Proceedings of
the 37% IEEE/ACM Symposium on Microarchitecture,
December 1997.

Zhiyuan Li, Katherine Compton and Scoft Hauck,
"Configuration Caching Techniques for FPGA", IEEE
Symposium on FPGAs for Custom Computing Machines,
2000.

W.W. Hwu, “Introduction to Predicated Execution”, IEEE
Computer, January 1998, pp. 49-50.

Trimaran, an Infrastructure for Research in Instruction-Level
Parallelism, 1999. http://www.trimaran.org

F. Barat, M. Jayapala, P. Op de Beeck and G. Deconinck,
“Software Pipelining for Coarse-Grained Reconfigurable
Instruction Set Processors”, Proceeding of the Asian and
South Pacific Design Automation Conference 2002, to be
published.

B3]

(4]
{3]

(6l

(71
{8
[

