C3: An architecture-independent model for coarse-grained parallel
machines*

Susanne E. Hambrusch
Department of CS
Purdue University

West Lafayette, IN 47907

sehQcs.purdue.edu

Abstract

We propose an architecture-independent parallel
model, the C®-model. The C®-model evaluates, for
a given parallel algorithm and target architecture, the
complezity of computation, the pattern of communica-
tion, and the potential congestion arising in communi-
catton operations. A metric for estimating the effect of
link and processor congestion on the performance of an
arbitrary communication operation is developed. We
describe how the C®-model can serve as a platform for
the development of coarse-grained algorithms sensitive
to the parameters of a parellel machine. The initial
validation of the C®-model is discussed through differ-
ent implementations of communication operations on
the Intel Touchstone Delta.

1 Introduction

The development of a parallel model that bridges
the gap between software and hardware has been rec-
ognized crucial to the success of massively parallel
computation. Such a model should be simple, should
accurately reflect the constraints of a parallel machine,
and should have broad applicability with respect to
existing machines. In addition, such a model should
provide a platform for algorithm development and al-
low accurate prediction of the performance of an al-
gorithm. Recently, a number of models with this goal
have been proposed [3, 5, 8, 10, 11, 15, 16, 17]. In most
of these models, processors are assumed to communi-
cate using a point-to-point message router. Compos-
ing more involved communication operations by hav-
ing to specify fine-scheduling details places a signif-
icant burden on application programmers. Further-
more, the above models do not attempt to capture
the effect of link or processor congestion.

*Research supported in part by ARPA under contract
DABT63-92-C-00220NR. The views and conclusions contained
in this paper are those of the authors and should not be inter-
preted as representing official policies, expressed or implied, of
the U.S. government.

0-8186-6427-4/94 $04.00 © 1994 IEEE

Ashfaq A. Khokhar
School of EE and Dept. of CS
Purdue University
West Lafayette, IN 47907

ashfaqQ@cs.purdue.edu

In this paper, we propose an architecture-
independent parallel model, the C3-model. This
model captures the complexity of computation, the
pattern of communication, and the potential conges-
tion during communication. We provide a metric for
estimating the effect of link and processor congestion
on the performance of communication operations. Qur
metric allows the evaluation of arbitrary communica-
tion operations without having to specify fine schedul-
ing details. We investigate how well the C3-model
serves as a platform for the development of coarse-
grained algorithms and as a tool for estimating the
performance of an algorithm. For the initial valida-
tion of the C3-model, communication operations have
been implemented on the Intel Touchstone Delta, and
performance results are discussed and compared to the
predicted performance.

We assume that computation is synchronized by a
barrier-style synchronization mechanism similar to the
one described in [16]. More precisely, an algorithm can
be partitioned into a sequence of supersteps, with each
superstep corresponding to local computation followed
by sending and receiving messages. Synchronization
occurs between supersteps. We express the perfor-
mance of a superstep, and thus of an algorithm, in
terms of computation units and communication units.
Counting in units allows us to penalize certain un-
desirable aspects in local computations and in com-
munication operations. The number of computation
units charged depends on the amount of local com-
putation done. The number of communication units
charged depends on the amount of data sent and the
amount of data received by a processor, the latency
encountered by the messages, the congestion arising
due to the volume of inter-processor communication,
and the routing schema and routing protocols used.
Our method for evaluating communication units esti-
mates the effect of these factors on the performance.

Section 2 describes the C3-model and the metric
used to determine communication and computation
units. In Section 3, we use straightforward implemen-
tations of common communication operations as ex-
amples for our metric. In Section 4, we use the C3-

model to develop and analyze a number of different
implementations of these operation and we compare
the predicted performance to the results achieved on
the Intel Delta.

2 The C3-Model

We first state machine parameters used for deter-
mining computation and communication units. Let
P be the number of processors available in the ma-
chine. In current coarse-grained machines, the com-
puting power of a processor is equivalent to that of
a state-of-the-art workstation. We assume that algo-
rithms on coarse-grained machines are not constrained
by the amount of local memory. A message is made up
of fixed-length packets and a packet is the logical unit
for communication between two processors. We use [
to denote the length of a packet (measured in bytes),
s to denote the set-up cost for a message, and A to de-
note the latency. We use the average distance between
two processors to represent the latency. In the sub-
sequent discussion we assume a processor bandwidth
and a network bandwidth of I. How to include differ-
ent bandwidth parameters into our charging method
is described later.

Numerous applications contain routing steps in
which the p processors are partitioned into q sets
S1,...58¢, with S; containing p; processors, such that
sends and receives are issued only between processors
in the same set. Assume every processor set S; cor-
responds to a scaled down version of size pi of the p-
processor machine. If hardware and software support
the execution of operations within processor set Si,
independent of the operations done in the other sub-
machines, efficiency of routing operations is enhanced
significantly. The importance of being able to operate
on independent submachines has been recognized. It
has been incorporated into the Message Passing In-
terface (MPI) [6] and has been extended to arbitrary
process groups [1}. In our evaluation of communica-
tion units we assume that independent routing in sub-
machines is possible. We thus charge communication
units based on the parameters of the associated sub-
machines.

2.1 Computation Units

The charging of computation units in a superstep
is done as follows. Assume that in one superstep pro-
cessor P; accesses t; bytes. The superstep is charged
maxp<i<p-1[%] computation units. The reason for
normalizing computation units by I is that too little
computation between two communication steps should
have a negative impact on the performance. If t <,
we charge one computation unit and thus also penalize
for not accessing enough bytes to fill a packet.

545

2.2 Communication Units

The communication units charged to one superstep
reflect the time spent in sending and receiving mes-
sages, the time messages are en-route under ideal con-
ditions, the amount of congestion that could oceur,
and an estimate on the resulting delay. The number
of communication units charged also depend on the
type of routing schema and the type of send and re-
ceive primitives used. The two routing schemas we
consider are store-and-forward and wormhole rout-
ing. Most existing machines support both blocking
and nonblocking protocols for send and receive primi-
tives. These protocols differ in implementation based
on the synchronization methods used. In this paper we
consider nonblocking receives together with blocking
and nonblocking sends. For clarity, a blocking send is
a send operation initiated by a source processor which
does not terminate until the message is received by
the destination processor. In a nonblocking send the
source processor, after filling its send buffer, has to
wait only until the message has been read out of the
send buffer.

Assume processor P; sends a message consisting of
L ; bytes to processor P;, 0 < 4,5 < p— 1. This
message uses a send fime s;;, which is an estimate
on the time needed to send the message when it en-
counters no congestion. For nonblocking sends and

nonblocking receives, it is s + f&fl] * h for store-

and-forward and s + [£54] + A for wormhole routing.
For blocking sends and nonblocking receives, the send

time is 2(s + k) + [L—;ﬂ] * h for store-and-forward and

2(s+ k) + fL—;H-] + h for wormhole routing. Processor
P; experiences a receive time r; ; which represents the
time P; is occupied with receiving the message. It is

[5—,‘-‘-'-] for store-and-forward and wormhole using non-
blocking sends and receives. For blocking sends and

nonblocking receives, it is s + h + [L—;'-'-] * h for store-

and-forward and s+ 2h + fL—;'J-] for wormhole routing.
Let n,(i) and n, (i) denote the number of processors to
which P; sends a message and from which it receives a
message, respectively. The total send and total receive
times, S; and R;, for processor P; in a superstep repre-
sent bounds on sending and receiving these messages
in a congestion-free environment. Figure 1 gives the
total send and receive times experienced under differ-
ent routing protocols.

We briefly comment on the quantities given for
store-and-forward routing with nonblocking sends and
nonblocking receives. Let P/ be the first processor to

whom P; issues a send. After s+ [5‘4,-’:] steps, proces-
sor F; is no longer engaged in the send process and can
proceed with the next send, thus pipelining the ns(7)
sends. The total send time S; includes n,(i) message
set-up costs, the total number of packets sent out, and
the latency experienced by sending out the last packet

Protocol” Si R
SF, nbs, nbr | ¢ %n,(i) + h * [Zaimaz] +ZOSJ.SP_1[L_;¢] ZDSJSP_I[E%:]
WH, nbs, nbr sxma(i) +h+ oo [Cocscpmt [3]
SF, bs, nbr As+h)xnoi) +he Yoo, (74 (a+h)*nr(i)+h*zosjsp_1[£§:]
WH, bs, nbr s+ h) wne() Hht Yoo [T | ARy *nc() 4 ht Tggi o, [72]

Figure 1: Total send and receive times for processor P; under different routing protocols.
*SF = Store and Forward, WH = wormhole routing, nbs = nonblocking sends, nbr = nonblocking receives, bs

blocking sends, br = blocking receives

(which is bounded by the largest message size).

The quantity S; + R; represents a bound on the
time processor P; spends in one superstep on send-
ing and receiving messages. Charging one superstep
maxo<i<p-1{Si+Ri} communication units reflects the
overall send and receive time experienced by the ma-
chine during the communication operation, not includ-
ing the delay the messages encounter because of link
and processor congestion. We point out that when
stating communication units, so far we have not scaled
the set-up cost but simply have included the total
number of set-up costs experienced. When giving
communication units for operations on specific ma-
chines in Section 4, we convert set-up costs to com-
munication units.

Congestion plays a crucial role in achieving high
performance. At the same time, congestion is difficult
to evaluate. Congestion is a global phenomena and
where it occurs depends on specifics of the architecture
and the routing paths taken. A formal model to deal
with contention in a shared memory machine has been
proposed in [7]. In general, congestion depends on the
amount of data sent between processor pairs. The
amount is independent of whether we use store-and-
forward or wormhole routing. In our estimation of
congestion, we measure Cj, the congestion over links,
and C,, the congestion at the processors. We measure
processor and link congestion under the assumption
that all messages are routed simultaneously. Clearly,
this may not be done under a given protocol. However,
delaying the sending of a message by using blocking
sends is, in some sense, a possible way of dealing with
the congestion. In both cases, the messages experience
a delay. The parameters used to measure potential
congestion are the following:

e p, the number of processors,

e cong, the total number of processor pairs commu-
nicating,

o b, the bisection width of the machine, and

546

e L,, be the average number of packets routed be-
tween the processors.

Congestion over links is closely related to the bisec-
tion width of the machine. In a machine with a bisec-
tion width of b, it takes at least [£] steps to send K
packets from processors in one half of the machine to
the processors in the other half. We set

cong

C]:La*[]

Our estimation of the link congestion C; is both op-
timistic and pessimistic. It is optimistic in measur-
ing congestion only over a single link cut (namely, the
cut that separates the machine into halves). It is pes-
simistic in assuming that all cong communicating pro-
cessor pairs have the source processor in one half and
the destination processor in the other half of the ma-
chine.

In order to estimate the congestion at the proces-
sors assume that all cong processor pairs are routed si-
multaneously. Processor congestion is then estimated

as
cong

Cp=Lax| 1*h.

The quantity [91;‘11 represents the average number
of messages at a processor at the beginning of the
communication operation. We use L,, the average
message length, in estimating the slow-down a mes-
sage experiences. We argue that a message of size L,
traversing a distance of A links and thus competing for
the resources with other messages at each of the h — 1
intermediate processors is slowed down by a factor of
[=24] at each processor. We do not take into account
that congestion at the processors is likely to decrease
during the routing. Capturing this behavior in a sim-
ple way is difficult and in many realistic routings (e.g.,
a transpose) the decrease in the congestion is slow.
In summary, the total number of communication

units charged in a superstep is

max 1{Si + Ri} +C + Cp.

0<i<p—

In order to estimate actual execution time of an al-
gorithm, relative weights need to be attached to com-
putation and communication units. These weights
should be based on the ratio between the processor
clock speed and the network clock speed as well as the
ratio of the bandwidth of the network and the band-
width of the processors. In the high-level approach
taken by our model, clock speeds and bandwidth pa-
rameters do not influence the design of an algorithm
and they are thus not included. Put in a different
way, we give units for the case when the network clock
speed is equal to processor clock speed and network
bandwidth is equal to processor bandwidth. When
evaluating an algorithm the ratio of computation units
and communication units over all supersteps gives in-
formation as to whether an algorithm is computation
or communication intensive.

3 Charging Communication Units

In this section we use different communication pat-
terns to demonstrate our method for charging com-
munication units in a superstep. Our metric allows
the evaluation of arbitrary communication patterns.
While arbitrary patterns occur in applications, regu-
lar patterns are more common on coarse-grained ma-
chines. We give the number of communication units
charged for regular patterns when each communica-
tion operation is implemented using the naive ap-
proach of each processor sending messages directly to
the destination processors. The communication opera-
tions we consider include one-to-one, one-to-all, all-to-
one, and all-to-all routing. The communication units
are given for wormhole routing with nonblocking sends
and nonblocking receives. To simplify the presenta-
tion, we assume that every message is of length L.

In one-to-one routing, also known as permutation
routing, every processor sends L bytes to a unique
destination (i.e., unique among all p processors). Our
charging method does not distinguish between rout-
ings that are easy or difficult with respect to the aris-
ing congestion. Clearly, for any particular architec-
ture, such differences do exist. In one-to-one routing
we have n,(i) = 1, n.(4) = 1,0 < i < p—1, and
cong = p. Figure 2 gives total send and total re-
ceive times, link and processor congestion for one-to-
one and other communication operations.

For one-to-one routing, link and processor conges-
tion dominate the communication units. Whether one
can expect more congestion over the links or at the
processors, depends on the bisection width of the ma-
chine. Assume that one-to-one routing is done on a
p-processor square mesh with b = ,/p and h = g\/ﬁ

547

Then, processor and link congestion appear almost
balanced and we charge

s+2VEHTE x4 v

communication units. On a p-processor hypercube we
have b = p/2 and h = lﬁgﬂ and the processor conges-
tion dominates. In total, we charge

logp
2

+ T % (44 82)

s+ 5

communication units. On a tree machine with h =
logp and & = 1 link congestion dominates and we
charge

L
s+logp+ [T] * (24 p+logp).

In one-to-all routing, one processor, say processor
Py, sends p — 1 distinct messages, each to a different
destination. We have n,(t) = p—1, n.(i) = 1 for
1#¢0<i<p-1,and cong = p— 1. Clearly, the
total send time experienced by the source processor P,
dominates the number of communication units.

All-to-one routing is the inverse of one-to-all: every
processor now sends a message to a common processor,
say processor ;. We have ny(¢) = 1 fori # ¢, 0 <
1<p-1,n.(t)=p—1, and cong = p— 1. The total
receive time at processor P, dominates the number of
communication units.

In all-to-all routing, also known as total exchange,
every processor sends a message to every other proces-
sor. We have n, (i) = p—1,n,(1) = p—1,0 <i < p—1,
and cong = p(p — 1). From the number of communi-
cation units charged shown in Figure 2 it follows that
link and processor congestion dominate the number of
communication units. In the next section we use the
C® model to develop a family of algorithms for each
one of the communication operations.

4 C® as a Platform for Developing
Communication Operations

Efficient communication operations are crucial for
making programs scalable and portable across differ-
ent machines. Common communication operations
should be implemented with the specific features and
parameters of the machine in mind. Implementing
operations through independent sends and receives is
not likely to result in the best implementation. In
this section we use the C3-model as a platform to de-
velop and analyze different implementations of com-
munication operations. For each implementation we
compute computation and communication units and
compare total units to the performance of the algo-
rithms on the Intel Delta. The Delta uses wormhole

5. R G Gy
one-to-one s+[F1+h [1151 [F]+h
one-to-all | (p—1)x(s+[F])+h i=t [F1,i#1 [[£]%h
all-to-one s+ &1 +h i#t [Lle(p—1),i=1t| [£][2H] [£]%h
all-to-all (=D (s+[F])+4h [F1xe—-1) | [R5 | [$1xhx(p—1)

Figure 2:

routing and allows the use of blocking as well as non-
blocking sends. We give communication units and
performance for wormhole routing with nonblocking
sends and nonblocking receives. Our results indicate
that the efficiency of a communication operation is
influenced by the relationship among parameters of
the parallel machine, as well as by the relationship of
the parameters to the amount of data involved. This
agrees with other research done on the implementation
of communication operations, [1, 2, 4, 12].

In order to classify the different approaches used in
our implementations, we introduce the notion of a k-
level algorithm. Intuitively, in a k-level algorithm the
machine is partitioned into k levels of submachines,
with the submachines within each level operating in-
dependently from each other. An algorithm is a 1-
level algorithm if, in the description given in terms
of supersteps, no superstep operates on independent
submachines. In a k-level algorithm, k > 1, there ex-
ists at least one superstep that assumes a partition
of the machine into independent submachines and the
following supersteps specify a (k — 1)-level algorithm
for each submachine.

When describing our algorithms, we assume, for the
sake of simplicity, that the size of the message routed
between any two processors is L. We refer to I as
the actual message size. Our k-level algorithms are
characterized by combining the original messages of
size L and by performing routings within independent
submachines. Therefore, in a superstep the size of the
message routed between two processors can be differ-
ent from the actual message size. We refer to the size
of a message routed between processors as the effective
message size. For all algorithms, the effective message
size is never smaller than the actual message size.

4.1 One-to-all Routing

In this section, we use the k-level concept to develop
a number of different implementations for one-to-all

548

Communication units charged for wormhole routing with nonblocking sends and nonblocking receives

routing. We make a number of simplifications when
giving communication units. First, we write p when
the correct quantity is p—1. We also may omit additive
terms of h.

There exist two conceptually different 1-level one-
to-all algorithms. In the first one, Algorithm 1-lev-dir,
source processor P; issues p — 1 direct sends. Using
Figure 2, our model charges sp+ [£] % (p+ [2] + k)
communication units.

Another 1-level approach is to have processor P,
form one long message of size L(p— 1) which is broad-
cast to every processor and then let each processor ex-
tract its message from the long message received. One
expects the broadcasting approach to be efficient only
when L is small and when the parallel machine has
a control network dedicated to fast broadcasts. We
considered two versions of this approach. The first
one, Algorithm 1-lev-sys-br, uses the system’s broad-
cast and the second one, Algorithm I-lev-our-br, uses
a binomial heap as a broadcasting tree.

We next describe a generic 2-level approach. Log-
ically partition the p-processor machine into p® sub-

: s l1-a 1
machines, each containing p processors for ogp <

a < 1. Designate one processor in each submachine as
a leader. Source processor P, then forms p* long mes-
sages, each having an effective message size of Lp!~°.
The i-th long message formed consists of the p! = ac-
tual messages destined for the processors in the i-th
submachine, 0 < ¢ < p* — 1. Next, processor P; is-
sues p® sends (or p® — 1 sends if P, is a leader) to
route the long messages to the leaders. Once a leader
has received its long message, it divides the message
into p!~% of size L and initiates a 1-level one-to-all
algorithm within its submachine. For the mesh archi-
tecture, we considered such a 2-level algorithm, Algo-
rithm 2-lev-rec, in which each submachine consists of
a row of processors. In this case, the first superstep
operates on a single column of the mesh. The second
superstep uses Algorithm I-lev-dir within each row.

The number of communication units charged is

VP

LA L0 ot 1w 1),

where & and A’ are the bisection width and the av-
erage distance in a /p-processor linear array, respec-
tively.

A 3-level algorithm is obtained by applying a 2-level
approach to submachines. We have implemented the
following 3-level algorithm, Algorithm 3-lev-sq. The
p-processor machine is logically partitioned into VP

submachines, each being an array of size pl/4 x pl/4.
Once a leader receives its long message from P;, it ini-
tiates a 2-level algorithm for one-to-all routing (using
Algorithm 2-lev-rec) within its submachine.

The value of ¥ = log p leads to a class of interesting
algorithms to which we refer as Binomial Heap algo-
rithms. A p-processor machine is now divided into
two submachines and the source processor P, issues
one send to the leader in the other submachine. Af-
ter this send, a (k — 1)-level algorithm is invoked and
it proceeds in the same fashion. When the machine
is divided into submachines of equal size, we perform
log p superstep minimizing the total number of set-up
costs.

We have implemented a number of algorithms
based on the binomial heap approach on the Delta.
Algorithm logp-lev-sq divides the mesh into half by al-
ternating vertical and horizontal cuts. Let CBH(p)
be the number of communication units charged to Al-
gorithm logp-lev-sq on a p-processor machine. Then,
CBH(p) < slogp + c1 * [£2] % h, for a constant
¢1 < 1.5. Another logp-level approach is to divide
the p-processor machine into two submachines of un-
even size. For a given value v, 0 < v < 1, we thus
form one submachine containing the source processor
and a total of yp processors, 0 < v < 1, while the
other submachine contains the remaining processors.
The communication units for an algorithm based on
this approach are derived in a similar fashion, using
slightly different values for the latency and the bisec-
tion width.

The total number of communication and computa-
tion units charged in the C3-model to each of the above
described algorithms, assuming nonblocking sends and
nonblocking receives, are shown in Figures 3. When
converting the set-up cost s to units, we assume
s = 1400 processor cycles. Assuming 40MHz proces-
sor clock speed and 12.5 MB/sec network bandwidth,
the number of units corresponding to one set-up cost
is approximately 8. From the communication units
charged, it appears that Algorithm 3-lev-sq is the best
for message sizes of upto 6Kbytes, and Algorithm 1-
lev-dir performs better for larger messages sizes.

We have implemented the above described algo-
rithms on the Intel Delta. We considered machine
sizes from 16 to 256 processors and message sizes from
16 bytes to 16Kbytes. The experimental results for

549

p = 256 are shown in Figure 5. Expressing each im-
plementation in terms of communication and compu-
tation units gives an accurate prediction of the rel-
ative performance between different one-to-all algo-
rithms. As indicated by the units, Algorithm I-lev-
dir is a reasonable choice only for large message sizes.
It minimizes the effective message size, but experi-
ences a total of p — 1 message set-up costs. The two
broadcasting algorithms give the worst performance
of all algorithm. The poor performance is partly due
to the large effective message size, as well as due to
the absence of a dedicated fast broadcasting network.
Algorithms 2-lev-rec and 3-lev-sq perform consistently
better than all the other algorithms. The algorithm
that gives optimal or near optimal results for all ma-
chine and message sizes on Delta is a Binomial heap
algorithm with v = 0.75, Algorithm logp-lev-rec(0.75).
The value y = 0.75 captures characteristics of the send
and receive ratio of the Delta that our model does not
attempt to evaluate. Our metric evaluates this algo-
rithm no better than logp-lev-sq.

- ' |

12000 *- 1-lav-dir

.= 1-lev-our-br +

:

+-. 2-ov-rec

o-- 3-lov-sq /

§

X.... logp-lev-sq

‘Communication Units
g
8

10’ 10° 0
Message Size (in Bytes)

Figure 4: Predicted performance (in units) of the One-
to-All Algorithms on a 256-Processor Intel Delta, using
nonblocking sends and nonblocking receives.

In summary, our validation work on the Intel
Delta indicates that the message-combining algo-
rithms which keep a balance between the total number
of sends and the effective message size perform well for
small message sizes. Which one of them gives the best
performance depends on the ratio between the send
and receive time, the packet length, the ratio between
the processor and network bandwidth, and the mes-
sage set-up cost.

4.2 All-to-one Routing

In all-to-one routing every processor sends a unique
message to one common processor. Conceptually,
all-to-one routing is the inverse of one-to-all. We
have evaluated and implemented four all-to-one algo-
rithms, namely algorithms I-lev-dir, 2-lev-rec, 3-lev-

Algorithm Communication Units | Computation Units | Communication Units (with s=8)
1-lev-dir 2565 + 0.55L = 2048 4 0.55L
1-lev-our-br 83+ 27L L 64 4+ 27L

2-lev-rec 32s+1.23L L 256 + 1.23L

8-lev-3q 245+ 0.93L zﬁs 192 4+ 0.93L
logp-lev-sq 83+ 5.29L L 64 +5.29L

Figure 3: Approximate number of units charged for one-to-all algorithms assuming a 256-processor Intel Delta

with A = 10,1 =512, and b = 16.

250 *-- 1-lev-dir

= 1-lgv-our-br
+-. 2ev-rec
o0 3ov-sq

X.... logp-lav-sq

Execution Time {in msec)

50

10! 10° 10°
Message Size (in Byles)

Figure 5: Experimental results of the One-to-All Algo-
rithms on a 256-Processor Intel Delta using nonblock-
ing sends and nonblocking receives.

sq, and logp-lev-sq. The number of communication
units charged for each of the algorithms is almost
identical to the ones charged for corresponding one-
to-all algorithm. On the Delta, the best one-to-all
algorithms did not correspond to the best all-to-one
algorithms. For a complete discussion we refer to [9].

4.3 All-to-all Routing

The most straightforward 1-level approach for all-
to-all routing is to have each processor send its p — 1
messages, one by one, regardless of what other proces-
sors are doing. This approach is used in Algorithm 1-
lev-dir. In this algorithm the machine is flooded with
messages and the arising congestion is left to be han-
dled by the system. A frequently used approach that
attempts to control congestion is to implement all-to-
all through p — 1 one-to-one routings; i.e., the p(p—1)
routing requests are partitioned into permutations.
Common are linear permutations and exclusive-or per-
mutations. Implementations of these approaches on
different machines have shown exclusive-or permuta-
tions to be superior to linear permutations [12, 13].
Another interesting approach for partitioning all-to-
all routings into permutations has been introduced
in [14]. We call this approach partitioning into bal-

550

anced permutations. Balanced permutations are rel-
evant for mesh architectures since they result in a
smaller congestion over the links compared to linear
and exclusive-or permutations. We refer to an algo-
rithm that performs all-to-all routing by partitioning
into permutations as Algorithm I-lev-perm. Our met-
ric charges the same number of communication units
for algorithms which partition into p permutations and
Algorithm I-lev-dir. The number of supersteps and
the amount of congestion in each superstep for both
of these 1-level approaches is different, but the total
number of units charged is the same.

We also considered two 2-level algorithms, Algo-
rithm 2-lev-sq and Algorithm 2-lev-r,¢, and a log p-
level algorithm, Algorithm logp-lev-bfly which is based
on the butterfly communication pattern. The ap-
proach used in the Algorithm 2-lev-sq is independent
of the underlying architecture. It consists of 3 steps:
In each step of the algorithm every processor sends
out a total of pL bytes; the first and the last step
send out pL bytes in the form of \/p messages and
the second step sends them out as one single message.
Algorithm 2-lev-r, ¢ consists of only 2 steps, with each
step sending out a total of pL bytes in the form of
/P messages. The approach used in this algorithm is
tailored towards the mesh architecture. For a detailed
description we refer to [9]. We have implemented the
above mentioned algorithms on a 256-processor Intel
Delta. The implementation results are compared to
the predicted performance in Figures 6 and 7.

The experimental results show that Algorithm 2-
lev-c,r performs best for small message sizes (< 256
bytes). Algorithm 2-lev-sq gave the second best per-
formance for small message sizes. The reason 2-lev-c,r
outperformed 2-lev-sq, lies in the fact that 2-lev-sq is
a 3-step algorithm (which sends out data three times),
while 2-lev-¢,r is a 2-step algorithm. The advantage
of the 3-step algorithm is that it uses square meshes
as submachines, whereas the 2-step one uses linear
arrays. Algorithm I-lev-perm using exclusive-or per-
forms best for larger message sizes. As the metric
proposed in this paper does not distinguish between
different 1-level algorithms, the predicted performance
for all 1-level algorithms follow the same curve. How-
ever, in actual implementations different permutations

)

10" 10
Meszage Size (in Bytes)
Figure 6: Predicted performance (in units) of the All-
to-All Algorithms on a 256-Processor Intel Delta using

nonblocking sends and nonblocking receives.

induce different patterns of link and processor conges-
tion and thus give a different performance. Capturing
this behavior in the model and its metric would be
difficult. The approach in Algorithm logp-lev-bfly has
consistently been judged as being expensive for large
message sizes [4, 13]. Our metric and the observed
performance on the Delta, confirms that as well.

3500,

10' 10° 10° 10
Message Size (In Bytes)

Figure 7: Experimental results of the All-to-All Algo-
rithms on a 256-Processor Intel Delta using nonblock-
ing sends and nonblocking receives.

References

[1] V. Bala, J. Bruck, R. Cypher, P. Elustondo, A. Ho,
C.-T. Ho, S. Kipnis, and M. Snir, “CCL: A Portable
and Tunable Collective Communication Library for
Scalable Parallel Computers,” Proc. of IPPS, pp. 835-
844, 1994.

[2] M. Barnett, R. Littlefield, D. G. Payne, and R. van
de Geijn, “Global Combine on Meshes Architecures

551

with Wormhole Routing,” Proc. of IPPS, pp. 156-162,
April 1993.

[3] A.Bar-Noy, S. Kipnis, “Designing Broadcasting Algo-
rithms in the Postal Model for Message-Passing Sys-
tems,” Proc. of SPAA, pp. 13-22, 1992.

[4] S.H. Bokhari, “Multiphase Complete Exchange on a
Circuit Switched Hypercube,” Proc. of ICPP, pp. 525-
529, 1991.

D. Culler, R. Karp, D. Patterson, A. Sahay, K.E.
Schauser, E. Santos, R. Subramonian, T. von FEicken,
“LogP: Towards a Realistic Model of Parallel Com-
putation,” Proc. of 4-th ACM SIGPLAN Symp. on
Principles and Practices of Parallel Programming, pp.
1-12, 1993.

J.J. Dongarra, R. Hempel, A.].G. Hey, D.W. Walker.
“A Proposal for a User-level, Message Passing Inter-
face in a Distributed Memory Environment”, Techni-
cal Report TM 12231, Oak Ridge National Labora-
tory, 1993.

C. Dwork, M. Herlihy, O. Waarts, “Contention in
Shared Memory Algorithms”, Proc. of 25-th ACM
STOC, pp. 174-183, 1993.

P.B. Gibbons, “A More Practical PRAM Model,”
Proc. of 1989 ACM Symposium on Parallel Algo-
rithms and Architectures, pp. 158-168, 1989.

S.E. Hambrusch, F. Hameed, and A. Khokhar, “A
Study of Coarse-Grained Communication Operations
on Mesh Architectures” Technical Report, Purdue
University, May 1994.

T. Heywood and S. Ranka, “A Practical Hierarchi-
cal Model of Parallel Computation: I. The model,”
JPDC, Vol. 16, pp. 212-232, 1992.

[11] P. Liu, W. Aiello, S. Bhatt, “An Atomic Model for
Message Passing,” Proc. of ACM SPAA, pp. 154-163,
1993.

R. Ponnusamy, A. Choudhary, G. Fox, “Communi-
cation Overhead on CM5: An Experimental Perfor-
mance Evaluation,” Proc. of 4-th Symp. on the Fron-
tiers of Massively Parallel Computation, pp. 108-115,
1992.

R. Thakur, A. Choudhary, “All-to-all Communica-
tion on Meshes with Wormhole Routing,” to appear
in Proc. of IPPS, pp. 561-565, 1994.

D.S. Scott, “Efficient All-to-All Communication Pat-
terns in Hypercube and Mesh Topologies,” Proc. of
6-th Distributed Memory Computing Conference, pp.
398-403, 1991.

P. de la Torre and C.P. Kruskal, “Towards a Single
Model of Efficient Computation in Real Parallel Ma-
chines,” Future Generation Computer Systems, Vol.
8, pp. 395-408. 1992.

[16] L.G. Valiant, “A Bridging Model for Parallel Compu-
tation,” CACM, 1990, Vol. 33, No. 8, pp. 103-111.

[17] D.S. Wills and W. Dally, “Pi: A Parallel Architecture
Interface,” Proc. of 4-th Symp. on the Frontiers of
Massively Parallel Computation, pp. 345-352, 1992.

5]

(6]

(7]

()

9

(10]

(12]

(13]

(14]

(15]

