
45.3 

Automated Synthesis of Efficient Binary Decoders for 
Retargetable Software Toolkits 

ABSTRACT 

Wei Qin Sharad Malik 
wqin @ ee.princeton.edu sharad @ ee.princeton.edu 

Department of Electrical Engineering 
Princeton University 
Princeton, NJ 08544 

A binary decoder is a common component of software de- 
velopment tools such as instruction set simulators, disassem- 
blers and debuggers. The efficiency of the decoder can have 
a significant impact on the efficiency of these software tools. 
Automated synthesis of efficient binary decoders is therefore 
necessary for retargetable software tool development frame- 
works targeting the rapidly growing field of application- 
specific processor design. This paper describes a decoder 
synthesis algorithm that translates a simple instruction pat- 
tern specification into efficient binary decoders in C under 
given memory constraints. The algorithm constructs a de- 
cision tree with carefully chosen decoding primitives and 
cost models. As demonstrated through two case studies, 
the synthesized decoders achieve efficiency comparable to 
hand-coded decoders with ensured correctness. The algc- 
rithm has no limitation on the input instruction patterns 
and it requires only the least amount of knowledge about 
the instruction encoding. Therefore it can be used with any 
machine description scheme containing instruction encoding 
information. 

Categories and Subject Descriptors 
F2.2 [Nonnumerical Algorithms and Problems]: Sort- 
ing and Searching; 1.6.4 [Simulation and Modeling]: Model 
Validation and Analysis 

General Terms 
Algorithms, Performance 

Keywords 
binary decoder, decoding tree, decision tree, instruction set 
simulator 
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1. INTRODUCTION 
A growing number of application-specific processors are 

being designed and deployed in modern electronic systems. 
The development of these processors requires not only hard- 
ware development tools for synthesis and verification a t  both 
the logic and physical level, but also software development 
tools that fully exploit the programmability of the proces- 
sors. These software tools include synthesis tools such as 
compilers, assemblers and linkers, and verification tools such 
as disassemblers, debuggers and simulators at various ab- 
st ract ion levels. 

Compared with general-purpose microprocessors, applica- 
tion-specific instruction sets have a shorter life time and 
smaller volumes. So vendors are often reluctant to invest 
limited resources on a complete software tool chain. Thus 
it is desirable that these tools be generated automatically 
from high level processor specifications. As a result, we have 
seen an increasing number of processor description language 
driven retargetable software tool synthesis frameworks [4, 6, 
8, 141 in both academia and industry. 

Many of the software development tools share one com- 
mon component ~ the binary decoder that translates a stream 
of binary words into an instruction stream. Unlike hardware- 
based decoding where multiple logic expressions can be eval- 
uated concurrently, software decoding is sequential and con- 
trol flow intensive. Therefore, the speed of a binary decoder 
can be very slow and may become a major performance bot- 
tleneck for speed-critical software tools such as the instruc- 
tion set simulators (ISSs). According to our experience and 
the results reported by other researchers [13], a slow decoder 
can affect the simulation speed of the ISSs by a factor of 2 
to 4. An efficient binary decoder is thus highly desirable. 

This paper addresses the problem of automatic synthesis 
of efficient binary decoders for arbitrary instruction set ar- 
chitectures. The synthesized decoders can be used in the 
software development tools mentioned above. Because of 
their high efficiency, they may also be used in operating sys- 
tems or as micro-code to  interpret unimplemented instruc- 
tions. Here we focus on the problem of decoding opcode 
fields. Decoding of operand fields is straightforward once 
the instruction opcode is decoded. 

The paper is organized as follows. Section 2 describes re- 
lated work in the field, Section 3 formulates the problem, 
and Section 4 presents our solution. We describe experi- 
mental results for two case studies in Section 5 and present 
some conclusions in Section 6. 
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2. RELATED WORK 
Efficient hand-coded binary decoders for general purpose 

processors can be found in popular tools such as the GNU 
debugger [ 5 ] .  A typical decoding scheme is to extract the 
main opcode field of the instruction and then perform a 
multi-way branch based on its value. After the main opcode 
is decoded, the sub-opcode fields can be handled in a similar 
way. The hand-coded decoders require human intelligence 
that is not available in automatic decoder synthesis. For 
complex and irregular instruction sets, it is an error-prone 
task for humans to find a good solution. 

A simple binary decoder synthesis scheme is described in 
[7]. The generated decoder sequentially matches the input 
bit string with all possible instruction patterns that were 
extracted from a description in the machine description lan- 
guage ISDL [6]. The execution time of such a decoding 
scheme is linear in the number of instructions of the in- 
struction set. Since a typical instruction set contains more 
than 100 instructions, the sequential decoding scheme can 
be very slow. 

In [18], a decision-tree based decoding scheme is described. 
Each internal node of the decision tree tests a few bits of 
the input bit string and makes a multi-way branch to the 
matching child node. The process iterates until a leaf node 
is reached where the instruction can be unambiguously clas- 
sified. The algorithm is deterministic in that the synthesized 
decoding tree is completely determined by the input instruc- 
tion set specification. The algorithm generates decoders 
with efficiency comparable to that of hand-coded decoders 
in the reported cases. A known problem of the algorithm is 
that it will fail on certain instruction pattern combinations, 
which the author assumes will not appear. The assump- 
tion is not fully justified since such a situation may occur 
in application-specific processor designs where irregular en- 
coding is preferable due to  code size considerations. 

The New Jersey Machine-Code Toolkit [15] is capable of 
synthesizing binary decoders from machine specifications of 
a special format. In order to generate an efficient binary de- 
coder, the instruction patterns must be cleanly factored and 
grouped into tables in the specification. In a retargetable 
software tool development environment where a more gen- 
eral machine description language is used, it is a non-trivial 
task to derive such a well-organized specification, especially 
when the instruction set is irregular. 

[13] addresses the efficiency of binary decoding in ISS from 
a different angle. The proposed technique exploits the local- 
ity of the program under simulation by caching the decoding 
results for reuse. When the cache hit rate is high, decoder 
efficiency becomes less of a problem. However, caching the 
decoding results consumes a large portion of the precious 
data cache and therefore negatively impacts the simulation 
speed. Furthermore, the decoding cache hit ratio is subject 
to the locality characteristics of the program being simulated 
and therefore the performance cannot be guaranteed. 

The problem of decoder construction is closely related to 
the long studied multi-discipline field of decision tree con- 
struction from data [ll, 121. Specifically, the problem of 
binary decoding is very similar to the problem of identifi- 
cation key construction [16], which has been studied in the 
fields of systematic biology, pattern recognition, fault diag- 
nostics, etc. However, due to the different context, objective 
and problem scale, no existing solution can be directly bor- 
rowed from these fields. To our knowledge, binary decoder 

(000--, 11, 0.25) 
(001--, 12, 0.25) 
(01---, 13, 0.25) 
(1----, 14, 0.25) 

(a) Well-formed 

001--, 11, 0.25) 
000--, 12, 0.25) 
-1---, 13, 0.25) 
1----, 14, 0.25) 

(b) Not well-formed 

Figure 1: Example  pattern sets 

construction has not been discussed in the decision tree con- 
struction field. 

3. PROBLEM FORMULATION 

3.1 Definitions 
The task of a binary decoder is to find the matching in- 

struction for a bit string. To clearly model the search pro- 
cess and to formalize the discussion in the paper, we define 
several terms below. 

We define a bit pattern p E ( 0 ,  1, -}", where 0 and 1 are 
binary values and "-" stands for a don't-care value. A bit 
string sEB" (B = (0 , l ) )  matches a pattern p if and only 
if b'O<i<n, either s[i] = p[i]  or p[i] = -. We write s E p  if s 
matches p .  

Each instruction is represented by a decoding entry in the 
form of a triple ( p ,  1 ,  A),  where p is a bit pattern of length n, 
 EL a classification label and A E R  the probability that a bit 
string will match p .  An instruction set can be represented by 
a set of such decoding entries. As pointed out in [MI, for a 
variable length instruction set, we can pad the short patterns 
with "-"s so that all patterns are of the same length. 

Given a set of decoding entries E ,  the task of a binary de- 
coder d : Bn-L is to map a bit string s to the classification 
label of decoding entry ( p ,  1,  A)EE so that sEp.  We define 
the capacity of E as the total number of unique bit strings 
that can match a pattern in E. The set E is said to be 
well-formed if there exists no bit string that matches more 
than one entry. Figure l(a) shows a well-formed pattern set 
example, while Figure l(b) shows a not-well-formed pattern 
set, in which bit string "11000" matches both the third and 
the fourth entry. 

In logic synthesis terminology, a pattern specifies a prod- 
uct term in the space of B". Well-formedness can be verified 
by checking that the products of all pattern pairs are zero. 

3.2 Decoding Tree 
Decoding is a search process. Common searching algo- 

rithms, including hashing, can all be represented by search 
trees [3]. The problem of decoder construction is therefore 
equivalent to the construction of a min-cost search tree. 

We define a decoding tree (V, E )  similarly to  the decision 
tree in [18]. The node set V = DUN, where D is the set of 
terminal nodes and N the set of inner nodes. Each terminal 
node is labeled with either a decoding entry or a null entry. 
Each inner node W E N  is labeled with a decision function 
fv : W-2, where 2 is the set of integers. Each possible 
evaluation result of fv corresponds to an outgoing edge of 
w, which is labeled with the result value. 

The decoding process starts from the root node. It iter- 
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atively evaluates the decision function of the current node 
with the input bit string s as the argument, and descends 
along the edge labeled with the evaluation result. The pro- 
cess repeats until a terminal node is reached. If the node is 
a decoding entry, then its classification label is the decoding 
result; if the node is a null entry, then a decoding error is 
reported. A decoding error occurs when s matches no given 
pattern. Given a decoding tree, the decoding height H ( s )  
is defined as the number of edges from the root node to  the 
matching terminal node. Figure 2 shows a possible decoding 
tree for the decoding entry set of Figure l(a). The decoding 
path for bit string “01101” has a height of 2. 

(1----,14,0.25) 

( 0 1 - - - , 1 3 , 0 . 2 5 )  . 

P-i 
( 0 0 0 - - , 1 1 , 0 . 2 5 )  (001--,12,0.25) 

Figure 2: Example decoding tree 

The construction of a decoder involves selecting the tree 
structure as well as the set of decision functions for the inner 
nodes. 

3.3 Cost Modeling 
Since this paper addresses efficient decoder synthesis, we 

take average execution time of the decision function as the 
decoding cost. However, we cannot know the actual cost 
until the entire decoder is constructed, compiled and tested, 
which is impractical if the construction process involves the 
evaluation of a huge number of candidate decoders. There- 
fore, it is necessary that we model the execution time at a 
higher level. 

Assuming that the execution time of each decision func- 
tion in the decoding tree is constant, we can take the average 
decoding height as a measure of decoding time, which is de- 
fined as 

K 

where K is the total number of decoded bit strings, and 
D(ei) is the path length from the root to  the terminal node. 

Note that the execution time of a modern microprocessor 
is affected not only by the length of the execution trace but 
also by its memory usage. So in order for the above esti- 
mation to  be reasonably accurate, we must ensure that the 
synthesized decoder uses only a limited amount of memory. 
If memory usage is unlimited, the smallest decoding height 
can always be achieved by a lookup table of size 2,. 

In summary, the decoder construction problem can be 
stated as below: from a well-formed decoding entry set E ,  
construct a decoding tree d,,, so that dmin has the min- 
imum average decoding height under given memory usage 
constraints. The input of such a problem requires the least 
amount of knowledge about instruction encoding formats 
and can be easily obtained from any form of machine de- 
scription containing encoding information. 

4. DECODER CONSTRUCTION 

4.1 Decision function 
In general, the decision functions can be constructed from 

arbitrary arithmetic or logic operators and their combina- 
tions. So there exist an infinite number of possible candi- 
dates for decision functions. To simplify the selection of 
decision functions, we allow for only two classes of simple 
decision functions as shown below. 

Pattern decoding 

A pattern decoding function tries t o  match the bit 
string s with a pre-specified pattern. The function 
returns 1 if the two match and 0 otherwise. Since the 
function has only two possible results, a node with a 
pattern decoding function always has two children. 

Table decoding 

A table decoding function extracts m contiguous bits 
from the bit string as its result. Such a function has 
2, possible outcomes. Therefore a node with a table 
decoding function has 2m children. 

The two classes are chosen since they are commonly used 
in hand-coded decoders. They can be implemented effi- 
ciently as single C statements if the bit string of size n can 
fit into a built-in data type of C. Such efficiency is desirable 
since it keeps the decoder small and fast, and the similar 
costs of the functions validate our execution time assump- 
tion for Equation (1). 

The contiguity constraint that we impose on table decod- 
ing keeps the decoding function simple. I t  also helps to  
limit the number of table decoding functions to  n(n + 1)/2. 
On the other hand, if non-contiguous bits are allowed, there 
would be 2” - 1 total functions, which is usually too large to  
handle. The constraint is not a serious problem in practice 
since table decoding is most useful for decoding the opcode 
fields of an instruction set, which are often contiguous. 

4.2 Division of Decoding Entry Set 
At the start of the decoding process, we view all decoding 

entries as possible decoding outcomes since there exists a 
path from the root node to  any leaf node. Once the deci- 
sion function of the root node is evaluated, we can descend 
along the edge corresponding to  the evaluation result to  one 
child-node w.. At this point, the possible decoding outcomes 
contain only the leaf nodes of the sub-tree under v, which 
constitute a subset of the entire decoding entry set. In other 
words, the evaluation of a decision function f divides a de- 
coding entry set into a set of smaller ones by “revealing” 
information from the bit string. Such division provides for 
a means to  divide and conquer the decoding problem. 

To understand how a decision function f divides a decod- 
ing entry set E into {Ei}, we consider two cases for each 
entry ( P ,  4 X)EE, 

1. If VsEp, f(s) = i, then ( p ,  1, A) is added to  set Ei. 

2. If bit strings matching p evaluate to  several results, 
then we split the entry to  a smallest set { ( p i ,  1, xi)} so 
that VsEpi, f(s) is a constant ci, and U p i  = p ,  X i  = 
X with Xi’s linearly proportional to  the probabilities 
that s matches pi’s. We add entry ( p i ,  1, X i )  to  E,,. 
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The second case above involves splitting decoding entries, 
which is one major difference between our algorithm and 
the one in [18]. Figure 3(a) shows a division example of 
a table decoding function extracting the left-most two bits. 
Figure 3(b) shows one possible decoding tree constructed 
from the division. As we can see, the average height of 
the tree is 1.5. In comparison, for the algorithm in [18] 
in which splitting is not allowed, Figure 2 is the only valid 
decoding tree with an average decoding height of 2. Clearly, 
splitting enables the trade-off of tree width with tree height 
and allows for faster decoding. 

We call a decision function useless if one E, = E and 
the rest are all empty. For example, a pattern decoding 
function with the pattern "11---" is useless to the sub-tree 
in Figure 3(b). In such a case, the decision function does 
not reveal any new information. 

4.3 Evaluation of Decision Function 
In order to find the best decoding tree with the two classes 

of decision functions, the simplistic solution is to exhaus- 
tively search for the best decoding tree. The procedure 
find-tree(E) below takes a decoding entry set and returns 
the decoding tree with the minimum decoding cost. 

1. If IEl = 1, return a terminal node labeled with the 
entry in E. 

2. Initialize set F with all decision functions, which are 
possible for our search space. Set H,,, to 00. Pick 
the current decision function fc from F and remove f c  
from F .  

3. Divide E with fc into {E%}.  If fc is useless, go to 
Step 5 .  Otherwise, for each E, # 4, recursively call 
find-tree(E,) and obtain its best decoding tree d,. 
Then calculate the decoding cost of fc as 

where H,  is the decoding cost of tree di  and A, is the 
total probability of Ei. 

5 .  If F is not empty, then pick a new fc, remove it from 
F and go back to Step 3. Otherwise, return dmin as 
the min-cost decoding tree. 

The find-tree procedure is guaranteed to terminate since 
the capacity of each Ei in Step 3 is smaller than that of 
E. However, the space that it explores is extremely large. 
Recall that a pattern p ~ { O , l ,  -}". So there exist 3" - 1 
pattern decision functions to evaluate. The maximum re- 
cursion depth is related to the capacity of E and can be as 
large as 2". 

In order to find a practical solution, instead of recursively 
calculating the best decoding cost for each subset in Step 3, 
we try to estimate the decoding cost of the subsets. 

A common cost estimation heuristic used for decision tree 
construction [11] is Shannon's entropy [17], which is used as 
a measure of the randomness. In coding theory, Shannon's 
entropy is known to be the theoretical lower bound of the 
average length of binary codes [2]. A closely related but 
tighter bound is the height of the Huffman tree [9]. Intu- 
itively, the average code length and the decoding tree height 

, ~ ( O O O - - ,  11, 0.25) 
(001--, 12, 0.25) 

( O O O - - ,  11, 0.25) 
(001-- ,  12, 0.25) (Ol---, 13, 0.25) 
(Ol---, 13, 0.25) 
(1----, 14, 0.25) (lo---, 14, 0.125) 

(11---, 14, 0.125) I 

(a) Table division 

I p[21==1 I (01---.13.0.25) (11---,14,0.125) 
(10---,14,0.125) 9'\t 

(000--,11,0.25) (001--,12,0.25) 

(b) Resulting decoding tree 

F igure  3: Example  of division 

are both related to the randomness of the data and hence 
are correlated. Therefore, we adopt the height of the Huff- 
man tree as a measure of decoding difficulty, or a measure 
of decoding cost. 

Recall that the decision functions may split decoding en- 
tries and increase the size of the decoding tree. To avoid 
excessive splitting, we need to model the memory efficiency 
of a decision function quantitatively. 

A decoding tree may consume memory in two ways: for 
decision functions and for decoding tables. To ensure that 
the memory usage of the decoding tree is reasonable, we 
adopt a simplified memory model by assuming that a deci- 
sion function or a decoding table entry consumes one unit 
of memory. Therefore, the pattern decoding function con- 
sumes one unit of memory, while the table decoding function 
consumes 1 + 2m units of memory. 

We use a pattern decoding tree without splitting as the 
baseline of memory usage. Since such a decoder is a binary 
tree, we have ID1 = IEl and IN1 = /El - 1. So it consumes 
/El - 1 units of memory. 

We define the memory efficiency ratio of a decision func- 
tion as the ratio of the estimated memory usage after and 
before the division, as is shown below: 

mr = S/(lEl- 1) 

and 

lEol + lEil - 1, for pattern decoding, 
S = {  CE,++(lEil - 1) + 1 + 2m, for table decoding. 

For a pattern decoding function involving no splitting, 
m, is 1. For splitting pattern decoding or table decoding, 
m, > 1. 

In our decoding cost estimation, we combine the Huffman 
tree height and a memory usage penalty term as below. 

He = 1 + C ( H i . A i )  + y.log, mr, 
2 
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where H, is the Huffman tree height of E, and y 2 0 is the 
penalty factor. When y is large, the penalty term will in- 
crease the cost significantly for the splitting cases and for ta- 
ble decoding. In our experiment a1 implementation, to avoid 
excessive splitting when y is 0, we filter those decoding func- 
tions with m, below 0.1. 

4.4 Further Pruning of Search Space 
Although we have only two classes of decoding functions, 

the size of F is still quite large since there exist 3” -1 pattern 
decoding functions. To prune the search space, we use a 
pattern growing heuristic. First, we find the best single- 
bit pattern, i.e. a pattern with only one bit as 0 or 1 and 
the rest as “-”, by enumerating the n possibilities. Then 
we grow the best single-bit pattern to a 2-bit pattern by 
finding another bit which yields the minimum cost when 
combined with the single-bit pattern. We iteratively grow 
the pattern until an additional bit in the pattern no longer 
reduces the cost. We take the resulting pattern as the best 
pattern decoding function. 

The space of the best table decoding function is much 
smaller. However, it is still impractical t o  evaluate all these 
functions because the division complexity is proportional to 
2” for table decoding. To simplify the task, we start by 
evaluating all (n - 1) 2-bit tables. (1-bit table decoding 
is the same as the single-bit pattern decoding case.) After 
finding the best m-bit table decoding function, we try to find 
the best (m  + 1)-bit function from all (n - m) candidates. 
The process stops if one more bit does not reduce the cost 
any further. The best function found is taken as the best 
table decoding function. 

We then compare the best pattern decoding function and 
the best table decoding function and pick the better of the 
two as the decision function for the current node. 

5. EXPERIMENTAL RESULTS 
To evaluate the effectiveness of the decoding algorithm, 

We programmed a decoder synthesizer in C++. The input 
to the synthesizer is a decoding entry set. The output is a 
decoder in C. 

We then performed an experimental study on two pop- 
ular instruction sets: the ARM instruction set [l] and the 
PowerPC instruction set [lo]. Our experiments were all per- 
formed on a P-I11 800MHz Linux-based workstation with 
2GB main memory. 

We described the ARM instruction set as 137 decoding en- 
tries, each containing a label as the instruction name and a 
probability obtained through profiling over a set of SPECInt 
benchmarks. To catch illegal bit strings, we computed the 
unused opcode space as the complement of the union of all 
patterns. After logic minimization, the unused space is ex- 
pressed as 50 decoding entries, each containing a label as the 
name of an error handler, and a tiny probability so that it is 
not ignored by the synthesizer. Similarly, the PowerPC in- 
struction set description contains 148 decoding entries. The 
unused opcode space contains 130 entries. 

By varying the penalty factor y, our synthesizer gener- 
ated a series of decoders. The run time of the synthesizer 
is less than 10 seconds for each case. Figure 4 shows the 
average decoding tree heights of the decoders for different 
y’s, and Figure 5 shows the memory usage. Generally when 
y decreases, the decoding tree height decreases as more de- 
coding tables are used. 

7 

6 
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4 

3 

2 

1 

0 
32 16 8 4 2 1 1/2 1/4 1/8 1/16 

Y 

Figure 4: Decoding tree heights 
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Y 

Figure  5:  Memory usage of the decoders 

The results show that the synthesizer can generate effi- 
cient decoders with an average height of less than 2 and 
with less than 1,000 table entries. Such small decoders can 
easily fit into the cache of the host machine and have little 
impact on the performance of the applications using them. 
Such decoding cost is no higher than hand-coded decoders 
or the decoding cache in [13]. 

To evaluate the run time efficiency of the synthesized de- 
coders, we linked the decoder with ISSs and tested the av- 
erage execution speed of the decoder over a set of SPECInt 
benchmarks. We used GCC to compile the ISS and the de- 
coder with optimization switches “-03 -fomit-frame-pointer” . 

As y varies from 32 to  1/16, the simulation speed of the 
ARM ISS varies from 8.38MIPS (million instructions per 
second) to 9.56MIPS, and the speed of the PowerPC ISS 
varies from 7.10MIPS to  8.18MIPS. When y is under 1/2, 
the speed variation becomes negligible as the average decod- 
ing height changes very little. In comparison, the ARM ISS 
with hand-coded decoder runs at  8.88MIPS and the Pow- 
erPC one at  8.15MIPS. 

Profiling for instruction frequencies is not always desir- 
able since it is time consuming. So we studied the cases 
when such profiling results are not available. In such cases, 
we assigned homogeneous probability for each instruction 
pattern. We found that the resulting decoders are similar 
in both speed and memory usage for both the instruction 
sets, especially when y is below 1. This is because table 
decoding can resolve multiple patterns simultaneously and 
is independent of the pattern probabilities. 

In Table 1 we compared the synthesized decoders with 
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I I1 ARM I PowerPC I 

[I81 
y = 1/16 

11 HaVg 1 MIPS I Havg I MIPS I 
I Sequential 11 48.4 1 4.77 I 58.5 I 4.24 I 

2.47 7.72 1.59 8.16 
1.41 9.56 1.58 8.18 

1 Trained Sea. 11 6.76 I 7.84 I 8.88 I 7.11 I 

Table 1: Decoder result comparison 

y = 1/16 against three other decoding schemes: a sequen- 
tial decoder with instructions simply sorted by their names, 
another sequential decoder sorted by decreasing order of in- 
struction frequency, and a decoder based on the algorithm 
in [18]. For fast decoding speed, we implemented the tree 
nodes of [18] as direct-addressed tables. 

We noticed a significant difference between the non-trained 
sequential decoding and the trained one, which is due to the 
fact that compilers tend to  use a small set of instructions 
more frequently than others. In the trained cases, the de- 
coders try to  match with the most frequent instruction pat- 
terns first and get better results on the average. However, for 
benchmarks differing greatly in instruction frequency from 
the training set, the result can be much worse. For instance, 
the PowerPC decoder trained by the SPECInt benchmarks 
yields an average decoding height of 29.9 for SPECFp bench- 
marks and an average simulation speed of 5.27MIPS. 

The algorithm in [18] generates very good decoding trees. 
For the PowerPC instruction set, which is regularly laid out 
as two levels of opcodes, the resulting decoding tree is al- 
most of the same height as ours. However, since the tree 
nodes of the algorithm involve testing non-contiguous bits 
of the instruction word, the resulting decoders are slower 
than ours. Moreover, we found that for both instruction 
sets it is possible to add new instruction patterns that cause 
the algorithm of [18] to  fail. 

The evaluation results here were all based on the ISSs 
we used. The ISSs have a slow down factor of around 100, 
which means that on average it takes about 100 native in- 
structions to  interpret a target instruction. For faster ISS 
implementations, the efficiency benefit of the decoders will 
be more significant. 

6. CONCLUSIONS 
The paper addresses the problem of fast decoder syn- 

thesis from simple instruction pattern specifications. We 
model the problem as decision tree construction. By care- 
fully choosing decoding functions and cost models, we have 
designed effective heuristics that guide the tree construction 
process. The resulting synthesizer can generate fast binary 
decoders with quality comparable to hand-coded ones as well 
as guaranteed correctness. The decoder synthesizer has no 
limitation on the input instruction patterns and can be used 
as part of a retargetable software tool development frame- 
work. 
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