
45.3

Automated Synthesis of Efficient Binary Decoders for
Retargetable Software Toolkits

ABSTRACT

Wei Qin Sharad Malik
wqin @ ee.princeton.edu sharad @ ee.princeton.edu

Department of Electrical Engineering
Princeton University
Princeton, NJ 08544

A binary decoder is a common component of software de-
velopment tools such as instruction set simulators, disassem-
blers and debuggers. The efficiency of the decoder can have
a significant impact on the efficiency of these software tools.
Automated synthesis of efficient binary decoders is therefore
necessary for retargetable software tool development frame-
works targeting the rapidly growing field of application-
specific processor design. This paper describes a decoder
synthesis algorithm that translates a simple instruction pat-
tern specification into efficient binary decoders in C under
given memory constraints. The algorithm constructs a de-
cision tree with carefully chosen decoding primitives and
cost models. As demonstrated through two case studies,
the synthesized decoders achieve efficiency comparable to
hand-coded decoders with ensured correctness. The algc-
rithm has no limitation on the input instruction patterns
and it requires only the least amount of knowledge about
the instruction encoding. Therefore it can be used with any
machine description scheme containing instruction encoding
information.

Categories and Subject Descriptors
F2.2 [Nonnumerical Algorithms and Problems]: Sort-
ing and Searching; 1.6.4 [Simulation and Modeling]: Model
Validation and Analysis

General Terms
Algorithms, Performance

Keywords
binary decoder, decoding tree, decision tree, instruction set
simulator

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 24,2003, Anaheim, Califomia, USA.
Copyright 2003 ACM 1-581 13-688-9/03/0006 ... $5.00.

1. INTRODUCTION
A growing number of application-specific processors are

being designed and deployed in modern electronic systems.
The development of these processors requires not only hard-
ware development tools for synthesis and verification a t both
the logic and physical level, but also software development
tools that fully exploit the programmability of the proces-
sors. These software tools include synthesis tools such as
compilers, assemblers and linkers, and verification tools such
as disassemblers, debuggers and simulators at various ab-
st ract ion levels.

Compared with general-purpose microprocessors, applica-
tion-specific instruction sets have a shorter life time and
smaller volumes. So vendors are often reluctant to invest
limited resources on a complete software tool chain. Thus
it is desirable that these tools be generated automatically
from high level processor specifications. As a result, we have
seen an increasing number of processor description language
driven retargetable software tool synthesis frameworks [4, 6,
8, 141 in both academia and industry.

Many of the software development tools share one com-
mon component ~ the binary decoder that translates a stream
of binary words into an instruction stream. Unlike hardware-
based decoding where multiple logic expressions can be eval-
uated concurrently, software decoding is sequential and con-
trol flow intensive. Therefore, the speed of a binary decoder
can be very slow and may become a major performance bot-
tleneck for speed-critical software tools such as the instruc-
tion set simulators (ISSs). According to our experience and
the results reported by other researchers [13], a slow decoder
can affect the simulation speed of the ISSs by a factor of 2
to 4. An efficient binary decoder is thus highly desirable.

This paper addresses the problem of automatic synthesis
of efficient binary decoders for arbitrary instruction set ar-
chitectures. The synthesized decoders can be used in the
software development tools mentioned above. Because of
their high efficiency, they may also be used in operating sys-
tems or as micro-code to interpret unimplemented instruc-
tions. Here we focus on the problem of decoding opcode
fields. Decoding of operand fields is straightforward once
the instruction opcode is decoded.

The paper is organized as follows. Section 2 describes re-
lated work in the field, Section 3 formulates the problem,
and Section 4 presents our solution. We describe experi-
mental results for two case studies in Section 5 and present
some conclusions in Section 6.

764

http://ee.princeton.edu
http://ee.princeton.edu

2. RELATED WORK
Efficient hand-coded binary decoders for general purpose

processors can be found in popular tools such as the GNU
debugger [5] . A typical decoding scheme is to extract the
main opcode field of the instruction and then perform a
multi-way branch based on its value. After the main opcode
is decoded, the sub-opcode fields can be handled in a similar
way. The hand-coded decoders require human intelligence
that is not available in automatic decoder synthesis. For
complex and irregular instruction sets, it is an error-prone
task for humans to find a good solution.

A simple binary decoder synthesis scheme is described in
[7]. The generated decoder sequentially matches the input
bit string with all possible instruction patterns that were
extracted from a description in the machine description lan-
guage ISDL [6]. The execution time of such a decoding
scheme is linear in the number of instructions of the in-
struction set. Since a typical instruction set contains more
than 100 instructions, the sequential decoding scheme can
be very slow.

In [18], a decision-tree based decoding scheme is described.
Each internal node of the decision tree tests a few bits of
the input bit string and makes a multi-way branch to the
matching child node. The process iterates until a leaf node
is reached where the instruction can be unambiguously clas-
sified. The algorithm is deterministic in that the synthesized
decoding tree is completely determined by the input instruc-
tion set specification. The algorithm generates decoders
with efficiency comparable to that of hand-coded decoders
in the reported cases. A known problem of the algorithm is
that it will fail on certain instruction pattern combinations,
which the author assumes will not appear. The assump-
tion is not fully justified since such a situation may occur
in application-specific processor designs where irregular en-
coding is preferable due to code size considerations.

The New Jersey Machine-Code Toolkit [15] is capable of
synthesizing binary decoders from machine specifications of
a special format. In order to generate an efficient binary de-
coder, the instruction patterns must be cleanly factored and
grouped into tables in the specification. In a retargetable
software tool development environment where a more gen-
eral machine description language is used, it is a non-trivial
task to derive such a well-organized specification, especially
when the instruction set is irregular.

[13] addresses the efficiency of binary decoding in ISS from
a different angle. The proposed technique exploits the local-
ity of the program under simulation by caching the decoding
results for reuse. When the cache hit rate is high, decoder
efficiency becomes less of a problem. However, caching the
decoding results consumes a large portion of the precious
data cache and therefore negatively impacts the simulation
speed. Furthermore, the decoding cache hit ratio is subject
to the locality characteristics of the program being simulated
and therefore the performance cannot be guaranteed.

The problem of decoder construction is closely related to
the long studied multi-discipline field of decision tree con-
struction from data [ll, 121. Specifically, the problem of
binary decoding is very similar to the problem of identifi-
cation key construction [16], which has been studied in the
fields of systematic biology, pattern recognition, fault diag-
nostics, etc. However, due to the different context, objective
and problem scale, no existing solution can be directly bor-
rowed from these fields. To our knowledge, binary decoder

(000--, 11, 0.25)
(001--, 12, 0.25)
(01---, 13, 0.25)
(1----, 14, 0.25)

(a) Well-formed

001--, 11, 0.25)
000--, 12, 0.25)
-1---, 13, 0.25)
1----, 14, 0.25)

(b) Not well-formed

Figure 1: Example pattern sets

construction has not been discussed in the decision tree con-
struction field.

3. PROBLEM FORMULATION

3.1 Definitions
The task of a binary decoder is to find the matching in-

struction for a bit string. To clearly model the search pro-
cess and to formalize the discussion in the paper, we define
several terms below.

We define a bit pattern p E (0 , 1, -}", where 0 and 1 are
binary values and "-" stands for a don't-care value. A bit
string sEB" (B = (0 , l)) matches a pattern p if and only
if b'O<i<n, either s[i] = p[i] or p[i] = -. We write s E p if s
matches p .

Each instruction is represented by a decoding entry in the
form of a triple (p , 1 , A), where p is a bit pattern of length n,
 EL a classification label and A E R the probability that a bit
string will match p . An instruction set can be represented by
a set of such decoding entries. As pointed out in [MI, for a
variable length instruction set, we can pad the short patterns
with "-"s so that all patterns are of the same length.

Given a set of decoding entries E , the task of a binary de-
coder d : Bn-L is to map a bit string s to the classification
label of decoding entry (p , 1, A)EE so that sEp. We define
the capacity of E as the total number of unique bit strings
that can match a pattern in E. The set E is said to be
well-formed if there exists no bit string that matches more
than one entry. Figure l(a) shows a well-formed pattern set
example, while Figure l(b) shows a not-well-formed pattern
set, in which bit string "11000" matches both the third and
the fourth entry.

In logic synthesis terminology, a pattern specifies a prod-
uct term in the space of B". Well-formedness can be verified
by checking that the products of all pattern pairs are zero.

3.2 Decoding Tree
Decoding is a search process. Common searching algo-

rithms, including hashing, can all be represented by search
trees [3]. The problem of decoder construction is therefore
equivalent to the construction of a min-cost search tree.

We define a decoding tree (V, E) similarly to the decision
tree in [18]. The node set V = DUN, where D is the set of
terminal nodes and N the set of inner nodes. Each terminal
node is labeled with either a decoding entry or a null entry.
Each inner node W E N is labeled with a decision function
fv : W-2, where 2 is the set of integers. Each possible
evaluation result of fv corresponds to an outgoing edge of
w, which is labeled with the result value.

The decoding process starts from the root node. It iter-

765

atively evaluates the decision function of the current node
with the input bit string s as the argument, and descends
along the edge labeled with the evaluation result. The pro-
cess repeats until a terminal node is reached. If the node is
a decoding entry, then its classification label is the decoding
result; if the node is a null entry, then a decoding error is
reported. A decoding error occurs when s matches no given
pattern. Given a decoding tree, the decoding height H (s)
is defined as the number of edges from the root node to the
matching terminal node. Figure 2 shows a possible decoding
tree for the decoding entry set of Figure l(a). The decoding
path for bit string “01101” has a height of 2.

(1----,14,0.25)

(0 1 - - - , 1 3 , 0 . 2 5) .

P-i
(0 0 0 - - , 1 1 , 0 . 2 5) (001--,12,0.25)

Figure 2: Example decoding tree

The construction of a decoder involves selecting the tree
structure as well as the set of decision functions for the inner
nodes.

3.3 Cost Modeling
Since this paper addresses efficient decoder synthesis, we

take average execution time of the decision function as the
decoding cost. However, we cannot know the actual cost
until the entire decoder is constructed, compiled and tested,
which is impractical if the construction process involves the
evaluation of a huge number of candidate decoders. There-
fore, it is necessary that we model the execution time at a
higher level.

Assuming that the execution time of each decision func-
tion in the decoding tree is constant, we can take the average
decoding height as a measure of decoding time, which is de-
fined as

K

where K is the total number of decoded bit strings, and
D(ei) is the path length from the root to the terminal node.

Note that the execution time of a modern microprocessor
is affected not only by the length of the execution trace but
also by its memory usage. So in order for the above esti-
mation to be reasonably accurate, we must ensure that the
synthesized decoder uses only a limited amount of memory.
If memory usage is unlimited, the smallest decoding height
can always be achieved by a lookup table of size 2,.

In summary, the decoder construction problem can be
stated as below: from a well-formed decoding entry set E ,
construct a decoding tree d,,, so that dmin has the min-
imum average decoding height under given memory usage
constraints. The input of such a problem requires the least
amount of knowledge about instruction encoding formats
and can be easily obtained from any form of machine de-
scription containing encoding information.

4. DECODER CONSTRUCTION

4.1 Decision function
In general, the decision functions can be constructed from

arbitrary arithmetic or logic operators and their combina-
tions. So there exist an infinite number of possible candi-
dates for decision functions. To simplify the selection of
decision functions, we allow for only two classes of simple
decision functions as shown below.

Pattern decoding

A pattern decoding function tries t o match the bit
string s with a pre-specified pattern. The function
returns 1 if the two match and 0 otherwise. Since the
function has only two possible results, a node with a
pattern decoding function always has two children.

Table decoding

A table decoding function extracts m contiguous bits
from the bit string as its result. Such a function has
2, possible outcomes. Therefore a node with a table
decoding function has 2m children.

The two classes are chosen since they are commonly used
in hand-coded decoders. They can be implemented effi-
ciently as single C statements if the bit string of size n can
fit into a built-in data type of C. Such efficiency is desirable
since it keeps the decoder small and fast, and the similar
costs of the functions validate our execution time assump-
tion for Equation (1).

The contiguity constraint that we impose on table decod-
ing keeps the decoding function simple. I t also helps to
limit the number of table decoding functions to n(n + 1)/2.
On the other hand, if non-contiguous bits are allowed, there
would be 2” - 1 total functions, which is usually too large to
handle. The constraint is not a serious problem in practice
since table decoding is most useful for decoding the opcode
fields of an instruction set, which are often contiguous.

4.2 Division of Decoding Entry Set
At the start of the decoding process, we view all decoding

entries as possible decoding outcomes since there exists a
path from the root node to any leaf node. Once the deci-
sion function of the root node is evaluated, we can descend
along the edge corresponding to the evaluation result to one
child-node w.. At this point, the possible decoding outcomes
contain only the leaf nodes of the sub-tree under v, which
constitute a subset of the entire decoding entry set. In other
words, the evaluation of a decision function f divides a de-
coding entry set into a set of smaller ones by “revealing”
information from the bit string. Such division provides for
a means to divide and conquer the decoding problem.

To understand how a decision function f divides a decod-
ing entry set E into {Ei}, we consider two cases for each
entry (P , 4 X)EE,

1. If VsEp, f(s) = i, then (p , 1, A) is added to set Ei.

2. If bit strings matching p evaluate to several results,
then we split the entry to a smallest set { (p i , 1, xi)} so
that VsEpi, f(s) is a constant ci, and U p i = p , X i =
X with Xi’s linearly proportional to the probabilities
that s matches pi’s. We add entry (p i , 1, X i) to E,,.

766

The second case above involves splitting decoding entries,
which is one major difference between our algorithm and
the one in [18]. Figure 3(a) shows a division example of
a table decoding function extracting the left-most two bits.
Figure 3(b) shows one possible decoding tree constructed
from the division. As we can see, the average height of
the tree is 1.5. In comparison, for the algorithm in [18]
in which splitting is not allowed, Figure 2 is the only valid
decoding tree with an average decoding height of 2. Clearly,
splitting enables the trade-off of tree width with tree height
and allows for faster decoding.

We call a decision function useless if one E, = E and
the rest are all empty. For example, a pattern decoding
function with the pattern "11---" is useless to the sub-tree
in Figure 3(b). In such a case, the decision function does
not reveal any new information.

4.3 Evaluation of Decision Function
In order to find the best decoding tree with the two classes

of decision functions, the simplistic solution is to exhaus-
tively search for the best decoding tree. The procedure
find-tree(E) below takes a decoding entry set and returns
the decoding tree with the minimum decoding cost.

1. If IEl = 1, return a terminal node labeled with the
entry in E.

2. Initialize set F with all decision functions, which are
possible for our search space. Set H,,, to 00. Pick
the current decision function fc from F and remove f c
from F .

3. Divide E with fc into {E%}. If fc is useless, go to
Step 5 . Otherwise, for each E, # 4, recursively call
find-tree(E,) and obtain its best decoding tree d,.
Then calculate the decoding cost of fc as

where H, is the decoding cost of tree di and A, is the
total probability of Ei.

5 . If F is not empty, then pick a new fc, remove it from
F and go back to Step 3. Otherwise, return dmin as
the min-cost decoding tree.

The find-tree procedure is guaranteed to terminate since
the capacity of each Ei in Step 3 is smaller than that of
E. However, the space that it explores is extremely large.
Recall that a pattern p ~ { O , l , -}". So there exist 3" - 1
pattern decision functions to evaluate. The maximum re-
cursion depth is related to the capacity of E and can be as
large as 2".

In order to find a practical solution, instead of recursively
calculating the best decoding cost for each subset in Step 3,
we try to estimate the decoding cost of the subsets.

A common cost estimation heuristic used for decision tree
construction [11] is Shannon's entropy [17], which is used as
a measure of the randomness. In coding theory, Shannon's
entropy is known to be the theoretical lower bound of the
average length of binary codes [2]. A closely related but
tighter bound is the height of the Huffman tree [9]. Intu-
itively, the average code length and the decoding tree height

, ~ (O O O - - , 11, 0.25)
(001--, 12, 0.25)

(O O O - - , 11, 0.25)
(001-- , 12, 0.25) (Ol---, 13, 0.25)
(Ol---, 13, 0.25)
(1----, 14, 0.25) (lo---, 14, 0.125)

(11---, 14, 0.125) I

(a) Table division

I p[21==1 I (01---.13.0.25) (11---,14,0.125)
(10---,14,0.125) 9'\t

(000--,11,0.25) (001--,12,0.25)

(b) Resulting decoding tree

F igure 3: Example of division

are both related to the randomness of the data and hence
are correlated. Therefore, we adopt the height of the Huff-
man tree as a measure of decoding difficulty, or a measure
of decoding cost.

Recall that the decision functions may split decoding en-
tries and increase the size of the decoding tree. To avoid
excessive splitting, we need to model the memory efficiency
of a decision function quantitatively.

A decoding tree may consume memory in two ways: for
decision functions and for decoding tables. To ensure that
the memory usage of the decoding tree is reasonable, we
adopt a simplified memory model by assuming that a deci-
sion function or a decoding table entry consumes one unit
of memory. Therefore, the pattern decoding function con-
sumes one unit of memory, while the table decoding function
consumes 1 + 2m units of memory.

We use a pattern decoding tree without splitting as the
baseline of memory usage. Since such a decoder is a binary
tree, we have ID1 = IEl and IN1 = /El - 1. So it consumes
/El - 1 units of memory.

We define the memory efficiency ratio of a decision func-
tion as the ratio of the estimated memory usage after and
before the division, as is shown below:

mr = S/(lEl- 1)

and

lEol + lEil - 1, for pattern decoding,
S = { CE,++(lEil - 1) + 1 + 2m, for table decoding.

For a pattern decoding function involving no splitting,
m, is 1. For splitting pattern decoding or table decoding,
m, > 1.

In our decoding cost estimation, we combine the Huffman
tree height and a memory usage penalty term as below.

He = 1 + C (H i . A i) + y.log, mr,
2

767

where H, is the Huffman tree height of E, and y 2 0 is the
penalty factor. When y is large, the penalty term will in-
crease the cost significantly for the splitting cases and for ta-
ble decoding. In our experiment a1 implementation, to avoid
excessive splitting when y is 0, we filter those decoding func-
tions with m, below 0.1.

4.4 Further Pruning of Search Space
Although we have only two classes of decoding functions,

the size of F is still quite large since there exist 3” -1 pattern
decoding functions. To prune the search space, we use a
pattern growing heuristic. First, we find the best single-
bit pattern, i.e. a pattern with only one bit as 0 or 1 and
the rest as “-”, by enumerating the n possibilities. Then
we grow the best single-bit pattern to a 2-bit pattern by
finding another bit which yields the minimum cost when
combined with the single-bit pattern. We iteratively grow
the pattern until an additional bit in the pattern no longer
reduces the cost. We take the resulting pattern as the best
pattern decoding function.

The space of the best table decoding function is much
smaller. However, it is still impractical t o evaluate all these
functions because the division complexity is proportional to
2” for table decoding. To simplify the task, we start by
evaluating all (n - 1) 2-bit tables. (1-bit table decoding
is the same as the single-bit pattern decoding case.) After
finding the best m-bit table decoding function, we try to find
the best (m + 1)-bit function from all (n - m) candidates.
The process stops if one more bit does not reduce the cost
any further. The best function found is taken as the best
table decoding function.

We then compare the best pattern decoding function and
the best table decoding function and pick the better of the
two as the decision function for the current node.

5. EXPERIMENTAL RESULTS
To evaluate the effectiveness of the decoding algorithm,

We programmed a decoder synthesizer in C++. The input
to the synthesizer is a decoding entry set. The output is a
decoder in C.

We then performed an experimental study on two pop-
ular instruction sets: the ARM instruction set [l] and the
PowerPC instruction set [lo]. Our experiments were all per-
formed on a P-I11 800MHz Linux-based workstation with
2GB main memory.

We described the ARM instruction set as 137 decoding en-
tries, each containing a label as the instruction name and a
probability obtained through profiling over a set of SPECInt
benchmarks. To catch illegal bit strings, we computed the
unused opcode space as the complement of the union of all
patterns. After logic minimization, the unused space is ex-
pressed as 50 decoding entries, each containing a label as the
name of an error handler, and a tiny probability so that it is
not ignored by the synthesizer. Similarly, the PowerPC in-
struction set description contains 148 decoding entries. The
unused opcode space contains 130 entries.

By varying the penalty factor y, our synthesizer gener-
ated a series of decoders. The run time of the synthesizer
is less than 10 seconds for each case. Figure 4 shows the
average decoding tree heights of the decoders for different
y’s, and Figure 5 shows the memory usage. Generally when
y decreases, the decoding tree height decreases as more de-
coding tables are used.

7

6

5

4

3

2

1

0
32 16 8 4 2 1 1/2 1/4 1/8 1/16

Y

Figure 4: Decoding tree heights

0 PPC table size

oo m PPC node count

00

00

00

00

0
32 16 8 4 2 1 112 114 118 1/16

Y

Figure 5: Memory usage of the decoders

The results show that the synthesizer can generate effi-
cient decoders with an average height of less than 2 and
with less than 1,000 table entries. Such small decoders can
easily fit into the cache of the host machine and have little
impact on the performance of the applications using them.
Such decoding cost is no higher than hand-coded decoders
or the decoding cache in [13].

To evaluate the run time efficiency of the synthesized de-
coders, we linked the decoder with ISSs and tested the av-
erage execution speed of the decoder over a set of SPECInt
benchmarks. We used GCC to compile the ISS and the de-
coder with optimization switches “-03 -fomit-frame-pointer” .

As y varies from 32 to 1/16, the simulation speed of the
ARM ISS varies from 8.38MIPS (million instructions per
second) to 9.56MIPS, and the speed of the PowerPC ISS
varies from 7.10MIPS to 8.18MIPS. When y is under 1/2,
the speed variation becomes negligible as the average decod-
ing height changes very little. In comparison, the ARM ISS
with hand-coded decoder runs at 8.88MIPS and the Pow-
erPC one at 8.15MIPS.

Profiling for instruction frequencies is not always desir-
able since it is time consuming. So we studied the cases
when such profiling results are not available. In such cases,
we assigned homogeneous probability for each instruction
pattern. We found that the resulting decoders are similar
in both speed and memory usage for both the instruction
sets, especially when y is below 1. This is because table
decoding can resolve multiple patterns simultaneously and
is independent of the pattern probabilities.

In Table 1 we compared the synthesized decoders with

768

I I1 ARM I PowerPC I

[I81
y = 1/16

11 HaVg 1 MIPS I Havg I MIPS I
I Sequential 11 48.4 1 4.77 I 58.5 I 4.24 I

2.47 7.72 1.59 8.16
1.41 9.56 1.58 8.18

1 Trained Sea. 11 6.76 I 7.84 I 8.88 I 7.11 I

Table 1: Decoder result comparison

y = 1/16 against three other decoding schemes: a sequen-
tial decoder with instructions simply sorted by their names,
another sequential decoder sorted by decreasing order of in-
struction frequency, and a decoder based on the algorithm
in [18]. For fast decoding speed, we implemented the tree
nodes of [18] as direct-addressed tables.

We noticed a significant difference between the non-trained
sequential decoding and the trained one, which is due to the
fact that compilers tend to use a small set of instructions
more frequently than others. In the trained cases, the de-
coders try to match with the most frequent instruction pat-
terns first and get better results on the average. However, for
benchmarks differing greatly in instruction frequency from
the training set, the result can be much worse. For instance,
the PowerPC decoder trained by the SPECInt benchmarks
yields an average decoding height of 29.9 for SPECFp bench-
marks and an average simulation speed of 5.27MIPS.

The algorithm in [18] generates very good decoding trees.
For the PowerPC instruction set, which is regularly laid out
as two levels of opcodes, the resulting decoding tree is al-
most of the same height as ours. However, since the tree
nodes of the algorithm involve testing non-contiguous bits
of the instruction word, the resulting decoders are slower
than ours. Moreover, we found that for both instruction
sets it is possible to add new instruction patterns that cause
the algorithm of [18] to fail.

The evaluation results here were all based on the ISSs
we used. The ISSs have a slow down factor of around 100,
which means that on average it takes about 100 native in-
structions to interpret a target instruction. For faster ISS
implementations, the efficiency benefit of the decoders will
be more significant.

6. CONCLUSIONS
The paper addresses the problem of fast decoder syn-

thesis from simple instruction pattern specifications. We
model the problem as decision tree construction. By care-
fully choosing decoding functions and cost models, we have
designed effective heuristics that guide the tree construction
process. The resulting synthesizer can generate fast binary
decoders with quality comparable to hand-coded ones as well
as guaranteed correctness. The decoder synthesizer has no
limitation on the input instruction patterns and can be used
as part of a retargetable software tool development frame-
work.

7. ACKNOWLEDGMENTS
This work is part of the MESCAL project of the Gigascale

Silicon Research Center sponsored by DARPA/MARCO.
We thank the anonymous reviewers for their invaluable com-
ments.

8. REFERENCES
[1] Advanced RISC Machines Ltd. A r m Architecture

Reference Manual, 1996.
[2] T. M. Cover and J. A. Thomas. Elements of

information theory. Wiley, New York, 1991.
[3] D.E.Knuth. The Art of Computer Programming,

Vol. 3:Searching and Sorting. Addison-Wesley,
Reading, MA, 1973.

[4] A. Fauth, J . V. Praet, and M. Freericks. Describing
instructions set processors using nML. In Proceedings
of Conference on Design Automation and Test in
Europe, pages 503-507, Paris, France, 1995.

http://www.gnu.org/software/gdb/gdb.html, Dec
2002.

[6] G. Hadjiyiannis, S. Hanono, and S. Devadas. ISDL:
An instruction set description language for
retargetability. In Proceedings of Design Automation
Conference, pages 299-302, June 1997.

methodology for accurate performance evaluation in
architecture exploration. In Design Automation
Conference, pages 927-932, 1999.

and A. Nicolau. EXPRESSION: A language for
architecture exploration through compiler/simulator
retargetability. In Proceedings of Conference on Design
Automation and Test i n Europe, pages 485-490, 1999.

minimum redundancy codes. Proceedings of the
Institute of Radio Engineers, 40:1098-1101, 1952.

PowerPC Microprocessor Family: The Programming
Environments for 32-bit Microprocessors, 2000.

[Ill B. M. E. Moret. Decision trees and diagrams. AGM
Computing Surveys, 14(4):593-623, 1982.

[12] S. K. Murthy. Automatic construction of decision
trees from data: A multi-disciplinary survey. Data
Mining and Knowledge Discovery, 2(4):345-389, 1998.

[13] A. Nohl, G. Braun, 0. Schliebusch, R. Leupers,
H. Meyr, and A. Hoffmann. A universal technique for
fast and flexible instruction-set architecture
simulation. In Proceedings of Design Automation
Conference, pages 22-27, 2002.

LISA - machine description language for
cycle-accurate models of programmable DSP
architectures. In Proceedings of Design Automation
Conference, pages 933-938, 1999.

[15] N. Ramsey and M. F. Fernandez. The New Jersey
Machine-Code Toolkit. In USENIX Technical
Conference, pages 289-302, 1995.

[16] R.W.Payne and D.A.Preece. Identification keys and
diagnostic tables: a review. Journal of the Royal
Statistics Society, Series A , 143(3):253-292, 1980.

communication. Bell System Technical Journal,
27:379-423, 623-656, July, October 1948.

[18] H. Theiling. Generating decision trees for decoding
binaries. ACM SIGPLAN Notices, 36(8):112-120,
2001.

[5] Free Software Foundation, Inc.

[7] G. Hadjiyiannis, P. Russo, and S. Devadas. A

[8] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt,

[9] D. Huffman. A method for the construction of

[lo] International Business Machines Corporation.

[14] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr.

[17] C. E. Shannon. A mathematical theory of

769

http://www.gnu.org/software/gdb/gdb.html

