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Abstract 
Our earlier work for  fast evaluation of power consumption of 
general cores in a system-on-a-chip described techniques that 
involved isolating high-level instructions of a core, measuring 
gate-level power consumption per instruction, and then 
annotating a system-level simulation model with the obtained 
data. In this work, we describe a method for  speeding up the 
evaluation further, through the use of instruction traces and 
trace simulators for  every core, not just microprocessor cores. 
Our method shows noticeable speedups at an acceptable loss of 
accuracy. We show that reducing trace sizes can speed up the 
method even further. The speedups allow for  more extensive 
system-level power exploration and hence better optimization. 
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1. Introduction 
Minimizing power consumption of a system-on-a-chip (SOC) is 
an important design goal, especially with respect to the fast 
growing market of complex mobile computing and 
communication devices. Those systems are typically designed 
as systems-on-a-chip in order to reduce the overall costs as well 
as minimizing the time to market. An SOC may consist of 
numerous parameterized cores, including microprocessors, 
caches, co-processors and peripherals like DMA controllers, 
UARTs, codecs, floating-point units, etc. A parameter may 
represent a variable feature of a core, like bit-width, buffer 
size, alternative algorithms, and so on. We denote a selection 
of parameters for all cores in an SOC as a system 
configuration. Power must be evaluated for hundreds or 
thousands of possible system configurations of such core-based 
systems in order to find the design point that best satisfies 
given constraints. Unfortunately, accurate gate-level power 
evaluation is too slow for large SOC's, i.e., > 100 million 
transistors, requiring an infeasible amount of computation time 
to evaluate just one single system configuration. 

Consequently, researchers have focused on fast power 
evaluation techniques. Most initial work concentrated on the 
register-transfer-level (RTL), but this level may still be too 
slow for a large SOCs. Therefore, more recent work has 

focused on system-level power evaluation. Much emphasis has 
been on instruction-level power evaluation for microprocessors, 
and on trace-based cache evaluation. Recent work has also 
focused on an instruction-based approach for evaluating general 
cores (not just programmable microprocessors) [4], 
demonstrating high accuracy with computation times much 
faster than RTL approaches. The key to that work was treating 
any core, such as a UART, as executing a small set of high- 
level instructions. Power-per-instruction could then be pre- 
determined, as is done for microprocessors, and then such 
power would be accumulated during a system-level simulation 
of an executable specification representing an SOC. 

In this paper, we extend this previous instruction-based 
general core approach to execute even faster, by using 
instruction traces and trace simulators for every core. The 
approach is harmonious with existing approaches for 
microprocessors and caches, and complements existing system- 
level modeling standards. We show noticeable speedups at an 
acceptable loss of accuracy'. 

2. Previous work 
Previous power evaluation work has been done at various 
abstraction levels. Logic-level, or gate-level, approaches 
simulate a gate-level design, and calculate power by 
considering switching activity of internal nodes [8][18]. Logic- 
level approaches are orders of magnitude too slow to be used in 
SOC configuration exploration, requiring days to obtain data 
for even one configuration. 

RTL power evaluation operates at a higher level of 
abstraction, modeling power consumption of more abstract 
circuit components, such as adders and multipliers. Simulation 
is performed at the RT-level and power is obtained by using 
power macro-models. The approaches taken here can be 
divided into two categories, macro-modeling using table-lookup 
techniques and analytical models. Using table-lookups, each 
component is modeled via an N-variable characterization (input 
density, output density, switching-probability, etc.) of its power 
consumption [5][1]. An N-dimensional lookup table is used to 
lookup the power consumption of an RTL component during 

I Hence, the absolute accuracy of the powedenergy number is 
secondary in importance to fidelity, or relative magnitudes, of 
the various estimated numbers with one another. 
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simulation. Similarly, analytical models have been devised that 
compute power consumption of an RTL component given the 
actual input patterns or some form of input pattern 
characterization [10][14]. Lookup-tables and the coefficients of 
the analytical models are often derived from the gate-level 
circuit structure or lower-level power evaluation and 
simulation. While RTL power evaluation is shown to be 
accurate to within 5% of actual power consumption [ I  13, it too 
suffers from simulation times too slow for extensive system- 
level exploration. Furthermore, just synthesizing an RTL 
design for a given configuration can take hours, independent of 
simulation. 

Previous behavioral-level approaches seek to estimate 
power of a behavioral HDL description before a synthesized 
design is obtained. An abstract notion of physical capacitance 
and switching activity is used. Switching is estimated using 
entropy from circuit input to circuit output by quadratic or 
exponential degradation [13][141. While such behavioral 
approaches can provide fast evaluation of power for custom 
designs, they will not be nearly as accurate for cores as 
approaches that take advantage of the fact that cores can be 
pre-designed and pre-analyzed. 

Several researchers have focused on fast system-level 
models for cache, memory and bus power consumption [2][3], 
consisting mostly of equations that compute power 
consumption as a hnction of usage/traffic and core parameters. 
A system-level approach for power consumption that takes into 
consideration the interdependencies of various cores has been 
proposed in [ I l l  using instruction traces. Work has been done 
to evaluate power consumption of microprocessor cores. One 
approach, instruction-level power modeling, is proposed by 
[17]. Given a program execution trace, energy is computed as 
the sum of the energy consumed by each instruction that is 
executed, circuit state energy consumed when a particular 
instruction is followed by another, and energy consumed by 
other effects such as stalls and cache misses. An even more 
general approach is described in [16]. An instruction-set 
simulator is extended with equations to compute power not 
only for the microprocessor, but also for cache, memory, bus, 
and even a DC-DC converter, with good accuracy results. 
These approaches can be sped up further by techniques in [6], 
by deriving a shorter program trace that results in equal power 
dissipation when compared to the original trace. In [16], 
techniques for speeding up simulation for power purposes are 
presented, in which code regions that give similar power upon 
repeated execution can be skipped, using the previously-seen 
power value. All of these techniques have emphasized 
microprocessors, memories and buses, while ours is 
generalized for all cores including peripheral cores, and thus 
the techniques are complementary. 

3. Trace-driven core power evaluation 
3.1 System simulation approach 
The work presented in this paper is an extension to a system 
level simulation approach given in [4]. Their system level 
simulation approach works as follows. First, a core provider 
selects a set of appropriate instructions covering the possible 
actions of a core. Then they perform gate-level power analysis 

Figure 1: Augmenting the functional model of an instruction 
for power estimation. 

/ /  functional implementation before here 

power-mode = NextPowerMode(power-mode, current-inst); 

- p = this core’s current parameter values; 

m = power-mode; 

i = current-instruction‘s identification number; 

d = data passed into the current-instruction; 

if( i is independent of its data ) ( 

total-power += PowerLookupTable~pl~ml[il; 

I 
else if( i is statistically dependent on it5 data ) ( 

total-power += 
PowerLookupTable~pl [ml [il [ [GetStats (d) 

1 
else if( i is dependent on it data ) ( 

total-power += PowerLookupTable~pl [ml 

I 

il [dl ; 

to construct power lookup tables for each instruction, and 
create a system-level core model, written in a high-level 
language like C++ or Java, that utilizes the lookup-tables for 
power evaluation through an executable specification. The core 
user’ connects the system-level core models, executes the 
whole system (executable specification) and thus obtains power 
data after a system execution/simulation. The core provider 
may need to provide data for different technologies, or provide 
a means for a core user to re-compute power-per-instruction 
data for different technologies. 

Therefore, the core provider must first break the core’s 
functionality into a set of appropriate instructions. Given an 
RTL model of a core called C, one first determines the system- 
level instructions il, i2, i3, . . . in, of C. As with the instructions 
of an instruction-set microprocessor, each instruction i, operates 
on some input data and produces some output data. During this 
step, the core provider must also determine the dependency of 
an instruction’s power on the instruction’s data, the inter- 
instruction power dependencies, and the different power modes 
in which the core may operate. 

The second task consists of using gate-level simulation to 
obtain per-instruction power data for the lookup-tables. Given 
an RTL model of a core called C, its instructions i,, i2, i3, . . . in, 
and its modes ml, m2. m3, ... mk, one follows a procedure that 
gives a methodical way of creating a set of testbench models. 
When simulated at gate-level, these testbench models capture 
the power consumption of a particular instruction, in a 

’ We use the terms “core user” and “system designer” 
interchangeably. In contrast, the term “core developer” is 
used to denote the designer of a core who has no specific 
application in mind. Rather, a core developer’s goal is to 
design a core such that i t  can be used in as many as possible 
different applications. 
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Figure 2: (a) Functional model, (b) trace-driven model. .. 
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particular mode with a particular parameter setting. Note that 
previous RTL power estimation approaches, such as macro- 
modeling, could be used to speed up this task. 

The next step is to develop a system-level model of each 
core that enables rapid power evaluation when executed. Given 
an RTL model of a core called C, its instructions il, i2, is, . .. in, 
and its modes ml, m2. m3, ... mk, one implements a functional 
model of C in terms of its instructions. If using method-calling 
objects [19], the interface to the object representing C would 
have the instructions i ~ ,  i2, i3, ... in, as methods and the 
instruction’s inpudoutput data as parameters to the 
corresponding methods. To each object-oriented model, one 
adds two data objects, called total-power, initialized to zero, 
and power-mode, initialized to reset. One then augments the 
implementation of each method of C‘s system level model with 
the code outlined in Figure 1. 

The above three steps, performed by the core developer, 
may take days to complete, forming part of the months required 
to develop the core. The core user connects the core models and 
simulates. Simulation of a complete SOC, using system-level 
models, may take on the order of seconds or minutes. Thus, 
hundreds or thousands of configurations can be evaluated. The 

Figure 3: Trace-size reduction approaches: (a) full trace with 
instructions + data (unreduced), (b) reduced trace via 

characterized-data, (c) reduced trace via instructions only (d) 
reduced trace via instruction-freauencv. 
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top-level simulation model will be designed to output the value 
of the total-power variable, for each core of the system, at the 
end of each simulation. The sum of these total-power values 
represents the system-level estimate of the system’s power 
consumption for a given configuration of its parameters. 

3.2 Trace-simulator approach 
Provided the system simulation approach outlined in the 
previous sections, we define a trace, with respect to a core, to 
be a sequence of instructioddata items that are executed by 
that core during its functional simulation. We extend the above 
simulation-based approach by converting the functional models 
of the cores to non-functional (or partially functional) models. 
These models operate on a truce. We refer to such 
nonfunctional models as trace simulators. Processor architects 
use similar trace simulators, such as Dinero, for evaluating 
cache performance. 

Figure 2 shows the functional-simulation-based approach 
as well as the trace-simulator-based approach. Using trace 
simulators, a core user simulates a system once to obtain the 
trace files for each core. These trace files are subsequently 
processed using trace simulators to obtain power and explore 
various core parameter effects. Trace-driven simulators are 
significantly faster than full functional simulators. 

We now describe how to construct these trace-driven 
simulation models for general peripheral cores. First, given a 
system level functional model of a core C, the core developer 
augments the implementation of each method in that model 
with code that will append to a trace-file a unique id for that 
instruction and the corresponding input data. When executed, 
such a model will output a set of traces, one per each core in 
the system, that is subsequently used by trace simulators as 
described next. 

Given an RTL model of a core called C, its instructions il, 
12. 13, ... in, and its modes M I .  m2, m3, ... mk, we implement a 
nonfunctional model of C in terms of its instructions. If using 

. .  
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Figure 4: Target architecture. 
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between the number of bits that are set to the total number of 
bits. Density has been shown to be a good predictor of power in 
many components, and our own experiments support this. 

In the reduced trace via instructions only approach, 
illustrated in Figure 3(c), we store the instruction only, without 
any parameter data. We can take this approach if we determine 
that power consumption is mostly independent of an 
instruction’s data. 

Note that we can apply the above trace reductions to the 
entire trace file, i.e., all instructions, or to selected instructions. 
Thus, Figure 1 shows code that can use a different method for 
each type of instruction. 

Lastly, in the reduced trace via instruction-frequency 
approach, we combine a sequence of instructions that are 
identical or have identical power consumption into a single 
instruction augmented with a frequency value. An example is 
given in Figure 3(d). We could further annotate each 
instruction with a statistical characterization of the data 
accompanying the combined instructions. The instruction- 
frequency approach remains an area for future work, and could 
be further extended in the direction of [6]. 

4. Experiments 
In order to evaluate our trace driven approach, we have 
experimented with several examples and compared metrics of 
simulation time, trace file size and power accuracy. We 
compared our full and reduced trace simulation approaches 
with full system-simulation, as well as with gate-level 
simulation. Below, we will outline our architecture, describe 
our experimental setup, and summarize data obtained from 
several examples. 

4.1 Architecture 
Our parameterized system-on-a-chip architecture is depicted in 
Figure 4. The architecture works as follows. A MIPS R2000 
processor and instruction and data caches communicate over a 
high-speed processor-local bus. The on-chip memory and direct 
memory access (DMA) controller cores are connected to the 
system bus, which in turn is bridged to the processor-local bus 
via a bus controller. Universal Asynchronous Receiver and 
Transmitter (UART) and JPEG decoder cores are connected to 
the peripheral bus, which is bridged to the system bus. Both 
the UART and JPEG decoder cores are DMA capable. The 
DMA controller is capable of transferring data between 
peripheral cores and memory without the intervention of the 
processor. The processor can run concurrent to the DMA until a 
cache miss occurs at which point the processor is blocked 
waiting for the DMA transfer to complete. The UART and 
JPEG decoder cores in our architecture are parameterized. The 
UART core’s transmitterheceiver buffer sizes can each be set 
to one of 2, 4, 8, or 16 bytes. The JPEG decoder core’s pixel 
resolution can be set to one of 10 or 12 bits. This architecture 
is used to implement a JPEG image decode accelerator. JPEG 
images are input serially through the UART, transferred via the 
DMA to memory, Huffman decoded by the MJPS, transferred 
from memory to the JPEG decoder and back to the UART to be 
output to the host device. Most of these operations take place 
in a pipelined fashion for maximum throughput. We have RTL 
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Table 1: Trace file size, evaluation time and power result. 

synthesis models for all three of the parameterized cores. We 
implemented system-level simulation models, as described in 
the previous section, for all components in the architecture, 
Our system-level simulation models can operate as fully 
functional models or as non-functional models. Each functional 
model can during execution generate full traces of instructions 
+ data, reduced traces of instructions-only, or reduced traces of 
instructions + data-characterization (i.e., data-density). 
Likewise, our non-functional models can read in any of the 
three types of traces and output power consumption. However, 
the focus of this work is the peripheral cores, such as the 
DMA, UART and JPEG Decoder, depicted in the shaded area 
of Figure 4. 

4.2 Experimental setup 
For our experiments, we selected two cores, a UART and a 
JPEG decoder, and three small applications, XMF, CAR and 
EARTH. XMIT is an application that transmits 2048 bytes of a 
Huffman encoded photograph using the UART core. The CAR 
example uses the JPEG core to decode a 320x80-pixel 
photograph of an automobile. Likewise, the EARTH example 
uses the JPEG core to decode an 80x80-pixel photograph of 
planet Earth. The CAR and EARTH examples differ in that the 
photographs that they process have very different levels of 
detail. In the case of the CAR example, the photograph is very 
detailed using near 256 different colors. The EARTH example, 
however, is less detailed and uses less than 100 colors. This 
difference in detail has an impact on the energy consumption of 
the system. 

We have used our architecture to evaluate power 
consumption for each example for various core configurations, 
and have compared the results to gate-level power estimations 
done by Synopsys tools. Only the UART and JPEG cores are 
simulated at the gate-level, since those are the cores we are 
focusing on, and the remainder of the architecture is simulated 
at a behavioral VHDL level. For our system-level simulation 
model, all components (including the MIPS) of the architecture 

are simulated as an executable binary obtained from the C++ 
models. Gate-level power evaluation time includes synthesis 
using the Synopsys Design Compiler from RTL to gate, 
simulation at gate level using the Synopsys VHDL simulator, 
followed by cycle-by-cycle switching activity based power 
evaluation using the Synopsys Power Compiler. 

4.3 Experimental results 
We first experimented with the XMIT example. The results of 
this and all other examples are provided in Table 1. For each 
parameter value, in this case the possible buffer sizes for the 
UART, we measured the sizes of the trace files for the full- 
trace and the reduced trace via instructions only approaches. 
Also, we compared the CPU time required to evaluate power 
consumption, comparing gate-level simulation (gate), full 
system simulation (sys), full trace simulation (ftrc) and reduced 
trace simulation via instructions only (rtrci). We see that the 
full trace file was on the average 2.6 times larger than the 
instruction-only reduced trace files. We also see that, compared 
to gate-level power evaluation, full system simulation gave a 
speedup of 6800, while reduced trace-simulation using 
instructions gave a speedup of 13500. 

Considering power results for the WIT example, the full 
trace with instruction + data gave an average error of 3.3% 
compared to gate-level power data. Results for full system 
simulation were the same. The reduced trace with instructions- 
only gave an error of only 3.5%. Hence, for the UART core, we 
can see that the reduced trace with instructions-only gives 
excellent accuracy with the best speedup. 

Next, we experimented with the CAR example. For each 
parameter value, in this case the possible pixel resolutions for 
the JPEG core, we measured the sizes of the full trace (frrc), 
reduced trace via characterized data (rtrc), and reduced trace 
with instructions only (rtrci). We noted that the trace using 
characterized data was nearly an order of magnitude smaller 
than the full trace file. Compared with gate-level simulation 
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time for CAR, the system simulation gave a speedup of 6000, 
full trace a speedup of 12,000, reduced trace using data 
characterization of 62,000, and reduced trace using instructions 
only of 67,000. 

Considering our power results for the CAR example, a full 
trace approach gave 6% average error compared to gate-level. 
A reduced trace approach using characterized data (i.e., data 
density) gave 7.5% average error. Using reduced traces with 
instructions only, the error was 18%. Thus, this example shows 
the usefulness of the characterized data approach to trace 
reduction, which gives the nearly the best performance with 
only minor loss of accuracy. We also see that for this compute- 
intensive core, the speedup of the reduced trace versus the 
system simulation approach is much greater than for the 
UART, in fact, there is an order of magnitude difference 
between the reduced trace and the system simulation. 

Our last example, EARTH, is similar to CAR. Here too, 
the reduced trace was an order of magnitude faster than system 
simulation, with the characterized data approach giving the 
best accuracy/performance tradeoff. Once again, we see that the 
data characterization approach to trace reduction gives the best 
performance/accuracy tradeoff for the JPEG core. 

Thus, for each peripheral core, a core designer must 
decide on which trace file approach to use. We found that for 
the UART core, a reduced trace file using instructions only 
would give high accuracy and fast simulation times. For the 
JPEG core, a reduced trace file using characterized data would 
give best accuracy/performance tradeoff. 

A limitation of a trace-based approach is that changing 
certain parameters of certain cores may change the instruction 
trace for those cores or the cores they interact with. Thus, a 
trace-based approach must include an awareness of which 
parameters require re-simulation of the system-level model to 
generate new traces. 

5. Conclusions 
Previous work showed that an instruction-based system-level 
core simulation approach could evaluate core power 3 orders of 
magnitude faster than gate-level simulation. In this paper, we 
demonstrated that an additional order-of-magnitude speedup 
can be obtained by using the instruction-trace based techniques 
described, thus permitting even more extensive system-level 
exploration for low-power design of system-on-a-chip 
architectures exceeding 100 million gates. 

6. Acknowledgement 
This work was supported by the National Science Foundation 
(CCR-9811164), (CCR-9876006) and a Design Automation 
Conference Graduate Scholarship. 

References 
M. Barocci, L. Benini, A. Bogliolo, B. Ricco. G. De Micheli. 
Lookup Table Power Macro-Models for Behavioral Library 
Components. Design Automation and Test In Europe, March 1998. 
R. J. Evans, P.D. Franzon. Energy Consumption Modeling and 
Optimization for SRAMs, IEEE Journal of Solid-State Circuits, Vol. 
30, No. 5, pp. 571-579, 1995. 
T.D. Givargis, J. Henkel, and F. Vahid. Interface and Cache Power 
Exploration for Core--Based Embedded System Design. ICCAD 
1999. 
T.D. Givargis, F. Vahid, J .  Henkel, A Hybrid Approach for Core- 
Based System-Level Power Modeling, ASP-DAC. 2000. 
S. Gupta, F. Jajm. Power Macromodeling for High Level Power 
Estimation. Design Automation Conference, !une 1997. 
C.T. Hsieh, M. Pedram, H. Mehta, F. Rastgar. Profile Driven 
Program Synthesis for Evaluation of System Power Dissipation. 
Design Automation Conference, June 1997. 
S.M. Kang. Accurate Simulation of Power Dissipation in VLSI 
Circuits. IEEE Journal of Solid-State Circuits, vol. CS21, no. 5, pp. 
889-891, October 1986. 
T.H. Krodel. PowerPlay - Fast Dynamic Power Estimation Based on 
Logic Simulation. IEEE International Conference on Computer 
Aided Design, pp. 96-100, Oct. 1991. 
M. Lajolo, A. Raghunathan, S. Dey, L. Lavagno, A. Sangiovanni- 
Vincentelli. Efficient Power Estimation Techniques for HW/SW 
Systems, IEEE VOLTA, 1999. 

[IO] P. Landman, J. Rabaey. Architectural Power Analysis: The Dual Bit 
Type Method. IEEE Transactions on VLSI Systems, vol. 3. no. 2, 
June 1995. 

[ I  I ]  Y. Li. J. Henkel. A Framework for Estimating and Minimizing 
Energy Dissipation of Embedded HW/SW Systems, IEEUACM 
35th. Design Automation Conference (DAC) 1998, pp.188-193, 
1998 

[I21 E. Macii, M. Pedram. High-Level Power Modeling, Estimation, and 
Optimization. IEEE Transactions on Computer Aided Design of 
Integrated Circuits and Systems, vol. 17, no. 11, November 1998. 

[I31 D. Marculescu, R. Marculescu, M. Pedram. Information Theoretic 
Measures for Power Analysis. IEEE Transactions on Computer 
Aided Design, vol. 15, no. 6, pp. 599-610, 1996. 

[I41 H. Mehta. R. Owens, M.J Irwin. Energy Characterization Based on 
Clustering. Design Automation Conference, June 1996. 

[I51 M. Nemani, F. Najm, Toward a High Level Power Estimation 
Capability. lEEE Transactions on Computer Aided Design, vol. 15, 
no. 6, pp. 588-598, 1996. 

[I61 T. Simunic, L. Benini, G. De Micheli. Cycle-Accurate Simulation of 
Energy Consumption in Embedded Systems. Design Automation 
Conference, June 1999. 

[I71 V. Tiwari, S .  Malik, A. Wolfe. Power Analysis of Embedded 
Software: A First Step Toward Sofware Power Minimization. IEEE 
Transactions on VLSI Systems, vol. 2, no. 4, pp. 437445,  1994. 

[I81 R. Tjarnstorm. Power Dissipation Estimate by Switch Level 
Simulation. IEEE symposium on Circuits and Systems, pp. 881-884, 
1989. 

[I91 F. Vahid, T.D. Givargis. Incorporating Cores into System-Level 
Specification. International Symposium on System Synthesis, 
November 1998. 

[20] Virtual Socket Interface Association, Architecture Document, 
http://www.vsi.org, 1997. 

[21] G.Y Yacoub, W.H. Ku. An Accurate Simulation Technique for 
Short-circuit Power Dissipation Based on Current Component 
Isolation. IEEE International Symposium on Circuits and Systems, 
pp. 1157-1161, 1989. 

311 

http://www.vsi.org

