
Trace-driven System-level Power Evaluation of System-
on-a-chip Peripheral Cores

Tony D. Givargis, Frank Vahid*
Department of Computer Science and Engineering

University of California, Riverside, CA 92521
(givargis,vahid} @cs.ucr.edu

(*Also with the Center for Embedded Computer Systems at UC Irvine.)

Jorg Henkel
C&C Research Laboratories, NEC USA

4 Independence Way, Princeton, NJ 08540
henkel @ccrl.nj .nec.com

Abstract
Our earlier work for fast evaluation of power consumption of
general cores in a system-on-a-chip described techniques that
involved isolating high-level instructions of a core, measuring
gate-level power consumption per instruction, and then
annotating a system-level simulation model with the obtained
data. In this work, we describe a method for speeding up the
evaluation further, through the use of instruction traces and
trace simulators for every core, not just microprocessor cores.
Our method shows noticeable speedups at an acceptable loss of
accuracy. We show that reducing trace sizes can speed up the
method even further. The speedups allow for more extensive
system-level power exploration and hence better optimization.

Keywords
System-on-a-chip, low power system design, intellectual
property, cores, system-level modeling, parameterized
architectures.

1. Introduction
Minimizing power consumption of a system-on-a-chip (SOC) is
an important design goal, especially with respect to the fast
growing market of complex mobile computing and
communication devices. Those systems are typically designed
as systems-on-a-chip in order to reduce the overall costs as well
as minimizing the time to market. An SOC may consist of
numerous parameterized cores, including microprocessors,
caches, co-processors and peripherals like DMA controllers,
UARTs, codecs, floating-point units, etc. A parameter may
represent a variable feature of a core, like bit-width, buffer
size, alternative algorithms, and so on. We denote a selection
of parameters for all cores in an SOC as a system
configuration. Power must be evaluated for hundreds or
thousands of possible system configurations of such core-based
systems in order to find the design point that best satisfies
given constraints. Unfortunately, accurate gate-level power
evaluation is too slow for large SOC's, i.e., > 100 million
transistors, requiring an infeasible amount of computation time
to evaluate just one single system configuration.

Consequently, researchers have focused on fast power
evaluation techniques. Most initial work concentrated on the
register-transfer-level (RTL), but this level may still be too
slow for a large SOCs. Therefore, more recent work has

focused on system-level power evaluation. Much emphasis has
been on instruction-level power evaluation for microprocessors,
and on trace-based cache evaluation. Recent work has also
focused on an instruction-based approach for evaluating general
cores (not just programmable microprocessors) [4],
demonstrating high accuracy with computation times much
faster than RTL approaches. The key to that work was treating
any core, such as a UART, as executing a small set of high-
level instructions. Power-per-instruction could then be pre-
determined, as is done for microprocessors, and then such
power would be accumulated during a system-level simulation
of an executable specification representing an SOC.

In this paper, we extend this previous instruction-based
general core approach to execute even faster, by using
instruction traces and trace simulators for every core. The
approach is harmonious with existing approaches for
microprocessors and caches, and complements existing system-
level modeling standards. We show noticeable speedups at an
acceptable loss of accuracy'.

2. Previous work
Previous power evaluation work has been done at various
abstraction levels. Logic-level, or gate-level, approaches
simulate a gate-level design, and calculate power by
considering switching activity of internal nodes [8][18]. Logic-
level approaches are orders of magnitude too slow to be used in
SOC configuration exploration, requiring days to obtain data
for even one configuration.

RTL power evaluation operates at a higher level of
abstraction, modeling power consumption of more abstract
circuit components, such as adders and multipliers. Simulation
is performed at the RT-level and power is obtained by using
power macro-models. The approaches taken here can be
divided into two categories, macro-modeling using table-lookup
techniques and analytical models. Using table-lookups, each
component is modeled via an N-variable characterization (input
density, output density, switching-probability, etc.) of its power
consumption [5][1]. An N-dimensional lookup table is used to
lookup the power consumption of an RTL component during

I Hence, the absolute accuracy of the powedenergy number is
secondary in importance to fidelity, or relative magnitudes, of
the various estimated numbers with one another.

306 0-7803-6633-6/01/$10.00 02001 IEEE.

mailto:cs.ucr.edu
http://nec.com

simulation. Similarly, analytical models have been devised that
compute power consumption of an RTL component given the
actual input patterns or some form of input pattern
characterization [10][14]. Lookup-tables and the coefficients of
the analytical models are often derived from the gate-level
circuit structure or lower-level power evaluation and
simulation. While RTL power evaluation is shown to be
accurate to within 5% of actual power consumption [I 13, it too
suffers from simulation times too slow for extensive system-
level exploration. Furthermore, just synthesizing an RTL
design for a given configuration can take hours, independent of
simulation.

Previous behavioral-level approaches seek to estimate
power of a behavioral HDL description before a synthesized
design is obtained. An abstract notion of physical capacitance
and switching activity is used. Switching is estimated using
entropy from circuit input to circuit output by quadratic or
exponential degradation [13][141. While such behavioral
approaches can provide fast evaluation of power for custom
designs, they will not be nearly as accurate for cores as
approaches that take advantage of the fact that cores can be
pre-designed and pre-analyzed.

Several researchers have focused on fast system-level
models for cache, memory and bus power consumption [2][3],
consisting mostly of equations that compute power
consumption as a hnction of usage/traffic and core parameters.
A system-level approach for power consumption that takes into
consideration the interdependencies of various cores has been
proposed in [I l l using instruction traces. Work has been done
to evaluate power consumption of microprocessor cores. One
approach, instruction-level power modeling, is proposed by
[17]. Given a program execution trace, energy is computed as
the sum of the energy consumed by each instruction that is
executed, circuit state energy consumed when a particular
instruction is followed by another, and energy consumed by
other effects such as stalls and cache misses. An even more
general approach is described in [16]. An instruction-set
simulator is extended with equations to compute power not
only for the microprocessor, but also for cache, memory, bus,
and even a DC-DC converter, with good accuracy results.
These approaches can be sped up further by techniques in [6],
by deriving a shorter program trace that results in equal power
dissipation when compared to the original trace. In [16],
techniques for speeding up simulation for power purposes are
presented, in which code regions that give similar power upon
repeated execution can be skipped, using the previously-seen
power value. All of these techniques have emphasized
microprocessors, memories and buses, while ours is
generalized for all cores including peripheral cores, and thus
the techniques are complementary.

3. Trace-driven core power evaluation
3.1 System simulation approach
The work presented in this paper is an extension to a system
level simulation approach given in [4]. Their system level
simulation approach works as follows. First, a core provider
selects a set of appropriate instructions covering the possible
actions of a core. Then they perform gate-level power analysis

Figure 1: Augmenting the functional model of an instruction
for power estimation.

/ / functional implementation before here

power-mode = NextPowerMode(power-mode, current-inst);

- p = this core’s current parameter values;

m = power-mode;

i = current-instruction‘s identification number;

d = data passed into the current-instruction;

if(i is independent of its data) (

total-power += PowerLookupTable~pl~ml[il;

I
else if(i is statistically dependent on it5 data) (

total-power +=
PowerLookupTable~pl [ml [il [[GetStats (d)

1
else if(i is dependent on it data) (

total-power += PowerLookupTable~pl [ml

I

il [dl ;

to construct power lookup tables for each instruction, and
create a system-level core model, written in a high-level
language like C++ or Java, that utilizes the lookup-tables for
power evaluation through an executable specification. The core
user’ connects the system-level core models, executes the
whole system (executable specification) and thus obtains power
data after a system execution/simulation. The core provider
may need to provide data for different technologies, or provide
a means for a core user to re-compute power-per-instruction
data for different technologies.

Therefore, the core provider must first break the core’s
functionality into a set of appropriate instructions. Given an
RTL model of a core called C, one first determines the system-
level instructions il, i2, i3, . . . in, of C. As with the instructions
of an instruction-set microprocessor, each instruction i, operates
on some input data and produces some output data. During this
step, the core provider must also determine the dependency of
an instruction’s power on the instruction’s data, the inter-
instruction power dependencies, and the different power modes
in which the core may operate.

The second task consists of using gate-level simulation to
obtain per-instruction power data for the lookup-tables. Given
an RTL model of a core called C, its instructions i,, i2, i3, . . . in,
and its modes ml, m2. m3, ... mk, one follows a procedure that
gives a methodical way of creating a set of testbench models.
When simulated at gate-level, these testbench models capture
the power consumption of a particular instruction, in a

’ We use the terms “core user” and “system designer”
interchangeably. In contrast, the term “core developer” is
used to denote the designer of a core who has no specific
application in mind. Rather, a core developer’s goal is to
design a core such that i t can be used in as many as possible
different applications.

307

Figure 2: (a) Functional model, (b) trace-driven model. ..

(a)
Reset - -
Quantize P1, P z , ..., P64

IDCT PI, P2 I ..., Ps4

,-----. I: I -

(b)
Reset --
Quantize .80

IDCT .I2 DJ Execution wnh power

(C)

Reset --
Quantize - -

‘t&---=1?1
Gate-level, one-lime

(4
Reset *1

Quantize * 2

: obtained instruction f l I energy

i I
I
I I

particular mode with a particular parameter setting. Note that
previous RTL power estimation approaches, such as macro-
modeling, could be used to speed up this task.

The next step is to develop a system-level model of each
core that enables rapid power evaluation when executed. Given
an RTL model of a core called C, its instructions il, i2, is, . .. in,
and its modes ml, m2. m3, ... mk, one implements a functional
model of C in terms of its instructions. If using method-calling
objects [19], the interface to the object representing C would
have the instructions i ~ , i2, i3, ... in, as methods and the
instruction’s inpudoutput data as parameters to the
corresponding methods. To each object-oriented model, one
adds two data objects, called total-power, initialized to zero,
and power-mode, initialized to reset. One then augments the
implementation of each method of C‘s system level model with
the code outlined in Figure 1.

The above three steps, performed by the core developer,
may take days to complete, forming part of the months required
to develop the core. The core user connects the core models and
simulates. Simulation of a complete SOC, using system-level
models, may take on the order of seconds or minutes. Thus,
hundreds or thousands of configurations can be evaluated. The

Figure 3: Trace-size reduction approaches: (a) full trace with
instructions + data (unreduced), (b) reduced trace via

characterized-data, (c) reduced trace via instructions only (d)
reduced trace via instruction-freauencv.

Quantize PI , P2 ,..., Ps4 . Quantize . 9 3 1 IDCT P1.P2 ,... ,P64 1 1 IDCT . 6 3 I 1
(4

:set *1
iantize * 2

top-level simulation model will be designed to output the value
of the total-power variable, for each core of the system, at the
end of each simulation. The sum of these total-power values
represents the system-level estimate of the system’s power
consumption for a given configuration of its parameters.

3.2 Trace-simulator approach
Provided the system simulation approach outlined in the
previous sections, we define a trace, with respect to a core, to
be a sequence of instructioddata items that are executed by
that core during its functional simulation. We extend the above
simulation-based approach by converting the functional models
of the cores to non-functional (or partially functional) models.
These models operate on a truce. We refer to such
nonfunctional models as trace simulators. Processor architects
use similar trace simulators, such as Dinero, for evaluating
cache performance.

Figure 2 shows the functional-simulation-based approach
as well as the trace-simulator-based approach. Using trace
simulators, a core user simulates a system once to obtain the
trace files for each core. These trace files are subsequently
processed using trace simulators to obtain power and explore
various core parameter effects. Trace-driven simulators are
significantly faster than full functional simulators.

We now describe how to construct these trace-driven
simulation models for general peripheral cores. First, given a
system level functional model of a core C, the core developer
augments the implementation of each method in that model
with code that will append to a trace-file a unique id for that
instruction and the corresponding input data. When executed,
such a model will output a set of traces, one per each core in
the system, that is subsequently used by trace simulators as
described next.

Given an RTL model of a core called C, its instructions il,
12. 13, ... in, and its modes M I . m2, m3, ... mk, we implement a
nonfunctional model of C in terms of its instructions. If using

. .

308

Figure 4: Target architecture.

n

I 2 Processor Local Bus

I
System Bus

Bus
I Bridge

lml I1 I

j DMA UART JPEG Decoder

between the number of bits that are set to the total number of
bits. Density has been shown to be a good predictor of power in
many components, and our own experiments support this.

In the reduced trace via instructions only approach,
illustrated in Figure 3(c), we store the instruction only, without
any parameter data. We can take this approach if we determine
that power consumption is mostly independent of an
instruction’s data.

Note that we can apply the above trace reductions to the
entire trace file, i.e., all instructions, or to selected instructions.
Thus, Figure 1 shows code that can use a different method for
each type of instruction.

Lastly, in the reduced trace via instruction-frequency
approach, we combine a sequence of instructions that are
identical or have identical power consumption into a single
instruction augmented with a frequency value. An example is
given in Figure 3(d). We could further annotate each
instruction with a statistical characterization of the data
accompanying the combined instructions. The instruction-
frequency approach remains an area for future work, and could
be further extended in the direction of [6].

4. Experiments
In order to evaluate our trace driven approach, we have
experimented with several examples and compared metrics of
simulation time, trace file size and power accuracy. We
compared our full and reduced trace simulation approaches
with full system-simulation, as well as with gate-level
simulation. Below, we will outline our architecture, describe
our experimental setup, and summarize data obtained from
several examples.

4.1 Architecture
Our parameterized system-on-a-chip architecture is depicted in
Figure 4. The architecture works as follows. A MIPS R2000
processor and instruction and data caches communicate over a
high-speed processor-local bus. The on-chip memory and direct
memory access (DMA) controller cores are connected to the
system bus, which in turn is bridged to the processor-local bus
via a bus controller. Universal Asynchronous Receiver and
Transmitter (UART) and JPEG decoder cores are connected to
the peripheral bus, which is bridged to the system bus. Both
the UART and JPEG decoder cores are DMA capable. The
DMA controller is capable of transferring data between
peripheral cores and memory without the intervention of the
processor. The processor can run concurrent to the DMA until a
cache miss occurs at which point the processor is blocked
waiting for the DMA transfer to complete. The UART and
JPEG decoder cores in our architecture are parameterized. The
UART core’s transmitterheceiver buffer sizes can each be set
to one of 2, 4, 8, or 16 bytes. The JPEG decoder core’s pixel
resolution can be set to one of 10 or 12 bits. This architecture
is used to implement a JPEG image decode accelerator. JPEG
images are input serially through the UART, transferred via the
DMA to memory, Huffman decoded by the MJPS, transferred
from memory to the JPEG decoder and back to the UART to be
output to the host device. Most of these operations take place
in a pipelined fashion for maximum throughput. We have RTL

309

Table 1: Trace file size, evaluation time and power result.

synthesis models for all three of the parameterized cores. We
implemented system-level simulation models, as described in
the previous section, for all components in the architecture,
Our system-level simulation models can operate as fully
functional models or as non-functional models. Each functional
model can during execution generate full traces of instructions
+ data, reduced traces of instructions-only, or reduced traces of
instructions + data-characterization (i.e., data-density).
Likewise, our non-functional models can read in any of the
three types of traces and output power consumption. However,
the focus of this work is the peripheral cores, such as the
DMA, UART and JPEG Decoder, depicted in the shaded area
of Figure 4.

4.2 Experimental setup
For our experiments, we selected two cores, a UART and a
JPEG decoder, and three small applications, XMF, CAR and
EARTH. XMIT is an application that transmits 2048 bytes of a
Huffman encoded photograph using the UART core. The CAR
example uses the JPEG core to decode a 320x80-pixel
photograph of an automobile. Likewise, the EARTH example
uses the JPEG core to decode an 80x80-pixel photograph of
planet Earth. The CAR and EARTH examples differ in that the
photographs that they process have very different levels of
detail. In the case of the CAR example, the photograph is very
detailed using near 256 different colors. The EARTH example,
however, is less detailed and uses less than 100 colors. This
difference in detail has an impact on the energy consumption of
the system.

We have used our architecture to evaluate power
consumption for each example for various core configurations,
and have compared the results to gate-level power estimations
done by Synopsys tools. Only the UART and JPEG cores are
simulated at the gate-level, since those are the cores we are
focusing on, and the remainder of the architecture is simulated
at a behavioral VHDL level. For our system-level simulation
model, all components (including the MIPS) of the architecture

are simulated as an executable binary obtained from the C++
models. Gate-level power evaluation time includes synthesis
using the Synopsys Design Compiler from RTL to gate,
simulation at gate level using the Synopsys VHDL simulator,
followed by cycle-by-cycle switching activity based power
evaluation using the Synopsys Power Compiler.

4.3 Experimental results
We first experimented with the XMIT example. The results of
this and all other examples are provided in Table 1. For each
parameter value, in this case the possible buffer sizes for the
UART, we measured the sizes of the trace files for the full-
trace and the reduced trace via instructions only approaches.
Also, we compared the CPU time required to evaluate power
consumption, comparing gate-level simulation (gate), full
system simulation (sys), full trace simulation (ftrc) and reduced
trace simulation via instructions only (rtrci). We see that the
full trace file was on the average 2.6 times larger than the
instruction-only reduced trace files. We also see that, compared
to gate-level power evaluation, full system simulation gave a
speedup of 6800, while reduced trace-simulation using
instructions gave a speedup of 13500.

Considering power results for the WIT example, the full
trace with instruction + data gave an average error of 3.3%
compared to gate-level power data. Results for full system
simulation were the same. The reduced trace with instructions-
only gave an error of only 3.5%. Hence, for the UART core, we
can see that the reduced trace with instructions-only gives
excellent accuracy with the best speedup.

Next, we experimented with the CAR example. For each
parameter value, in this case the possible pixel resolutions for
the JPEG core, we measured the sizes of the full trace (frrc),
reduced trace via characterized data (rtrc), and reduced trace
with instructions only (rtrci). We noted that the trace using
characterized data was nearly an order of magnitude smaller
than the full trace file. Compared with gate-level simulation

310

time for CAR, the system simulation gave a speedup of 6000,
full trace a speedup of 12,000, reduced trace using data
characterization of 62,000, and reduced trace using instructions
only of 67,000.

Considering our power results for the CAR example, a full
trace approach gave 6% average error compared to gate-level.
A reduced trace approach using characterized data (i.e., data
density) gave 7.5% average error. Using reduced traces with
instructions only, the error was 18%. Thus, this example shows
the usefulness of the characterized data approach to trace
reduction, which gives the nearly the best performance with
only minor loss of accuracy. We also see that for this compute-
intensive core, the speedup of the reduced trace versus the
system simulation approach is much greater than for the
UART, in fact, there is an order of magnitude difference
between the reduced trace and the system simulation.

Our last example, EARTH, is similar to CAR. Here too,
the reduced trace was an order of magnitude faster than system
simulation, with the characterized data approach giving the
best accuracy/performance tradeoff. Once again, we see that the
data characterization approach to trace reduction gives the best
performance/accuracy tradeoff for the JPEG core.

Thus, for each peripheral core, a core designer must
decide on which trace file approach to use. We found that for
the UART core, a reduced trace file using instructions only
would give high accuracy and fast simulation times. For the
JPEG core, a reduced trace file using characterized data would
give best accuracy/performance tradeoff.

A limitation of a trace-based approach is that changing
certain parameters of certain cores may change the instruction
trace for those cores or the cores they interact with. Thus, a
trace-based approach must include an awareness of which
parameters require re-simulation of the system-level model to
generate new traces.

5. Conclusions
Previous work showed that an instruction-based system-level
core simulation approach could evaluate core power 3 orders of
magnitude faster than gate-level simulation. In this paper, we
demonstrated that an additional order-of-magnitude speedup
can be obtained by using the instruction-trace based techniques
described, thus permitting even more extensive system-level
exploration for low-power design of system-on-a-chip
architectures exceeding 100 million gates.

6. Acknowledgement
This work was supported by the National Science Foundation
(CCR-9811164), (CCR-9876006) and a Design Automation
Conference Graduate Scholarship.

References
M. Barocci, L. Benini, A. Bogliolo, B. Ricco. G. De Micheli.
Lookup Table Power Macro-Models for Behavioral Library
Components. Design Automation and Test In Europe, March 1998.
R. J. Evans, P.D. Franzon. Energy Consumption Modeling and
Optimization for SRAMs, IEEE Journal of Solid-State Circuits, Vol.
30, No. 5, pp. 571-579, 1995.
T.D. Givargis, J. Henkel, and F. Vahid. Interface and Cache Power
Exploration for Core--Based Embedded System Design. ICCAD
1999.
T.D. Givargis, F. Vahid, J . Henkel, A Hybrid Approach for Core-
Based System-Level Power Modeling, ASP-DAC. 2000.
S. Gupta, F. Jajm. Power Macromodeling for High Level Power
Estimation. Design Automation Conference, !une 1997.
C.T. Hsieh, M. Pedram, H. Mehta, F. Rastgar. Profile Driven
Program Synthesis for Evaluation of System Power Dissipation.
Design Automation Conference, June 1997.
S.M. Kang. Accurate Simulation of Power Dissipation in VLSI
Circuits. IEEE Journal of Solid-State Circuits, vol. CS21, no. 5, pp.
889-891, October 1986.
T.H. Krodel. PowerPlay - Fast Dynamic Power Estimation Based on
Logic Simulation. IEEE International Conference on Computer
Aided Design, pp. 96-100, Oct. 1991.
M. Lajolo, A. Raghunathan, S. Dey, L. Lavagno, A. Sangiovanni-
Vincentelli. Efficient Power Estimation Techniques for HW/SW
Systems, IEEE VOLTA, 1999.

[IO] P. Landman, J. Rabaey. Architectural Power Analysis: The Dual Bit
Type Method. IEEE Transactions on VLSI Systems, vol. 3. no. 2,
June 1995.

[I I] Y. Li. J. Henkel. A Framework for Estimating and Minimizing
Energy Dissipation of Embedded HW/SW Systems, IEEUACM
35th. Design Automation Conference (DAC) 1998, pp.188-193,
1998

[I21 E. Macii, M. Pedram. High-Level Power Modeling, Estimation, and
Optimization. IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, vol. 17, no. 11, November 1998.

[I31 D. Marculescu, R. Marculescu, M. Pedram. Information Theoretic
Measures for Power Analysis. IEEE Transactions on Computer
Aided Design, vol. 15, no. 6, pp. 599-610, 1996.

[I41 H. Mehta. R. Owens, M.J Irwin. Energy Characterization Based on
Clustering. Design Automation Conference, June 1996.

[I51 M. Nemani, F. Najm, Toward a High Level Power Estimation
Capability. lEEE Transactions on Computer Aided Design, vol. 15,
no. 6, pp. 588-598, 1996.

[I61 T. Simunic, L. Benini, G. De Micheli. Cycle-Accurate Simulation of
Energy Consumption in Embedded Systems. Design Automation
Conference, June 1999.

[I71 V. Tiwari, S . Malik, A. Wolfe. Power Analysis of Embedded
Software: A First Step Toward Sofware Power Minimization. IEEE
Transactions on VLSI Systems, vol. 2, no. 4, pp. 437445, 1994.

[I81 R. Tjarnstorm. Power Dissipation Estimate by Switch Level
Simulation. IEEE symposium on Circuits and Systems, pp. 881-884,
1989.

[I91 F. Vahid, T.D. Givargis. Incorporating Cores into System-Level
Specification. International Symposium on System Synthesis,
November 1998.

[20] Virtual Socket Interface Association, Architecture Document,
http://www.vsi.org, 1997.

[21] G.Y Yacoub, W.H. Ku. An Accurate Simulation Technique for
Short-circuit Power Dissipation Based on Current Component
Isolation. IEEE International Symposium on Circuits and Systems,
pp. 1157-1161, 1989.

311

http://www.vsi.org

