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from Lemma 3 that they have the same mutual information. Lemma
3 also implies that, besides the dimensions, the mutual information
can only depend on one of the distribution parameters, namely�.

• For the two-dimensionalordered Weinman exponential distribu-
tion the mutual information is

I(X1; X2) =

ln
1

�1

�0
2
� �1 +	

�0
�0 � 2�1

+	(1); if �1 <
�0
2

	(1); if �0 =
�0
2

ln
1

�1
�1 �

�0
2

+ 	
2�1

2�1 � �0
+	(1); if �1 >

�0
2
:

(25)

It is obtained through direct integration.
• The mutual information of theGamma-exponential distribution

is

I(X1; X2) = 	(�2)� ln �2 +
1

�2
: (26)

It is derived through direct integration. Note that it depends only on
the parameter�2. This is a consequence of Lemma 3.
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Source Code with Cost as a Nonuniform Random Number
Generator

Te Sun Han, Fellow, IEEE,and Osamu Uchida, Student Member, IEEE

Abstract—We show that an optimal source code with a cost function for
code symbols can be regarded as a random number generator generating
a random sequence (not necessarily a sequence offair coin bits) as the
target distribution in the sense that the normalized conditional divergence
between the distribution of the generated codeword distribution and the
target distribution vanishes as the block length tends to infinity.

Index Terms—Cost function, general source, normalized conditional di-
vergence, random number generation, source code with cost.

I. INTRODUCTION

In the problem of random number generation, the purpose is in gen-
eral to simulate the sourceYYY with a prescribed distributionqqq (called
the target distribution) by using the sourceXXX with a given proba-
bility ppp (called thecoin distribution). von Neumann [1] has initially
addressed this problem. He has considered the problem of simulating
a fair random bit by repeatedly using a biased coin with an unknown
distribution. Elias [2] has clarified that the optimal expected number
of generated fair random bits per coin toss is equal asymptotically to
the entropy rate of the sourceXXX . Moreover, Vembu and Verdú [3]
have shown that the optimal rate at which we can generate fair random
bits from a general sourceXXX with arbitrary accuracy in the sense of
some vanishing distance (e.g., the variational distance, the d-bar dis-
tance, and the normalized divergence) between the distribution of the
generated codeword process and the uniform distribution is equal to
lim infn!1(1=n)H(Xn). On the other hand, it was conjectured for
a long time on the basis of the folklore that an output sequence from
an optimal source code is auniform random sequence, because any
incompressible sequence seemingly looks like a uniform random se-
quence. Visweswariahet al. [4] and Han [5] have independently made
clear that this folklore is in fact true, that is, they have shown that an op-
timal variable-length source code can be regarded as a variable-length
random number generator in the sense that the normalized divergence
distance between the distribution of the generated codeword process
and theuniformdistribution actually vanishes as the block length tends
to infinity.

On the other hand, as is well known, if we imposeunequal costson
code symbols, it is no longer optimal to use the code which minimizes
the average codeword length. It is instead required to use the codes
which minimize the average codeword cost. Several studies have been
made on the source coding problem in this interesting setting. Karp [6]
has given an algorithm for constructing minimum-redundancy prefix
codes with unequal cost symbols. Iwataet al. [7] have proposed a uni-
versal lossless coding algorithm for minimizing the average codeword
cost for stationary sources based on the Lempel-Ziv (LZ78) code. Here-
after, we shall call the code constructed in the case with unequal cost
symbols thesource code with cost. Naturally, there would exist a bias
in the frequency of code symbols generated by an optimal source code
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with cost. Can we then consider the optimal variable-length source code
with cost as a variable-lengthnonuniformrandom number generator?
The purpose of this correspondence is to demonstrate that the answer
to this question is “yes.”

II. V ARIABLE-LENGTH SOURCECODING WITH COST

In order to state our problem in a more formal manner, letX be a
countably infinitesource alphabet andY be afinite code alphabet, re-
spectively. In the sequel all the logarithms are taken to the baseK �
jYj, wherejYj denotes the cardinality ofY . We denote the set of all
nonnull finite-length sequences taken fromY byY�. In this correspon-
dence, we consider quite general sources as follows. Let us define a
general sourceas an infinite sequence

XXX = fXn = (X
(n)
1 ; � � �X(n)

n
)g1
n=1

ofn-dimensional random variablesXn where each component random
variableX(n)

i (1 � i � n) takes values inX . It should be noted here
that each component ofXn may change depending on block length
n. This implies that the sequenceXXX is quite general in the sense that
it may not satisfy even the consistency condition as usual processes.
The class of sources thus defined covers a very wide range of source
including all nonstationary and/or nonergodic sources.

We define thecost functionc :Y� ! R
+ � (0;+1] as follows:

First, each symboly 2 Y is assigned the corresponding costc(y) such
that0 < c(y) � +1 (8y 2 Y), and then theadditivecostc(yyy) of
yyy = (y1; y2; � � � ; yk) 2 Yk is defined by

c(yyy) �

k

i=1

c(yi): (1)

Definition 1: R is called anachievable variable-length source
coding cost-ratefor the sourceXXX if there exists a variable-length
prefix encoder'n :Xn ! Y� given the cost functionc :Y� ! R

+

such that

lim sup
n!1

1

n
Efc('n(X

n))g � R

and the infimum ofR that are achievable variable-length source coding
cost-rates is denoted byRc

v(XXX), which we call theinfimum achievable
variable-length source coding cost-rate.

Then, we have the following variable-length source coding theorem
with cost1 for the general sourceXXX.

Theorem 1:

Rc
v(XXX) =

1

�c
lim sup
n!1

1

n
H(Xn) (2)

where thecost capacity�c is the positive unique rootα of the equation

y2Y

K��c(y) = 1

and

H(Xn) � �
xxx2X

PX (xxx) logPX (xxx):

Proof: See the Appendix.

1This kind of theorem has first been shown by Krause [8] for independent and
identically distributed (i.i.d.) finite alphabet sources.

III. SOURCECODE WITH COST AS ANONUNIFORM RANDOM NUMBER

GENERATOR

In this section we address the relationship between source codes
with cost and nonuniform independent and identically distributed
(i.i.d.) random number generators. Given a variable-length prefix
encoder'n :Xn ! Y�, we define for any positive integerm as

Dm � fxxx 2 Xn j l('n(xxx)) = mg

wherel(�) denotes the length of a string and we put

J ('n) � fmjPr fXn 2 Dmg > 0g:

For anym 2 J ('n), we defineXn
m as the random variable taking

values inDm with the distribution given by

PX (xxx) �
PX (xxx)

Pr fXn 2 Dmg
(xxx 2 Dm):

For any positive integerm, V (m) indicates an i.i.d. sequence
of length m. Let us now define the conditional divergence
D('n(X

n)kV (I )jIn) by

D('n(X
n)kV (I )jIn) �

m2J (' )

PrfIn=mgD('n(X
n
m)kV (m))

whereIn is the random variable such thatIn = m for Xn 2 Dm.
Then, the following theorem shows that, with the cost function

c :Y� ! R
+, the optimal variable-length source code with cost

can be considered as a variable-length random number generator
generating the variable-length i.i.d. random sequence subject to the
distributionqqqc corresponding to the cost functionc :Y� ! R

+, in
the sense that the normalized conditional divergence between the
distribution of the generated codeword process and the i.i.d. target
distribution vanishes as block lengthn tends to infinity.

Theorem 2: We assume that the entropy rate of the general source
XXX has the limitlimn!1(1=n)H(Xn).2 Let 'n :Xn ! Y� be any
optimalvariable-length prefix encoder in the sense that

lim
n!1

1

n
Efc('n(X

n))g= Rc
v(XXX): (3)

If we define the probability distributionqqqc = fqc(y)gy2Y corre-
sponding to the cost functionc by

qc(y) = K
�� c(y) (y 2 Y) (4)

then we have

lim
n!1

1

n
D('n(X

n)kV (I )jIn) = 0 (5)

whereV (m) stands for the i.i.d. sequence of lengthm subject to the
distributionqqqc.

Proof: Let yyy � (y1; y2; � � � ; ym) 2 Ym. From (4) we have

PrfV (m) = yyyg =

m

i=1

qc(yi)

=

m

i=1

K
�� c(y )

= K
�� c(yyy)

2The sources satisfying this assumption are not limited only to stationary
sources.
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for all m 2 J ('n). Then

D('n(X
n

m)kV (m))=
yyy2Y

Prf'n(X
n
m)=yyyg log

Prf'n(X
n
m)=yyyg

PrfV (m)=yyyg

=�c
yyy2Y

Prf'n(X
n
m)=yyygc(yyy)�H('n(X

n
m))

=�c
yyy2Y

Prf'n(X
n
m)=yyygc(yyy)�H(Xn

m)

where the last equality follows from the fact that'n is the one-to-one
mapping. Thus we have

�n �
1

n
m2J (' )

PrfIn = mgD('n(X
n
m)kV (m))

=
�c
n

m2J (' ) yyy2Y

PrfIn = mgPrf'n(X
n
m) = yyygc(yyy)

�
1

n
m2J (' )

PrfIn = mgH(Xn
m)

=
�c
n
Efc('n(X

n))g�
1

n
H(XnjIn)

=
�c
n
Efc('n(X

n))g�
1

n
H(Xn) +

1

n
H(In): (6)

Let

cmin � min
y2Y

c(y) > 0

then it follows fromcminIn � c('n(X
n)) that

E(In) �
Efc('n(X

n))g

cmin

which, together with (6) and the inequality (cf. [9])

H(In) � log[e(E(In))]

yields

�n �
�c
n
Efc('n(X

n))g�
1

n
H(Xn)

+
1

n
log e

Efc('n(X
n))g

cmin
: (7)

We see from (3) that

lim
n!1

1

n
log e

Efc('n(X
n))g

cmin
= 0:

On the other hand, a consequence of Theorem 1 is

Rc
v(XXX) =

1

�c
lim
n!1

1

n
H(Xn): (8)

Thus by (3), (7), and (8) we conclude that

lim sup
n!1

�n � �cR
c
v(XXX)� �cR

c
v(XXX) = 0

which proves (5).

Remark 1: We point out that Iwataet al.’s universal code [7] satis-
fies the condition (3) for any stationary sourceXXX, and, therefore, their
code can be regarded as providing auniversalalgorithm for nonuni-
form i.i.d. random number generation in the sense of (5), although it
works only when the source alphabetX is finite.

IV. COMPARISON WITH PREVIOUS RESULTS

Han [5] has earlier established the following result on theoptimal
variable-length prefix code withequal costc(y) = 1 (8y 2 Y), i.e.,
c(yyy) = l(yyy) (8yyy 2 Y�).

Theorem 3 [5]: We assume that the entropy rate of the general
sourceXXX has the limitlimn!1(1=n)H(Xn). Let'n :Xn ! Y� be
anyoptimalvariable-length prefix encoder satisfying

lim
n!1

1

n
Efl('n(X

n))g= Rv(XXX) (9)

whereRv(XXX) is the infimum of achievable variable-length source
coding rates. Then, we have

lim
n!1

1

n
D('n(X

n)kU (I )jIn) = 0 (10)

whereU (m) is the i.i.d. sequence subject touniform distribution on
Ym.

We notice here (cf. [5]) that, under the assumption of Theorem 3,
Rv(XXX) is given by

Rv(XXX) = lim
n!1

1

n
H(Xn):

It is easy to check that Theorem 3 is a special case of Theorem 2, be-
cause, in the case where all code symbols have equal costc(y) = 1, the
cost capacity�c = 1 and henceRc

v(XXX) = Rv(XXX). Our proof of The-
orem 2 is just paralleling the original proof of Theorem 3, and hence
Theorem 2 is a straightforward generalization of Theorem 3. On the
other hand, Visweswariahet al. [4] have also shown a variant of The-
orem 3, i.e., they have shown that theoptimal variable-length source
code with equal costc(y) = 1 can be considered as a random number
generator in the following sense.

Theorem 4: Let 'n :Xn ! Y� be any variable-length prefix en-
coder satisfying the condition (9), where the source alphabetX is finite,
unlike in Theorems 2 and 3. Then, there exists a sequence of setsGn

of positive integers such that

lim
n!1

PrfIn 2 Gng = 1

lim
n!1

max
m2G

1

m
D('n(X

n
m)kU (m)) = 0:

However, it does not seem to be easy to generalize Theorem 4 to be
valid also in the case with unequal costsc(y). One reason is that the
rather intractable setGn intervenes in Theorem 4 but not in Theorem 3.
It should be noted that the proof demonstrated in this correspondence
does not need the assumption that the source alphabetX is finite and
also that either of Theorems 3 or 4 does not imply one another because
Gn 6= J ('n) in general.

Remark 2: The existence of the limitlimn!1(1=n)H(Xn) for the
sourceXXX is the necessary and sufficient condition for (10) to hold under
the condition (9). To see this, we need the following theorem on the
variable-length random number generation. First, we callR anachiev-
able variable-length intrinsic randomness ratefor the sourceXXX if there
exists a variable-length mapping'n :Xn ! Y� such that

lim inf
n!1

1

n
Efl('n(X

n))g � R

and

lim
n!1

1

n
D('n(X

n)kU(I )jIn) = 0:

Moreover, the supremum ofR that are achievable variable-length
intrinsic randomness rates is denoted byS�v (XXX), which we call the
supremum achievable variable-length intrinsic randomness rate.
Then, we have
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Theorem 5 (Han [5], [10]): For any general sourceXXX with acount-
ably infinitesource alphabetX

S�v (XXX) = lim inf
n!1

1

n
H(Xn):

Since the sufficiency is implied by Theorem 3, it suffices to show the
necessity. Suppose that (10) holds. Then, from (10) and Theorem 5, we
have

lim inf
n!1

1

n
Efl('n(X

n))g � S�v (XXX) = lim inf
n!1

1

n
H(Xn):

Moreover, by means of Theorem 1 withc(y) = 1 (8y 2 Y)

lim sup
n!1

1

n
Efl('n(X

n))g � Rv(XXX) = lim sup
n!1

1

n
H(Xn):

As a consequence, since (9) implies

lim sup
n!1

1

n
Efl('n(X

n))g= lim inf
n!1

1

n
Efl('n(X

n))g

it follows that

lim inf
n!1

1

n
H(Xn) � lim sup

n!1

1

n
H(Xn)

which claims that the sourceXXX must have the limit

lim
n!1

(1=n)H(Xn)

V. VARIABLE-LENGTH CODING WITH GENERAL COSTFUNCTION

In Section III, we have shown that the optimal variable-length source
code with theadditivecost functionc :Y� ! R

+ defined by (1) can be
regarded as a variable-length random number generator generating the
variable-lengthi.i.d. random sequenceV (I ) subject to the distribution
qqqc depending on the cost functionc. In the same spirit, we may consider
the problem of generating a more general stochastic process instead of
V (I ). To do so, what kind of cost function should we introduce? In
the following, we consider the generation of an arbitrarily prescribed
general stochastic process (which may be nonstationary or nonergodic)
satisfying the consistency condition

q(yyy) =
y2Y

q(yyyy) (yyy 2 Y�) (11)

whereq denotes the probability measure. We denote the conditional
probability ofyi 2 Y given the sequenceyi�11 � (y1; y2; � � � ; yi�1) 2
Yi�1 by q(yijyi�11 ) and we assume that there exist some constants
qmin; qmax such that

0 � q(yijy
i�1
1 ) � qmax < 1 (8i; 8yi 2 Y; 8y

i�1
1 2 Yi�1) (12)

0 < qmin � inf
i; y ; y : q(y jy )> 0

q(yijy
i�1
1 ): (13)

Using this conditional probability, the probabilityq(yyy) of yyy 2 Y l is
written as

q(yyy) =

l

i=1

q(yijy
i�1
1 ) (yyy 2 Y l):

Let us now define thegeneral cost functionc :Y� ! R
+ as

c(yyy) � � log q(yyy) = �

l

i=1

log q(yijy
i�1
1 ) (yyy 2 Y l): (14)

Define theconditional costc(yijyi�11 ) of yi 2 Y given the sequence
yi�11 2 Yi�1 by

c(yijy
i�1
1 ) � � log q(yijy

i�1
1 )

and call the root� = �c of the equation

y 2Y

K��c(y jy ) = 1

thecost capacity�c of the general cost functionc. It is then obvious that
�c = 1 for all yi�11 2 Yi�1. Then, as a general version of Theorem
1, we have the following variable-length source coding theorem with
the general cost function (14) for the general sourceX. First, let us call
R anachievable variable-length source coding cost-ratefor the source
XXX if there exists a variable-length prefix encoder'n :Xn ! Y� with
the general cost function (14) such that

lim sup
n!1

1

n
Efc('n(X

n))g � R

and the infimum ofR that are achievable variable-length source coding
cost-rates is denoted byRc

v(XXX), which we call theinfimum achievable
variable-length source coding cost-rate.

Theorem 6:

Rc
v(XXX) =

1

�c
lim sup
n!1

1

n
H(Xn) (�c = 1):

Proof: On the basis of the assumption (13), we see that there ex-
ists a constantcmax such that

sup
i; y ; y : c(y jy )<1

c(yijy
i�1
1 ) � cmax <1

Then, Theorem 6 follows in entirely the same manner as in the proof
of Theorem 1, provided that the additive costc(yi) is replaced by the
conditional costc(yijyi�11 ), and accordinglyq(yi) = K�� c(y ) by
q(yijy

i�1
1 ) = K�� c(y jy ).

Finally, we have the following main theorem of this section which
says that the optimal variable-length source code with the general
cost functionc defined by (14) can be considered as a variable-length
random number generator generating the random sequence subject to
the given probability measureq.

Theorem 7: We assume that the entropy rate of the general source
XXX has the limitlimn!1(1=n)H(Xn). Given an arbitrary probability
measureq satisfying (11)–(13), we define the cost functionc :Y� !
R

+ by (14) and let'n :Xn ! Y� be anyoptimal variable-length
prefix encoder such that

lim
n!1

1

n
Efc('n(X

n))g= Rc
v(XXX):

Then, we have

lim
n!1

1

n
D('n(X

n)kV (I )
q jIn) = 0

whereV (m)
q is the random variable subject to the marginal distribution

onYm of the probability measureq.
Proof: From the assumption (12) we see that there exists a con-

stantcmin such that

0 < cmin � c(yijy
i�1
1 ) (8i;8yi 2 Y; 8y

i�1
1 2 Yi�1):

Using this property, we can show Theorem 7 in entirely the same
manner as in the proof of Theorem 2, provided thatc(yi), q(yi) are
replaced byc(yijyi�11 ), q(yijyi�11 ), respectively.
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Example: With a finite code alphabetY let us consider a Markov
process subject to transition probabilitiesq(yjy ) such thatq(yjy ) <

1 (8y; y 2 Y): Denoting the initial distribution byq(y), set

c(y) = � log q(y) c(yjy ) = � log q(yjy )

and define the costc(yyy) of a sequenceyyy = (y1; y2; � � � ; yn) 2 Y
� by

c(yyy) = c(y1) + c(y2jy1) + c(y3jy2) + � � �+ c(ynjyn�1): (15)

Then, Theorem 7 tells us that theoptimalvariable-length prefix coding
for any general sourceXXX with the cost function (15) asymptotically
generates the Markov process subject to the transition probabilities
q(yjy ):

APPENDIX

Proof of Theorem 1

1) Direct Part: Without loss of generality we may assume that
0 < c(y) < 1 (8y 2 Y). Let Y � f1; 2; � � � ; Kg and set
q(i)�K�� c(i) (i=1; 2; � � � ; K). For anyyyy=(y1; y2; � � � ; yl)2Y

�,
we define

�(yyy) =

yyy : yyy �yyy

q(yyy )

�(yyy) =

yyy : yyy �yyy

q(yyy ) � �(yyy) + q(yyy)

where�,� indicate the lexicographic order on the setY l and we have
put for zzz = (z1; z2; � � � ; zl) 2 Y

l

q(zzz) = q(z1)q(z2) � � � q(zl):

Let the interval[�(yyy); �(yyy)) be denoted byI(yyy). Obviously,I(yyy) �
[0; 1) andjI(yyy)j = K�� c(yyy) (the width ofI(yyy)). Then, we first have
the following trivial lemma.

Lemma 1: A codeC � fyyy1; yyy2; � � �g (yyyi 2 Y
�) is prefix if and only

if all intervalsI(yyy1); I(yyy2); � � � � [0; 1) are mutually disjoint.

Let all the elements ofXn be ordered asXn � fxxx1; xxx2; � � �g and
define

Pi �

i�1

j=1

PX (xxxj) (i = 1; 2; � � �)

Qi � Pi +
1
2 PX (xxxi) (i = 1; 2; � � �)

whereP1 � 0. Now, to eachxxxi we uniquely assignyyyi as

yyyi � arg min
yyy2K(yyy)

jyyyj

whereK(yyy) is the set ofyyy 2 Y� such thatI(yyy) includesQi but does not
include eitherPi orPi+1. It then follows fromI(yyyi) � [Pi; Pi+1) that
each intervalI(yyy1); I(yyy2); � � � is disjoint. Then, from Lemma 1, the
codeC = fyyy1; yyy2; � � �g is prefix. Therefore, we can define the encoder
'n :Xn ! Y� by

'n(xxxi) � yyyi:

Now, set yyyi � (y1; y2; � � � ; yl�1) for each sequenceyyyi =
(y1; y2; � � � ; yl�1; yl). SinceI(yyyi) � I(yyyi) we haveQi 2 I(yyyi).
Moreover, we see from the definition ofI(yyyi) that Pi 2 I(yyyi) or
Pi+1 2 I(yyyi). Then, the widthjI(yyyi)j of the intervalI(yyyi) must be
larger thanPX (xxxi)=2, so that

jI(yyyi)j = K�� c(yyy ) >
PX (xxxi)

2

from which it follows that

c(yyyi) � c(yyyi) + cmax

<
� logPX (xxxi)

�c
+

log 2

�c
+ cmax

wherecmax � maxy2Y c(y) < 1. Then, we have

Efc('n(X
n))g < �

xxx2X

PX (xxx)
logPX (xxx)

�c
+

log 2

�c
+ cmax

which concludes that

lim sup
n!1

1

n
Efc('n(X

n))g �
1

�c
lim sup
n!1

H(Xn):

2) Converse Part:
Let'n :Xn ! Y� be any variable-length prefix encoder and put

ci � c('n(xxxi)) (i = 1; 2; � � �)

and defineqi � K�� c . Then, from Lemma 1, we have

q �

1

i=1

qi � 1:

Setpi � PX (xxxi) andp � 1
i=1 pi = 1. From the log-sum in-

equality [9], we have

1

i=1

pi log
pi
qi
� p log

p

q

= log
1

q
� 0: (16)

On the other hand,
1

i=1

pi log
pi
qi

= �

1

i=1

pi log qi +

1

i=1

pi log pi

= �c

1

i=1

pici +

1

i=1

pi log pi

= �cEfc('n(X
n))g�H(Xn)

which together with (16) implies that

Efc('n(X
n))g �

1

�c
H(Xn):

Then, we conclude that

lim sup
n!1

1

n
Efc('n(X

n))g �
1

�c
lim sup
n!1

H(Xn):
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A New Recursive Universal Code of the Positive Integers

Hirosuke Yamamoto, Member, IEEE

Abstract—A new recursive universal code of the positive integers is pro-
posed, in which any given sequence can be used as a delimiter of codeword
while bit “ 0” is used as a delimiter in known universal codes, e.g., Leven-
shtein code, Elias code, Even–Rodeh code, Stout code, Bentley–Yao code,
etc. The codeword length of the proposed code is shorter thanlog in
almost all of sufficiently large positive integers although the known codes
are longer than log for any positive integer .

Index Terms—Elias code, log-star function, universal code of positive
integers, universal coding.

I. INTRODUCTION

Many researchers have treated the universal coding of the positive
integers that satisfy

P (n) � P (n+ 1); for anyn 2 N ; (1)

whereP (n) is a probability distribution on the set of positive integers
N = f1; 2; 3; � � �g [1]–[7]. These codes can be used practically in
various adaptive dictionary codes [8]. Besides the practical uses, it is an
interesting coding problem to consider how efficiently we can encode
the positive integers under the prefix condition.

Let logk
2
n be thek-fold composition of the functionlog

2
n and let

log�
2
n be

log�
2
n = log

2
n+ log2

2
n+ � � �+ log

w (n)
2 n (2)

wherew�(n) is the largest integerwwhich satisfieslogw2 n � 0. Then,
it is shown theoretically that any positive integern can be represented
with log�2 n � �w�(n) bits if � < log2 log2 e [2], [3].

On the other hand, many researchers, e.g., Levenshtein [2],1 Elias
[4], Bentley–Yao [5], Even–Rodeh [6], Stout [7], etc., have proposed
log� n-type codes with a recursive structure to attain high performance
in largen. But, in their codes, codeword lengthl(n) cannot become
shorter thanlog�

2
n although it satisfiesl(n) � log�

2
n + w�(n) + c

wherec is a constant.
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In this correspondence, we propose a newlog� n-type code with a
recursive structure, which satisfies that

l(n) � log�
2
n� log

2
(1� 2�f )w�

f(n) + cf

even in the worst cases and

l(n) � log�
2
n� (1 + log

2
(1� 2�f))w�

f(n) + cf

in the best cases. Here,f is a parameter of the code andcf is a constant
which depends onf . w�

f (n) is a similar function tow�(n), which sat-
isfiesw�

f(n) � w�(n).
Since the best and worst cases occur at infinitely manyn’s, and,

roughly speaking,l(n) is distributed uniformly between two extreme
cases,l(n) can become shorter thanlog�

2
n in large parts of integers.

In Section II, we review Elias! code, which is a typical one of the
known log� n-type codes, and we show the reason why the codeword
length cannot become shorter thanlog�

2
n in the known codes. To over-

come this defect, we devise a new representation of binary numbers
that never has a given sequence as a prefix. In Section III, we propose a
new recursive universal code of the positive integers based on the new
binary number representation and we evaluate the performance of the
proposed code theoretically. It is shown that the codeword length of the
proposed code is shorter thanlog�

2
n in almost all of sufficiently large

positive integers. The case ofr-ary universal codes are treated in Sec-
tion IV.

We use the following notation in this correspondence.

• [n]r is the ordinaryr-ary number of positive integern such that
the most significant digit of[n]r is nonzero.

• [n]ir is the ordinaryr-ary number ofn with i digits.

• btc is the largest integer not exceedingt.

Examples:[14]2=1110; [14]52=01110; [14]3=112; [14]53=00112;
blog

2
14c= 3.

II. NEW BINARY NUMBER REPRESENTATIONEXCLUDING A

FORBIDDEN PREFIX

Elias! codeCE(n) has the following recursive structure [4]:

CE(n0) = [nK ]2[nK�1]2 � � � [n1]2[n0]20 (3)

where[n]2 is the ordinary binary number ofn, the most significant bit
(MSB) of which is always one. Eachnk in (3) is determined recursively
bynk = blog

2
nk�1c. In other words,nk+1 represents the bit length

of [nk�1]2. The recursion in (3) stops when the length of[nK ]2 is two.
Finally, bit “0” is attached as a delimiter to indicate the end ofCE(n0).2

In the decoding,nK is obtained from the first two bits ofCE(n0), and
the length of[nk�1]2 is recursively obtained fromnk. Since the MSB
of every [nk]2 is “1,” delimiter “0” can stop the recursion and[n0]2
can easily be found.

LevenshteinW2 code [2], Even–Rodeh code [6], and Stout code [7]
have similar structures and their codes also use bit “0” as a delim-
iter in the same way as Elias! code. LevenshteinW 0

2 code [2] and
Bentley–Yao search-tree code [5] have a little different structure. How-
ever, it is known that their code can be derived from Elias! like code
by gathering the MSB’s of all[nk]2 and delimiter “0” as a prefix.

1Levenshtein code is the firstlog n-type code although Elias! code is fa-
mous.

2“n = 1” is the exception case, for which the codeword is defined as
“C (1) = 0.”
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