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from Lemma 3 that they have the same mutual information. Lemnfaource Code with Cost as a Nonuniform Random Number
3 also implies that, besides the dimensions, the mutual information Generator
can only depend on one of the distribution parameters, namely

« For the two-dimensionalrdered Weinman exponential distribu-

Te Sun HanFellow, IEEE,and Osamu Uchida&tudent Member, IEEE

tion the mutual information is

Abstract—We show that an optimal source code with a cost function for

- code symbols can be regarded as a random number generator generating
I(X1,Xs) =

a random sequence (not necessarily a sequence fafr coin bits) as the
ln< ! <9—0 - (7’1>> + U < fo ) + (1), if6r < fo target distribution in the sense that the normalized conditional divergence

g1\ 2 fo — 264 2 between the distribution of the generated codeword distribution and the
w(1) it 0 8o target distribution vanishes as the block length tends to infinity.
’ Tty = ——
2 Index Terms—Cost function, general source, normalized conditional di-
In i 9, — 9_0 L 260, +(1), if6 > 9_0. vergence, random number generation, source code with cost.
(91 2 2601 — 90 " 2
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|. INTRODUCTION
It is obtained through direct integration. In the problem of random number generation, the purpose is in gen-

* The mutual information of th&amma-exponential distribution eral to simulate the sour@ with a prescribed distributiog (called
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Itis derived through direct integration. Note that it depends only oq]'{
the paramete#.,. This is a consequence of Lemma 3. 0
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the target distribution) by using the sourc& with a given proba-

bility p (called thecoin distribution). von Neumann [1] has initially
(26) addressed this problem. He has considered the problem of simulating

a fair random bit by repeatedly using a biased coin with an unknown
istribution. Elias [2] has clarified that the optimal expected number
generated fair random bits per coin toss is equal asymptotically to
the entropy rate of the sourck¥. Moreover, Vembu and Verdu [3]
have shown that the optimal rate at which we can generate fair random
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with cost. Can we then consider the optimal variable-length source cdtle SOURCE CODE WITH COST AS ANONUNIFORM RANDOM NUMBER
with cost as a variable-lengtionuniformrandom number generator? GENERATOR
The purpose of this correspondence is to demonstrate that the answ

! T N M this section we address the relationship between source codes
to this question is “yes.

with cost and nonuniform independent and identically distributed
(i.i.d.) random number generators. Given a variable-length prefix
Il. VARIABLE-LENGTH SOURCE CODING WITH COST encoderp, : X" — V*, we define for any positive integet as

In order to state our problem in a more formal mannerebe a
countably infinitesource alphabet ard be afinite code alphabet, re-
spectively. In the sequel all the logarithms are taken to the hase
|Y|, where|Y| denotes the cardinality @f. We denote the set of alll

Dm={x € X" | l{pn(x)) =m}

wherel(-) denotes the length of a string and we put

nonnull finite-length sequences taken frphiby ). In this correspon- T(pn) = {m[Pr{X" € D,.} > 0}.
dence, we consider quite general sources as follows. Let us define a ’ ’
general sourcas an infinite sequence For anym € J(¢.), we defineX,, as the random variable taking

. () (m)\q 00 values inD,,, with the distribution given by
X:{‘X :(‘Xl *AXn ')}nvzl
PXn (1‘)

Pxn =
)= 5 X e Doy

. . . _ x € Dyp,).
of n-dimensional random variablé§™ where each component random (z € D)

variableX(™)(1 < i < n) takes values . It should be noted here

that each component 6f” may change depending on block lengttFor any positive integern, V") indicates an ii.d. sequence

n. This implies that the sequendé is quite general in the sense thatof length +». Let us now define the conditional divergence

it may not satisfy even the consistency condition as usual process@ée. (X ™)V |I,,) by

The class of sources thus defined covers a very wide range of source . _ . (m)

including all nonstationary and/or nonergodic sources. D(n(X"IVIL) = Y Pr{Li=m}D(a(X;)|[V™)
We define thecost function:: Y* — R™ = (0, +oc] as follows: mET (¢n)

First, each symba} € ) is assigned the corresponding cegf) such

that0 < c(y) < 4+oo (Vy € V), and then thedditivecostc(y) of

¥ = (y1.92.---,yr) € Y* is defined by

wherel,, is the random variable such thigt = m for X" € D,,.
Then, the following theorem shows that, with the cost function
c:Y* — RT, the optimal variable-length source code with cost
k can be considered as a variable-length random number generator
cy) = Zc(yi)' (1) generating the variable-length i.i.d. random sequence subject to the
=1 distributiong,. corresponding to the cost functieny* — R™, in
the sense that the normalized conditional divergence between the
Definition 1: R is called anachievable variable-length source distribution of the generated codeword process and the i.i.d. target
coding cost-ratefor the sourceX if there exists a variable-length distribution vanishes as block lengthtends to infinity.

s . yn bR H H RR YL =+
prefix encoderp, : A — V" given the cost function: )™ — R Theorem 2: We assume that the entropy rate of the general source

such that X has the limitlim, o (1/n)H(X").2Let ¢, : X" — Y* be any
Jim sup lE{c(%(Xn < R optimalvariable-length prefix encoder in the sense that
n—o0 n
o ] ] ) lim lE{c(pn (X™")} = Ry(X). 3)
and the infimum ofR that are achievable variable-length source coding n—co N
cost-rates is denoted @y, (X), which we call theénfimum achievable |t e define the probability distributiony. = {q¢.(y)},ecy corre-
variable-length source coding cost-rate O sponding to the cost functianby §
Then, we have the following variable-length source coding theorem  —aee(y)
with cost for the general sourcX . ¢-y) = Ik (v €y) )
Theorem 1: then we have
1 1 n 7lin
RY(X) = L limsup L H(X") @) Jim - D(pn (X VU1, =0 (5)
Qe npn—oo n

where thecost capacityr. is the positive unique roat of the equation WhereV' "™ stands for the i.i.d. sequence of lengthsubject to the
distributiong...

Z KW — 1 Proof: Lety = (y1,y2,---.ym) € V™. From (4) we have
yeY m
o Pr{V(m) =y} = Hqc(yi)
=1
H(X")=— Y Pxn(z)log Px»(z). _ ﬁK_n,w(yi)
zEXT 4
Proof: See the Appendix. O = KW

1This kind of theorem has first been shown by Krause [8] for independent and?The sources satisfying this assumption are not limited only to stationary
identically distributed (i.i.d.) finite alphabet sources. sources.
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forall m € J(¢n). Then

Dla(XIVE) = 3 Pr{pn (X0 =) log Loben(Xn) =4}

yeym™ Pr{VOU =y}
=y Pr{pa(X])=yle(y)— H(wn(X]))
yeym
=ac Y Pr{pn(Xp)=yte(y) - H(X))
yeym

where the last equality follows from the fact that is the one-to-one
mapping. Thus we have

1
Pn E; Z

meT (¢n)

D) Pr{l. = m}Pr{va(X) = yle(y)

n
meT (¢n) YEY™

1
- = Z Pr{l, = m}H(X,)
n

Pr{ln = m}D(en (XIIVE™)

Xe

meJ (¢n)
(a7 n ]- n
= ZB{e(pn (X))} = S H(X"|L)
(a7 n ]- n ]-
= S B{e(en (X"} = SH(X") + ~H(L,). ©)
Let
Crnin = min c(y) >0
then it follows fromemin I, < (@, (X™)) that
B(1,) < PAcon (X))}
Cmin
which, together with (6) and the inequality (cf. [9])
H(I,) < logle(E(1n))]
yields
1 k23
pu < SEB{e(pn (X))} = —H(X")
+ Llog |:e <7E{c( n(X ))}ﬂ_ (7)
n Cmin
We see from (3) that
lim L log {n <7E{c(¢"(}‘ 7))})} =0.
n—oo 1 Cmin
On the other hand, a consequence of Theorem 1 is
R (X) = f lim fH(AX ). (8)
Thus by (3), (7), and (8) we conclude that
lim sup pn, < aRBy(X) — a. Ry (X) =0
which proves (5). O

Remark 1: We point out that Iwat@t al’s universal code [7] satis-
fies the condition (3) for any stationary sout¥e and, therefore, their

code can be regarded as providingraversalalgorithm for nonuni-

form i.i.d. random number generation in the sense of (5), although it

works only when the source alphalétis finite.
IV. COMPARISON WITH PREVIOUS RESULTS

Han [5] has earlier established the following result on @p&mal
variable-length prefix code withqual cost(y) = 1 (Vy € V), i.e
cly) =Uy) (Vy € V7).
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Theorem 3 [5]: We assume that the entropy rate of the general
sourceX has the limiflim,, o (1/n)H(X"). Lety, : X — Y™ be
any optimalvariable-length prefix encoder satisfying

lim —E{l(&/n X"} =R (X)

n— 00

9)

where R, (X)) is the infimum of achievable variable-length source
coding rates Then, we have

lim_ —D(y XU\,

n—

(10)

whereU(™) is the i.i.d. sequence subject tmiform distribution on
ym. D

We notice here (cf. [5]) that, under the assumption of Theorem 3,

R,(X) is given by
R, (X) = 121; %H(X").

It is easy to check that Theorem 3 is a special case of Theorem 2, be-
cause, in the case where all code symbols have equal(gost 1, the
cost capacityr. = 1 and hence?;,(X) = R.(X). Our proof of The-
orem 2 is just paralleling the original proof of Theorem 3, and hence
Theorem 2 is a straightforward generalization of Theorem 3. On the
other hand, Visweswariadt al.[4] have also shown a variant of The-
orem 3, i.e., they have shown that thptimal variable-length source
code with equal cost(y) = 1 can be considered as a random number
generator in the following sense.

Theorem 4: Let ¢, : ¥ — Y™ be any variable-length prefix en-
coder satisfying the condition (9), where the source alph&hsfinite,
unlike in Theorems 2 and 3. Then, there exists a sequence dfisets
of positive integers such that

lim Pr{I, € Gu} =1

lim max ’—D(g,n(‘( Tty = 0. O

n—oom€EeG,, M

However, it does not seem to be easy to generalize Theorem 4 to be
valid also in the case with unequal costg). One reason is that the
rather intractable sét,, intervenes in Theorem 4 but notin Theorem 3.

It should be noted that the proof demonstrated in this correspondence
does not need the assumption that the source alpbialefinite and

also that either of Theorems 3 or 4 does not imply one another because
Gr # J(pn) in general.

Remark 2: The existence of the limitm,, —.(1/n) H(X™) for the
sourceX is the necessary and sufficient condition for (10) to hold under
the condition (9). To see this, we need the following theorem on the
variable-length random number generation. First, we Rahachiev-
able variable-length intrinsic randomness réite the sourceX if there
exists a variable-length mappigg, : ¥ — Y™ such that

lim inf —E{l(ﬁn(’("))} >R

n—oo

and

.1 P

lim —D(pn (XM UYL, =
n—oo N
Moreover, the supremum oR that are achievable variable-length
intrinsic randomness rates is denoted 35 X ), which we call the
supremum achievable variable-length intrinsic randomness. rate
Then, we have
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Theorem 5 (Han [5], [10]): For any general sourcE with acount-  Define theconditional cost:(yily'™") of y; € Y given the sequence
ably infinite source alphabet’ yi"t € Y~ by

S7(X) = liminf lH(X“). O c(yilyi™") = —log a(uilyi™")

n—00 n

and call the rootv = «. of the equation
Since the sufficiency is implied by Theorem 3, it suffices to show the

i—1
necessity. Suppose that {1tblds. Then, from (10) and Theorem 5, we Z Kt =
have Yy, €Y
| n « oL 1 N thecost capacityy. of the general cost function Itis then obvious that
liminf —E{l(en(X"))} <50(X) = liminf —H(X"). a. = 1forallyi~! € Y'~'. Then, as a general version of Theorem

1, we have the following variable-length source coding theorem with
the general cost function (14) for the general soXc&irst, let us call

R anachievable variable-length source coding cost-fatethe source

X if there exists a variable-length prefix encodsgy: X" — )™ with

the general cost function (14) such that

Moreover, by means of Theorem 1 witty) = 1 (Vy € V)
limsup ~E{I(p, (X")} 2 R,(X) = limsup ~H(X").
n—eo n—oo N

As a consequence, since (9) implies )
limsup —E{c(p.(X"))} <R
n

lim sup lE{l(/pn (X™))} = liminf lE{I(',pn(X"))} n—oo
n—00 n n—oo 1 .o . . .
) and the infimum ofR that are achievable variable-length source coding
it follows that cost-rates is denoted . (X), which we call thénfimum achievable

L1 " . 1 " variable-length source coding cost-rate
liminf —H(X") > limsup —H(X")
n—oco 1 n—oo N

Theorem 6:
which claims that the sourc¥ must have the limit )
R,(X) = 1 lim sup lH(X") (e = 1).

QXe pooc N
lim (1/n)H(X") O
nree Proof: On the basis of the assumption (13), we see that there ex-
ists a constant,.x such that

V. VARIABLE-LENGTH CODING WITH GENERAL COST FUNCTION i—1
sup c(yilyr ) < Cmax < 0

In Section Il, we have shown that the optimal variable-length source iyinyy ielyily] T <oo

. ” i Fastie
code with theadditivecost function: J* — R™ defined by (1) canbe o Theorem 6 follows in entirely the same manner as in the proof

regarded as a variable-length random number generator generating the, . ) e 1, provided that the additive cosy;) is replaced by the
variable-length.i.d. random sequendé‘/*) subject to the distribution conditional cost:(y:|y: =), and accordingly/(y:) = K~ by
-\ Y2 Y1 I Y -

q. depending on the cost functienin the same spirit, we may consider wlyi=1) = Kot B O

the problem of generating a more general stochastic process instea%( ikl '

vU»)_ To do so, what kind of cost function should we introduce? In Finally, we have the following main theorem of this section which
the following, we consider the generation of an arbitrarily prescribeghys that the optimal variable-length source code with the general
general stochastic process (which may be nonstationary or nonergodisst functionc defined by (14) can be considered as a variable-length

satisfying the consistency condition random number generator generating the random sequence subject to
; o the given probability measure
gy => alyy) (e (11)
= Theorem 7: We assume that the entropy rate of the general source

X has the limitlim,, ... (1/n)H (X™). Given an arbitrary probability
r}ﬁbasurej satisfying (11)—(13), we define the cost functiony” —
R* by (14) and letp, : X¥* — Y™ be anyoptimal variable-length
rH?efix encoder such that

whereq denotes the probability measure. We denote the conditio
probability ofy; € Y giventhe sequengg ™ = (y1,y2, -+, ¥i—1) €
Y1 by ¢(y:|yi™") and we assume that there exist some consta
(min, gmax SUCh that

S
0< gyl ) <max <1 (Vi,Vy, € Y, Vy7 €Y7 (12) Jim S E{e(n(X7))} = B (X).

0 < inf I 13 Then, we have
< dmin S . yi—ltzl(ly_‘yifl)>Dq(y2|y1 ) ( ) 1 /
Yir Yy 191 lim —D(Lpn(Xn)HV:]( ”)|[n) =0

n

Using this conditional probability, the probabiligfy) of y € V' is

written as whereV,™ is the random variable subject to the marginal distribution

onY™ of the probability measure.

i1 ¥ Proof: From the assumption (12) we see that there exists a con-
o) = [Jawiln™) (el stantcmin such that

=1

{

. . 0 < comin < c(yilyi™)  (Vi,Vy € Y.yt €Y.
Let us now define thgeneral cost function: Y* — R™ as emin < clyilyi ) (Vi Vi €, 9 Yoo

Using this property, we can show Theorem 7 in entirely the same

I . .
c(y) = —log qly) = — Zlogq(yzwi*l‘) (y € yx)' (14y Mmanner asin thei_plroof of Tih_elorem 2, pr_owded that), q(y;) are
= replaced by:(y:|yi™ "), ¢(y:lyi™ "), respectively. O
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Example: With afinite code alphabey Iet/us consider a Markov from which it follows that
process subject to transition probabilitigg|y ) such thagy(yly ) <

1(Vy,y € Y). Denoting the initial distribution by(y), set ¢(y;) < (@) + Cmax
—log Pxn(x;) n log 2 n
N ’ ’ - Cmax
c(y) = —logq(y)  clyly ) = —logyglyly ) @ @,

and define the cost(y) of a sequencg = (y1,y2, -+, yn) € V" by  Wherecn.x = max,ecy ¢(y) < oo. Then, we have

c(y) = clyr) + clyzlyr) + cysly2) + -+ + clynlyn—1).  (15) Ele(pn(X™)} < — Z Py (2) log Px» () + log 2 T o

Qe (03]

Then, Theorem 7 tells us that tbptimalvariable-length prefix coding zeX™
for any general sourcX with the cost function (15) asymptotically which concludes that
generates the Markov process subject to the transition probabilities
a(yly). O lim sup fE{c(p,L()& N< — hm sup H(X"). O

n—oo Qe n—oo

2) Converse Part:
Lety, : XY™ — Y™ be any variable-length prefix encoder and put

APPENDIX

Proof of Theorem 1

1) Direct Part: Without loss of generality we may assume that _ -
0 < cly) < o (Vy € y)_ Lety = {1.2,---,K} and set anddefing; = K'~"“. Then, from Lemma 1, we have

g(i) =K (i=1,2,--- K). Foranyy=(yi, ys,- -, y) €V, o0
we define q= Z(ﬁ <1
7 =1
aly) = a(y \ :
( ,_2,4 w) Setp; = Pxn»(x;) andp = >, p; = 1. From the log-sum in-
e equality [9], we have
By = > aly)=a@) +ay)
vy 2y Zp,log—>]]10g—
where<, < indicate the lexicographic order on the 3étand we have =1 & 1
putforz = (z1,22,---,2) € Y' = log =
, q
q(2) = q(z1)q(22) - - - q(z1). > 0. (16)

Let the intervalla(y), 3(y)) be denoted by (y). Obviously,I(y) C  On the other hand,
[0,1) and|I(y)| = K~ *<°¥ (the width ofI(y)). Then, we first have -
the following trivial lemma. Zpi log Pi

o0 oo
— sz‘ log ¢; + Zl)i log p;
=1 =1

Lemmal: AcodeC = {y,,¥,. -} (y; € V") is prefixif and only

if all intervalsI(y, ), I(y,), -+ C [0,1) are mutually disjoint. O — Zp,:c,: n Zp’? Jog pi
Let all the elements oft” be ordered a&™ = {x,z3.---} and ‘ - .,
define = aE{c(p (X")}— H(X™)

1—1 . . . .
which together with (16) implies that
Pi= ) Pyn(;) (i=12,-") 9 (16) imp 1
N E{c(eon(X")N} > —H(X").

Qi = Pi+ % Pxn(x:) (i=1,2,--") el o

whereP, = 0. Now, to eache; we uniquely assig®, as Then, we conclude that

y, = arg min |y lim sup — E{ (on (X))} > > — limsup H(X"). O
T YEK(y) n— oo c n—oo
whereK(y) isthe setofy € Y* suchthaf (y) includes); but does not
include eitherP; or P; 1. It then follows froml(y,) C [P;, Pi41) that REFERENCES
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in the best cases. Hergjs a parameter of the code anglis a constant
which depends oif.. w}(n) is a similar function tav™(n), which sat-
isfiesw}(n) < w*(n).
Since the best and worst cases occur at infinitely maisy and,
) _ N roughly speakingi(n) is distributed uniformly between two extreme
A New Recursive Universal Code of the Positive Integers cases|(n) can become shorter thasg} » in large parts of integers.
] In Section Il, we review Elias: code, which is a typical one of the
Hirosuke YamamotoMember, IEEE knownlog™ n-type codes, and we show the reason why the codeword
length cannot become shorter thag; » in the known codes. To over-
Abstract—A new recursive universal code of the positive integers is pro- come this defect,.we devise a new repre.sentatlon. of binary numbers
posed, in which any given sequence can be used as a delimiter of codewordthat never has a given sequence as a prefix. In Section I1l, we propose a
while bit “ 0” is used as a delimiter in known universal codes, e.g., Leven- new recursive universal code of the positive integers based on the new
shtein code, Elias. code, Even—Rodeh code, Stout code, Bentley—Yao code pinary number representation and we evaluate the performance of the
etc. The codeword length of the proposed code is shorter thalog, nin o056 code theoretically. It is shown that the codeword length of the
almost all of sufficiently large positive integers although the known codes . . .
are longer thanlog”, n for any positive integer . propeseel code is shorter thag; n in almost all of sufficiently Ierge
positive integers. The case ofary universal codes are treated in Sec-
tion IV.
We use the following notation in this correspondence.

Index Terms—Elias w code, log-star function, universal code of positive
integers, universal coding.

* [n]. is the ordinary--ary number of positive integer such that
the most significant digit ofn], is nonzero.

_ Many researchers have treated the universal coding of the positive, [n]'. is the ordinary:-ary number of: with i digits.

integers that satisfy

|. INTRODUCTION

* |t] is the largest integer not exceedihg

Pn)>P 1), for an N, 1 - .

(n) 2 Pn+1). yn € @ e xamplesiia]s = 1110, [14]; =01110, [14]s = 112, [14]3 = 00112,
whereP(n) is a probability distribution on the set of positive integerdlog, 14] = 3.
N = {1, 2,3, ---} [1]-[7]. These codes can be used practically in
various adaptive dictionary codes [8]. Besides the practical uses, itisan 1l. NEw BINARY NUMBER REPRESENTATIONEXCLUDING A
interesting coding problem to consider how efficiently we can encode FORBIDDEN PREFIX
the positive integers under the prefix condition.

Letlogh n be thek-fold composition of the functiotvg, » and let
log; n be CE(HQ) = [’HJ{]Q[??,]{_l]Q e [nl]g[’no]go (3)

Eliasw codeCr(n) has the following recursive structure [4]:

logl n = log, n +log2 n + ---—|—log';”*(“) n @) where[n], is the ordinary binary number af, the most significant bit
(MSB) of which is always one. Eagh; in (3) is determined recursively
wherew” (n) is the largest integer which satisfiegog’y » > 0.Then, byny = [log, ns_1]. In other wordspy + 1 represents the bit length
it is shown theoretically that any positive integecan be represented of [z —1]2. The recursion in (3) stops when the lengtlief | is two.
with log3 n — aw™(n) bits if « < log, log, e [2], [3]. Finally, bit“0”is attached as a delimiter to indicate the end'ef(n¢ ).2
On the other hand, many researchers, e.g., LevenshterH2}s In the decodingp x is obtained from the first two bits @'z (n,), and
[4], Bentley—Yao [5], Even—Rodeh [6], Stout [7], etc., have proposdtie length ofn._:]- is recursively obtained from,.. Since the MSB
log* n-type codes with a recursive structure to attain high performaneéevery[n.]» is “1,” delimiter “0” can stop the recursion arjdo]»
in largen. But, in their codes, codeword lengttn) cannot become can easily be found.
shorter thariog3 n although it satisfied(n) < log; n + w*(n) + ¢ Levenshteiri¥; code [2], Even—Rodeh code [6], and Stout code [7]
wherec is a constant. have similar structures and their codes also use (itas a delim-
iter in the same way as Elias code. Levenshteiil’; code [2] and
Bentley—Yao search-tree code [5] have a little different structure. How-
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1" is the exception case, for which the codeword is defined as
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