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tends to unity asn!1 (whileN is kept fixed), we have constructed
a sequence of fixed-rate block codes that satisfies (8).

To estimate the number of codewords (and hence the rate) at the
first level code, we apply Lemma 4 by settingR = N(RN + �),
ui = G1

N (xxxi), andJ = jYjN , where the latter assignment expresses
the fact that in the finite reproduction alphabet case, the guessing
list size need not exceed the total number of possible reproduction
vectors. Thus we can upper-bound the number of codewords in the
first level by

M1 � (n+ 1)jYj expfn[N(RN + �) + ln (2 ln jYjN + 2)]g

= exp Nn RN + � +
jYjN ln(n+ 1)

Nn
+

ln(2N ln jYj + 2)

N
:

(A.7)

Letting n ! 1 for fixed N , we see that the exponent of this
expression tends toRN + � + ln(2N ln jYj + 2)=N . In the same
manner, one can verify that the total number of codewords at the
second level satisfies

lim sup
n!1

1

nN
ln M2�RN+�N+2�

+
1

N
[ln (2N ln jYj+2)+ln(2N ln jZj+2)]:

Clearly, there exists a constantc (that depends solely onjYj andjZj)
such thatc ln (N + 1)=N upper-bounds theO (log N=N) terms in
the exponents of bothM1 and M2, for all N . Finally, since� is
arbitrarily small, this implies that

(RN + c ln(N + 1)=N; RN +�N + c ln(N + 1)=N; D1; D2)

is an achievable quadruple w.r.t.P 0 by definition.
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Almost-Sure Variable-Length Source
Coding Theorems for General Sources

Jun Muramatsu and Fumio Kanaya

Abstract—Source coding theorems for general sources are presented.
For a source �, which is assumed to be a probability measure on all
strings of infinite-length sequence with a finite alphabet, the notion of
almost-sure sup entropy rate is defined; it is an extension of the Shannon
entropy rate. When both an encoder and a decoder know that a sequence
is generated by�, the following two theorems can be proved: 1) in the
almost-sure sense, there is no variable-rate source coding scheme whose
coding rate is less than the almost-sure sup entropy rate of�. and 2) in
the almost-sure sense, there exists a variable-rate source coding scheme
whose coding rate achieves the almost-sure sup entropy rate of�.

Index Terms—Almost-sure sup entropy rate, general sources, source
coding theorems.

I. INTRODUCTION

Throughout this correspondence, letÂ be a finite set and(Â1;F)
a measurable space, wherêA1 is the set of all strings of infinite
length that can be formed from the symbols in̂A, andF is a�-field
of subsets ofÂ1:

Let � be a probability measure defined on(Â;F): Then, we call
(Â;F ; �) a probability space. We call� a general sourceor simply
a source. It should be noted that� satisfies consistency restrictions.
Traditionally, a source is defined as a sequence of random variables
X̂ � fX̂ng1n=1, but if X̂ satisfies consistency restrictions

x̂ 2Â

Prob (X̂n+1 = x̂
n+1) = Prob(X̂n = x̂

n);

8x̂n 2 Â
n
; 8n 2

we can construct the probability measure�
X̂

satisfying

�
n

X̂
(x̂n) � Prob (X̂n = x̂

n)

where�n
X̂

is a probability distribution onÂn induced by�
X̂
: Then,

�
X̂

can be considered as a general source.
We will prove almost-sure source coding theorems for general

sources, placing no assumption on sources except consistency restric-
tions. To this end, we define the almost-sure sup entropy rate of a
general source�: Assuming that an encoder and a decoder know that
a string is produced by�, we can make the following two statements:

1) There is no variable-length code such that the coding rate of
this code is less than the almost-sure sup entropy rate of the
source with probability1.

2) There exists a variable-length code such that the coding rate
of this code is equal to the almost-sure sup entropy rate of the
source with probability1.

Manuscript received July 17, 1997; revised April 26, 1998. The material
in this correspondence was presented in part at the 19th Symposium on
Information Theory and Its Applications, Hakone, Japan, December 3–6, 1996
(in Japanese).

J. Muramatsu is with the NTT Communication Science Laboratories, Kyoto
619-0237, Japan.

F. Kanaya is with the Department of Information Science, Shonan Institute
of Technology, Kanagawa 251-0046, Japan.

Communicated by M. Feder, Associate Editor for Source Coding.
Publisher Item Identifier S 0018-9448(99)00625-2.

0018–9448/99$10.00 1999 IEEE



338 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 1, JANUARY 1999

Historically, various notions of entropy have been defined under
different assumptions on the source; by using these notions, coding
theorems have been proved for various types of codes and for
different definitions of a coding rate. We survey some existing notions
of entropy and discuss them vis-`a-vis our newly defined notion of
the almost-sure sup entropy rate.

We begin by noting that for noiseless coding of sources, various
situations occur depending on the definition of the coding rate as
well as the type of code.

Fixed-Length Code:For any" > 0;  > 0 and sufficiently large
n, there exists a setfx̂n1 ; x̂

n
2 ; � � � ; x̂

n
Mg � Ân such that

1

n
log

2
M < R+ 

�(fx̂ 2 Â1; x̂n =2 fx̂n1 ; x̂
n
2 ; � � � ; x̂

n
Mgg) � ":

Variable-Length Code with Average Coding Rate Defined:There
exists a variable-length codef('n; '�1n )g1n=1 such that

lim sup
n!1

E�
1

n
`('n(x̂

n)) � R:

Variable-Length Code with Coding Rate in Probability Defined:
There exists a variable-length codef('n; '�1n )g1n=1 such that for
any " > 0

lim
n!1

�n x̂ 2 Ân;
1

n
`('n(x̂

n)) < R+ " = 1:

Variable-Length Code with Almost-Sure Coding Rate Defined:
There exists a variable-length codef('n; '�1n )g1n=1 such that

lim sup
n!1

1

n
`('n(x̂

n)) � R; �-a.s.

that is,

� x̂ 2 Â1; lim sup
n!1

1

n
`('n(x̂

n)) � R = 1:

It should be noted that from a fixed-length code of rate levelR,
we can always construct a variable-length code whose rate converges
to R in probability.

Coding theorems for a stationary ergodic source are proved via
the asymptotic equipartition property (AEP), which assures the con-
vergence

1

n
log

2

1

�n(x̂n)
! H��:

Here, H�� denotes entropy rate, which has various definitions as
follows. In addition, it should be noted that senses of convergence
are also different.

First of all, Shannon [11] defined the entropy of an independent
and identically distributed (i.i.d.) source by

HS

� �

x̂ 2Â

�1(x̂1) log
2

1

�1(x̂1)
:

He proved the AEP in the sense of convergence in probability and
showed thatHS

� is the minimum coding rate for any i.i.d. source�:
For stationary ergodic sources�, McMillan [9] defined the entropy

rate by

HSMB

� � lim
n!1

1

n
x̂ 2Â

�n(x̂n) log
2

1

�n(x̂n)
:

He showed the AEP in mean convergence. Breiman [2] extended
the above result to show that� satisfies the AEP in almost-sure
convergence toHSMB

� :

For general sources, Verdú and Han [12] proved that AEP is equiv-
alent to fixed-length source coding theorems for nonzero-entropy
finite-alphabet sources.

Since almost-sure convergence implies convergence in probability
and also convergence of the average under a certain condition
of boundedness, each coding rate in the above-mentioned coding
situations is equal toHSMB

� for any stationary ergodic source.
However, when a source does not satisfy ergodicity, coding rates are
not necessarily the same. Furthermore, coding rates do not always
converge. To deal with these situations, different notions of entropy
are studied and used to prove the coding theorems.

Kieffer [8] considered a variable-length code with the average
coding rate defined. He defined the entropy rateHK

� of a general
source� by

H K

� � lim sup
n!1

1

n
x̂ 2Â

�n(x̂n) log
2

1

�n(x̂n)

and showed thatH K

� is the optimum average coding rate. Clearly,
H K

� = HSMB

� if � is stationary and ergodic.
Han and Verd́u [7] considered fixed-length coding of general

sources and defined the sup entropy rateH
HV

� of a general source
� by

H
HV

� � inf h; lim
n!1

�n x̂n2Ân;
1

n
log

2

1

�n(x̂n)
>h =0

where the random variable
1

n
log

2

1

�n
X̂
(X̂n)

is called theentropy density rateand its distribution is called the
information spectrum of the sourceX (cf. [6]). They proved that
H
HV

� is the optimal coding rate of the source�: If � is stationary

ergodic, thenH
HV

� = HSMB

� :

Remark 1: Since a source was considered to be a general sequence
of random variables, Han and Verdú did not necessarily assume that
a source satisfies the consistency restriction. On the other hand, to
define the almost-sure sup entropy rate we assumea priori knowledge
for the probability distribution onÂ1, so our source satisfies the
consistency restriction. In addition, it should be noticed that we
assume a finite source alphabet, which was also not necessarily
assumed by them.

Our new definition of the almost-sure sup entropy rate is defined
to deal with theworst caseoptimal coding rate of the variable-
length code with probability1. We prove that it satisfies source
coding theorems in the almost-sure sense. This provides yet another
extension of the Shannon–McMillan–Breiman entropy rate, but it
should be remarked that our definition is strictly different from both
the Kieffer entropy rate and the Han–Verd´u sup entropy rate. We
discuss the matter in Section V.

II. SOURCE CODING THEOREMS

Let � be a general source. We define the sup�-complexity rate
of an element ofÂ1:

Definition 1: A function h�: Â1 ! [0;1) defined by

h�(x̂) � lim sup
n!1

1

n
log

2

1

�n(x̂n)
; x̂ 2 Â1

is called thesup�-complexity rate function. We call h�(x̂) the sup
�-complexity rate ofx̂ 2 Â1: It should be noted thath� is a
measurable function on(Ân;F ; �): Intuitively, the sup�-complexity
rate of a sequence with infinite length is the amount of information
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per source symbol that we need to faithfully describe the sequence;
it is assumed that we knowa priori the probability distribution� of
the space for all sequences with infinite length.

Next is the definition of the essential sup, which is familiar in
measure theory.

Definition 2: Let f be a measurable function on a measurable
space(Ân;F ; �): Then, we define�-ess. supf by

�-ess: sup f � inff�; f(x) � �; �-a.s.g

and call it theessential supof f under�:

We will now define the almost-sure sup entropy rate of�:

Definition 3: Thealmost-sure sup entropy rateH� of � is defined
by

H� � �-ess: sup h�:

We define the variable-length noiseless code and its coding rate.
Let B � f0; 1g andB� � [1n=1B

n: Let `: B� ! be the length
function of finite binary strings. Hereafter, we use notationa � b to
denote concatenation of stringsa and b:

Definition 4: Given two stringsb1; b2 2 B�, we sayb1 is a prefix
of b2 if there is a stringb3 2 B� such thatb2 = b1 � b3: A subset
B�p of B� is said to be aprefix setif b1 = b2 wheneverb1; b2 are
members ofB�p and b1 is a prefix ofb2:

Definition 5: A sequencef('n; '
�1
n )g1n=1 of pairs of functions is

called avariable-length noiseless codeif 'n: Â
n ! B� is injective,

'n(Â
n) is a prefix set, and'�1n : 'n(Â

n)! Ân is defined to satisfy

'
�1
n ('n(x̂

n)) = x̂
n
; 8x̂n 2 Ân

for eachn 2 :

Let ' � f('n; '
�1
n )g1n=1 be a variable-length noiseless code. We

define the almost-sure coding rate of the source� by the code' as
follows.

Definition 6: We definer'(x̂) by

r'(x̂) � lim sup
n!1

1

n
`('n(x̂

n))

and call it thecoding rate ofx̂ 2 Â1 by ': We defineR' by

R';� � �-ess: sup r'

and call it thealmost-sure coding rate of� by ':

The following theorems tell us that the almost-sure sup entropy
rate is the optimal coding rate of a variable-length noiseless code.

Theorem 1: (Converse)If ' is a variable-length noiseless code,
then

r';�(x̂) � h�(x̂); �-a.s. (1)

and

R';� � H�:

Theorem 2: (Achievability)There exists a variable-length noise-
less code'� such that

r';�(x̂) = h�(x̂); �-a.s. (2)

and

R' ;� = H�:

Their proofs will follow.

III. PROOF OF THECONVERSE THEOREM

To prove Theorem 1, we prepare the following lemmas.

Lemma 3 ([3, Theorem 5.2.1]):If B�p is a prefix set, then the Kraft
inequality

b 2B

2�`(b ) � 1

is satisfied.

Lemma 4 ([1, Theorem 3.1]):Let � be a general source and
f('n; '

�1
n )g1n=1 a variable-length noiseless code. Then

`('n(x̂
n)) � log2

1

�n(x̂n)
� log2 n� 2 log2 log2 n; �-a.s.

Lemma 5: Let f and g be measurable functions on the same
probability space(Â1;F ; �) such that

f(x) � g(x); �-a.s.

Then

�-ess: sup f � �-ess: sup g:

Proof: Assume that

f(x) � �; �-a.s. (3)

Since

g(x) � f(x)

��; �-a.s.

we have

�-ess: sup g � �

by the definition of�-ess: sup g: We can take an arbitrary� under
condition (3). Therefore, we have

�-ess: sup g � �-ess: sup f

by the definition of�-ess: sup f:

We now prove the converse theorem.
Proof: (Proof of Theorem 1) By Lemmas 3 and 4

r'(x̂) = lim sup
n!1

1

n
`('n(x̂

n))

� lim sup
n!1

1

n
log2

1

�n(x̂n)

=h�(x̂); �-a.s.

Therefore, we have (1) and

R';� =�-ess: supr'

��-ess: suph�

=H�

by Lemma 5.

IV. PROOF OF THEACHIEVABILITY THEOREM

To prove Theorem 2, we prepare the following lemma, which
assures a nice coding property of the prefix set.
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Lemma 6 ([3, Theorem 5.2.1]):Let Ân
p � Ân and assume that

L: Ân
p ! satisfies the Kraft inequality

x̂ 2Â

2�L(x̂ ) � 1: (4)

Then, there exists a prefix setB�p and a bijection'n:Ân
p ! B�p such

that `('n(x̂n)) = L(x̂n) for any x̂n 2 Ân
p :

We now prove the existence theorem.
Proof: (Proof of Theorem 2) LetL:Ân ! be defined by

L�(x̂
n) �

1 + log2
1

�n(x̂n)
; if �n(x̂n) > 0

1 + dlog2 jÂ
nje; if �n(x̂n) = 0

for x̂n 2 Ân: SinceL satisfies (4), it follows from Lemma 6 that we
can construct a variable-length noiseless code

'� = f('�;n; '
�1
�;n)g

1
n=1

such that̀ ('�;n(x̂n)) = L�(x̂
n) for any x̂n 2 Ân:

On the other hand, since� satisfies the consistency restriction

�(fx̂ 2 Â1;�n(x̂n) > 0; 8n 2 g)

= 1� �(fx̂ 2 Â1; 9n 2 s:t: �n(x̂n) = 0g)

= 1� �

1

n=1

fx̂ 2 Â1;�n(x̂n) = 0g

� 1�

1

n=1

�(fx̂ 2 Â1;�n(x̂n) = 0g)

= 1�

1

n=1

�
n(fx̂n 2 Ân;�n(x̂n) = 0g)

= 1

and we have

L�(x̂
n) = 1 + log2

1

�n(x̂n)
; �-a.s.

Hence

r' (x̂) = lim sup
n!1

1

n
`('�;n(x̂

n))

= lim sup
n!1

1

n
1 + log2

1

�n(x̂n)

= lim sup
n!1

1

n
log2

1

�n(x̂n)

=h�(x̂); �-a.s.

and we have (2). This gives us

R' ;� =�-ess: sup r'

=�-ess: sup h�

=H�:

Remark 2: The code constructed in the proof of the theorem is
based on a probability distribution. In the event that

lim sup
n!1

1

n
L�(x̂

n) > log2 jÂj

has positive probability, then the code might be worse than the code
formed by a simple binary representation of the alphabet. However,
the following theorem assures us that the constructed code is no worse
than a simple binary encoding of the alphabet.

Theorem 7: Let � be a general source. Then

0 � H� � log2 jÂj:

Proof: First, we prove0 � H� by contradiction. Assume that
H� < 0: Then,

h�(x̂) < 0; �-a.s. (5)

On the other hand, for all̂x 2 Â1, we have�(x̂n) � 1 for every
n � 1, so h�(x̂) � 0: Since this contradicts (5), we must have
0 � H�:

Next, we proveH� � log2 jÂj: Let " > 0: Then for everyn � 1

� x̂ 2 Â1;
1

n
log2

1

�n(x̂n)
� log2 jÂj + "

= �
n

x̂
n 2 Ân;�n(x̂n) � 2�n[log jÂj+"]

� 2�n[log jÂj+"] � jÂjn

= 2�n":

Hence
1

n=1

� x̂ 2 Â1;
1

n
log2

1

�n(x̂n)
� log2 jÂj + " <1:

By the Borel-Cantelli Lemma (cf. [4, Theorem 1.2]) we have

�

1

n=1

1

m=n

x̂ 2 Â1;
1

m
log2

1

�m(x̂n)

< log2 jÂj+ "

= 1� �

1

n=1

1

m=n

x̂ 2 Â1;
1

m
log2

1

�m(x̂n)

� log2 jÂj + "

= 1:

It follows that there existsNx̂;" 2 for �-a.s.̂x such that if
n > Nx̂;"

1

n
log2

1

�n(x̂n)
< log2 jÂj + "

which implies

lim sup
n!1

1

n
log2

1

�n(x̂n)
� log2 jÂj+ "; �-a.s.

Consequently,H� � log2 jÂj + " by the definition ofH�: Since
" > 0 is arbitrary, it is proved thatH� � log2 jÂj:

V. RELATIONS WITH OTHER NOTIONS OF ENTROPY

In this section, we discuss the relations between our new definition
of the almost-sure sup entropy rate and other notions of entropy. We
denoteH MK

� as the almost-sure sup entropy rate defined in Section
II.

The next theorem immediately follows from the AEP for a station-
ary ergodic source. As we have already seen a similar relation holds
for H K

� andH HV
� :

Theorem 8: Let � be a stationary ergodic source. Then

H
MK
� = H

SMB
� :

We now compareH MK
� with H K

� : Kieffer considered the average
coding rate, whereas we consider the worst case coding rate. The
following theorem shows the relation amongH MK

� ; H K
� and the

average of the�-complexity rateh�:

Theorem 9: Let � be a general source. Then

H
K
� � E�[h�(x̂)] � H

MK
� :
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Proof: The left-hand side inequality follows from Fatou’s
lemma. The right-hand side inequality follows from the definition of
H MK

� :

Next, we compareH MK

� with H HV

� , which both deal with the
worst case coding rate. However, the former considers variable-rate
coding in an “almost-sure” sense, while the latter considers fixed-rate
coding in an “in-probability” sense. From the definitions,H MK

� and
H HV

� can be transformed to

H
HV

� = inf h; lim
n!1

� x̂
n 2 Â1;

1

n
log

2

1

�n(x̂n)
� h = 1

and

H
MK

� = inf h;� x̂ 2 Â1;

lim
n!1

1

n
log

2

1

�n(x̂n)
� h = 1

respectively. This is the definite difference betweenH MK

� andH HV

� :

Our definition ofH MK

� is based on the sup�-complexity rate, which
is the amount of information needed per symbol to faithfully describe
any specific source string when we know beforehand the source�:

The definition ofH HV

� is based on the notion of the entropy density
rate, which is a random variable. At this point, it is worthwhile to
notice the following difference between coding in an “in-probability”
sense and coding in an “almost-sure” sense. LetfCng

1

n=1 be a fixed-
length code of coding rateR � H HV

� for a general source�:
Then, whether or not any given output stringx̂ from the source is
faithfully coded by the codefCng1n=1 remains unknown until the
coding of x̂ is completed. On the other hand, letf('n; '�1n )g1n=1
be a variable-length code of almost-sure coding rateR � H MK

� for
the source�: For any given output strinĝx from the source, one is
guaranteed beforehand that it will faithfully be encoded by the code
f('n; '

�1

n )g1n=1 in the long run.
Next, we show the relation betweenH HV

� andH MK

� :

Theorem 10: Let � be a general source. Then

H
HV

� � H
MK

� :

Proof: Let " > 0: From the definition ofH MK

�

lim sup
n!1

1

n
log

2

1

�n(x̂)
� H

MK

� + "; �-a.s.

so we have

�

1

k=1

1

n=1

1

m=n

x̂ 2 Â1;
1

m
log

2

1

�m(x̂)

� H
MK

� + "+
1

k

= 1: (6)

On the other hand, since
1

n=1

1

m=n

x̂ 2 Â1;
1

m
log

2

1

�m(x̂)
� H

MK

� + 2"

�

1

k=1

1

n=1

1

m=n

x̂ 2 Â1;
1

m
log

2

1

�m(x̂)
� H

MK

� + "+
1

k

we have from (6)

�

1

n=1

1

m=n

x̂ 2 Â1;
1

m
log

2

1

�m(x̂)
� H

MK

� + 2" = 1

which is equivalent to

�

1

n=1

1

m=n

x̂ 2 Â1;
1

m
log

2

1

�m(x̂)
>H

MK

� + 2" = 0:

(7)

Since for anyn 2

x̂ 2 Â1;
1

n
log

2

1

�n(x̂)
> H

MK

� + 2"

�

1

m=n

x̂ 2 Â1;
1

m
log

2

1

�m(x̂)
> H

MK

� + 2"

we have from (7) and [5, Lemma 4.6.3]

lim
n!1

� x̂ 2 Â1;
1

n
log

2

1

�n(x̂)
> H

MK

� + 2"

� lim
n!1

�

1

m=n

x̂ 2 Â1;
1

m
log

2

1

�m(x̂)

> H
MK

� + 2"

= 0

implying that

lim
n!1

� x̂ 2 Â1;
1

n
log

2

1

�n(x̂)
> H

MK

� + 2" = 0:

Thus it follows from the definition ofH HV

� that

H
HV

� � H
MK

� + 2":

Since" > 0 is arbitrary, we have

H
HV

� � H
MK

� :

Then, combining Theorems 7 and 10 with the known fact that

0 � H K

� � H HV

� (cf. [6]), we have the following theorem.

Theorem 11: Let � be a general source. Then

0 � H
K

� � H
HV

� � H
MK

� � log
2
jÂj:

Han [6] presented a source such thatH K

� < H HV

� , and this fact

shows that there is a rigorous difference betweenH K

� andH HV

� :

At this point, one may also be interested in the problem of whether

there exists a strict difference betweenH HV

� andH MK

� : The next

theorem gives the answer.

Theorem 12: There exists a source� such thatH HV

� < H MK

� :

Proof: The following proof, in which we construct the source

� satisfyingH HV

� < H MK

� , is due to [10].

Let fskg1k=1 be the strictly increasing sequence of positive integers

and fpkg1k=1 the sequence such that0 < pk < 1 for eachk 2 :

We assume thatfpkg1k=1 andfskg1k=1 have the following limits:

lim
k!1

sk�1

sk
=0 (8)

lim
k!1

pk =0 (9)

1

k=1

pk[jÂj
t � 1]

jÂjt
=1 (10)

wheres0 � 0 and tk � sk � sk�1: For example,

sk � k!

pk �
jÂjt

4k[jÂjt � 1]

satisfy the above conditions.
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�n(x̂n) �

k(n)

i=1

�i(x̂
s
s +1) �

ŷ 2Â

�k(n)+1(x̂
n
s +1 � ŷ

s �n)

Let �k be the probability distribution on̂At defined by

�k(x̂tk) �

1� pk +
pk

jÂjt
; if x̂t = ât

pk

jÂjt
; if x̂t 6= ât

where the symbol̂a 2 Â is given in advance. We define�n by
the expression at the bottom of this page for eachx̂n 2 Ân; where
k(n) � maxfk; sk � ng and̂xji � (x̂i; � � � ; x̂j): It is easily verified
that f�ng1n=1 satisfies the consistency restrictions. Now we can
construct the general source fromf�ng1n=1:

First, we prove thatH HV
� = 0: Toward it let Tn be the subset

of Ân defined by

Tn � fx̂n; x̂ns +1 = ân�s g:

Then, the probability ofTn is

�n(Tn) = 1� pk(n) +
pk(n)

jÂjt

� 1� pk(n)+1 +
pk(n)+1

jÂjt

+ [jÂjs �n � 1] �
pk(n)+1

jÂjt

= 1� pk(n) +
pk(n)

jÂjt

� 1� pk(n)+1 +
pk(n)+1

jÂjn�s
:

We can regardfTng1n=1 as the fixed-rate code. Error probability is
evaluated by

1� �n(Tn) � pk(n) �
pk(n)

jÂjt
+ pk(n)+1

pk(n)+1

jÂjn�s

� pk(n) + pk(n)+1:

To prove the first inequality, we use the fact that1 � �� �
[1 � �] + [1 � �] if 0 � � � 1 and 0 � � � 1: By (9), the error
probability tends to zero asn goes to infinity. From the converse
theorem for the fixed-rate coding of general sources (cf. [7]) and by
using (8), we have

H HV
� � lim sup

n!1

1

n
log2 jTnj

= lim sup
n!1

1

n
log2 jÂj

s

� lim sup
n!1

sk(n)�1

sk(n)
log2 jÂj

= 0

which implies thatH HV
� = 0:

Next, we prove thatH MK
� = log2 jÂj: Toward it let

Ak � fx̂ 2 Â1; x̂
s

s +1 6= ât g:

It is evident from the definition of� that fAkg
1
k=1 is a set of

independent events. By (10), we have
1

k=1

�(Ak) =

1

k=1

pk[jÂj
t � 1]=jÂjt =1

and the Borel-Cantelli lemma (cf. [4, Theorem 1.2]) gives us

�

1

i=1

1

k=i

Ak = 1:

This implies that for�-a.s. x̂ and for anyn there existskx̂>k(n)
such thatx̂ 2 Ak : Therefore, lettingnx̂ � sk � sk(n)+1>n, we
have for�-a.s. x̂ and for infinitely manynx̂>n

1

nx̂
log2

1

�n (x̂n )
>

1

nx̂
log2

1

�(x̂t )

=
1

nx̂
log2

jÂjt

pk

>
1

nx̂
log2 jÂj

t

=
tk
nx̂

log2 jÂj

>
sk � sk � 1

sk
log2 jÂj

= 1�
sk � 1

sk
log2 jÂj:

By using (8) we have

lim sup
n!1

1

n
log2

1

�n(x̂n)
= log2 jÂj; �-a.s.

This implies thatH MK
� = log2 jÂj: Therefore, it is concluded that

� satisfiesH HV
� <H MK

� :
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[12] S. Verdú and T. S. Han, “The role of the asymptotic equipartition

property in noiseless source coding,”IEEE Trans. Inform. Theory, vol.
43, pp. 847–857, May 1997.


