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tends to unity as — oo (while NV is kept fixed), we have constructed Almost-Sure Variable-Length Source

a sequence of fixed-rate block codes that satisfies (8). Coding Theorems for General Sources
To estimate the number of codewords (and hence the rate) at the

first level code, we apply Lemma 4 by settidy= N(Rx + 6), Jun Muramatsu and Fumio Kanaya

u; = Gy (x:), andJ = | V|, where the latter assignment expresses
the fact that in the finite reproduction alphabet case, the guessing )
list size need not exceed the total number of possible reproducti bstract—Source coding theorems for general sources are presented.

t Th b d th b f cod ds i or a source g, which is assumed to be a probability measure on all
vectors. us we can upper-boun € number Of codewords In r?ngs of infinite-length sequence with a finite alphabet, the notion of

first level by almost-sure sup entropy rate is defined; it is an extension of the Shannon
N entropy rate. When both an encoder and a decoder know that a sequence
My <(n4+DPT exp{n[N(By +8) + In 2 1In Y] +2)]} is generated by, the following two theorems can be proved: 1) in the

almost-sure sense, there is no variable-rate source coding scheme whose
} coding rate is less than the almost-sure sup entropy rate gi. and 2) in

)/7

)/7

+2)

Nln(n 4+ 1) n In(2N In

)
Ry 4o+ Nn N

the almost-sure sense, there exists a variable-rate source coding scheme
whose coding rate achieves the almost-sure sup entropy rate pf

(A7)

= exp{Nn
Index Terms—AIlmost-sure sup entropy rate, general sources, source
coding theorems.

Letting n — oo for fixed NV, we see that the exponent of this
expression tends t®x + § + In(2N In |Y| + 2)/N. In the same
manner, one can verify that the total number of codewords at the |. INTRODUCTION

second level satisfies Throughout this correspondence, Jétbe a finite set andL A, F)

a measurable space, whe#s® is the set of all strings of infinite
length that can be formed from the symbolsdn and.F is as-field
1 ; ) of subsets ofA>.

+ o ln N I [V[+2)+ (2N In | 2]+2)]. Let 1 be a probability measure defined oA, 7). Then, we call

(A, F, ) a probability space. We call a general sourceor simply

Clearly, there exists a constan{that depends solely d3’| and|Z|) a source It should be noted that satisfies consistency restrictions.
such thate In (N + 1)/N upper-bounds thé€ (log N/N) terms in  Traditionally, a source is defined as a sequence of random variables
the exponents of botldf; and Mx, for all N. Finally, sinces is X = {f(n};“:l, but if X satisfies consistency restrictions
arbitrarily small, this implies that

lim sup% In Mo<Rnv+An+26

n—oc NI

> Prob (X" =3"") = Prob (X" =4"),
(Rv+cln(N+1)/N, Rn + Ay + ¢ In(N + 1)/N, Dy, D5) antlcA
vit e A", VYneN
is an achievable quadruple w.ri®’ by definition.
we can construct the probability measyre satisfying
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Historically, various notions of entropy have been defined underFor general sources, Vardénd Han [12] proved that AEP is equiv-
different assumptions on the source; by using these notions, codaignt to fixed-length source coding theorems for nonzero-entropy
theorems have been proved for various types of codes and fimite-alphabet sources.
different definitions of a coding rate. We survey some existing notionsSince almost-sure convergence implies convergence in probability
of entropy and discuss them wasvis our newly defined notion of and also convergence of the average under a certain condition
the almost-sure sup entropy rate. of boundedness, each coding rate in the above-mentioned coding

We begin by noting that for noiseless coding of sources, variosguations is equal toHﬁMB for any stationary ergodic source.
situations occur depending on the definition of the coding rate B®wever, when a source does not satisfy ergodicity, coding rates are

well as the type of code. not necessarily the same. Furthermore, coding rates do not always
Fixed-Length Code:For anys > 0.+ > 0 and sufficiently large converge. To deal with these situations, different notions of entropy
n, there exists a sefti?, 25,---, &%} C A™ such that are studied and used to prove the coding theorems.
1 Kieffer [8] considered a variable-length code with the average
- logo M < R+~ coding rate defined. He defined the entropy rﬂtb of a general
sourceu by

(e € A= &7 ¢ {al b, @) < =

— 1 )
Hf = limsup — E pt (&) logy, ——
Variable-Length Code with Average Coding Rate Defindtiere n—oco M sneAn pr(En)

exists a variable-length codg .., ¢, ')}o2, such that — _ )
and showed thaff,” is the optimum average coding rate. Clearly,

limsup B F (om je”))} <R H,) = HM® if u is stationary and ergodic.

n—so0 S n R Han and Verd [7] considered fixed-lt]aquth coding of general
Variable-Length Code with Coding Rate in Probability DefinegSources and defined the sup entropy rifie  of a general source

There exists a variable-length codép,., ¢, ')}22, such that for “ by

anye > 0 —HV PO | 1
y Hl:\ = inf {h; lim p" <{in eA"; —log, ﬁ > h}) :()}
~ 1 n—0o0 n /.l“ xn
lim p" <{i €A™ — Upn(@™)) < R+ :}) =1. )
n—oo n where the random variable
Variable-Length Code with Almost-Sure Coding Rate Defined: 1 log, L
There exists a variable-length codlgs.., v, ')}, such that n v 1% (Xn)
lim sup 1 ((¢n(3")) < R, p-as. ?s called_ theentropy density rateand its distribution is called the
n—oo M information spectrum of the sourc& (cf. [6]). They proved that
—=HV . . . . .
that is, H, s the optimal coding rate of the sourge If 1 is stationary
) 1 ergodic, thenH,,© = HSMB,
(<2 e A1 — Ll (")) <R =1 . .
a <{ v e T (pn(@")) < }) Remark 1: Since a source was considered to be a general sequence

of random variables, Han and Vérdlid not necessarily assume that

. a source satisfies the consistency restriction. On the other hand, to
we can always construct a variable-length code whose rate convergefs .
efine the almost-sure sup entropy rate we assaipréri knowledge

to Rk n probability. . . for the probability distribution ond™, so our source satisfies the
Coding theorems for a stationary ergodic source are proved via . - " . .
. . ” . consistency restriction. In addition, it should be noticed that we
the asymptotic equipartition property (AEP), which assures the coh- - . .
assume a finite source alphabet, which was also not necessarily

It should be noted that from a fixed-length code of rate leRel

vergence
assumed by them.
1 los. 1 N Our new definition of the almost-sure sup entropy rate is defined
no 0% pn(En) a to deal with theworst caseoptimal coding rate of the variable-

Here, H;; denotes entropy rate, which has various definitions (Jal%ngth code W|th'probab|I|ty1. We prove that' It satl_sfles source
ding theorems in the almost-sure sense. This provides yet another

follows. In addition, it should be noted that senses of convergen%% . f the Sh MeMill Brei but i
are also different. extension of the annon—McMillan—Breiman entropy rate, but it

First of all, Shannon [11] defined the entropy of an independe IPouId be remarked that our definition is strictly different from both
and identicalyly distributed (i.i.d.) source by the Kieffer entropy rate and the Han-Vardup entropy rate. We

discuss the matter in Section V.
; N 1
Hi = Z @t log, ——+-

iledr phEt) Il. SOURCE CODING THEOREMS
He proved the AEP in the sense of convergence in probability and-et # be a general source. We define the gupomplexity rate
showed thatf$} is the minimum coding rate for any i.i.d. sourge Of an element ofA™.

For stationary ergodic sourcgs McMillan [9] defined the entropy  pefinition 1: A function T A~ - [0, 00) defined by
rate by ’

. 1 na
HSMB = lim — E p" (&™) log,
n—oc N
sncAn

h,(2) = lim sup 1 log, ; i€ A®

n—oe M pr(en)’

wr (@)’

) is called thesup u-complexity rate functionwWe call 7., (&) the sup
He showed the AEP in mean convergence. Breiman [2] extendeecomplexity rate ofz € A>_ 1t should be noted thah,, is a
the above result to show that satisfies the AEP in almost-suremeasurable function opd™, F, ;). Intuitively, the supu-complexity
convergence tai;M"b. rate of a sequence with infinite length is the amount of information
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per source symbol that we need to faithfully describe the sequence; Il.

it is assumed that we know priori the probability distributior.: of
the space for all sequences with infinite length.
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PROOF OF THE CONVERSE THEOREM
To prove Theorem 1, we prepare the following lemmas.

Next is the definition of the essential sup, which is familiar in Lemma 3 ([3, Theorem 5.2.1])If B; is a prefix set, then the Kraft

measure theory.

Definition 2: Let f be a measurable function on a measurable

space(/l",]—',#). Then, we defingu-ess. supf by
pess. sup f = inf{a; f(2) < a, p-a.s}
and call it theessential supf f under u.
We will now define the almost-sure sup entropy rate:of

Definition 3: Thealmost-sure sup entropy raté,, of . is defined
by

H, = p-ess. sup h,,.

inequality

> o2 <y

b* By

is satisfied.

Lemma 4 ([1, Theorem 3.1])Let i be a general source and
{(on, o7 ")}102, a variable-length noiseless code. Then

1

Upn (")) > log, —s —log, n —2 log, log, n.
un(wn)

p-a.s.

Lemma 5: Let f and ¢ be measurable functions on the same

We define the variable-length noiseless code and its coding rapeobability space(A™. F. 1) such that

Let B= {0,1} andB" = U;>,B". Let {: B* — N be the length
function of finite binary strings. Hereafter, we use notationd to
denote concatenation of stringsand b.

Definition 4: Given two string91, b2 € B*, we sayb; is aprefix
of b2 if there is a stringhs € B* such thathe = by * bs. A subset
B, of B* is said to be grefix setif by = b, wheneverb,,b, are
members of3; andb; is a prefix ofb..

Definition 5: A sequence(¢n, ¢ ') }az, of pairs of functions is
called avariable-length noiseless codiey,.: A" — B* is injective,

f(x) > g(x). p-as.
Then
p-ess. sup f > p-ess. sup g.

Proof: Assume that

©n(A™) is a prefix set, angh;, *: ¢, (A") — A" is defined to satisfy Since

put(pa(@™) =", V" € A"

for eachn € N.

fle) <o, p-as (3
g(x) < f(x)
<a, p-a.s.

Let ¢ = {(¢n, vn')}52, be a variable-length noiseless code. Wave have

define the almost-sure coding rate of the soyrdey the codey as
follows.

Definition 6: We definer (i) by

7,(2) = limsup % Lon(2™))

and call it thecoding rate ofi € A= by ¢. We defineR., by
E%,, = p-ess. sup Ty,

and call it thealmost-sure coding rate qf by .

The following theorems tell us that the almost-sure sup entropy
rate is the optimal coding rate of a variable-length noiseless code.

Theorem 1: (Converse)f ¢ is a variable-length noiseless code,

then

Tou(®) > hu(2), p-as. (1)

and

Ry > Fu-

Theorem 2: (Achievability)There exists a variable-length noise-

less codep, such that

Tou(#) =h, (%), p-as.

@)

and

Their proofs will follow.

p-ess. sup g < «

by the definition ofu-ess. sup g. We can take an arbitrary under
condition (3). Therefore, we have

p-ess. sup g < p-ess. sup f

by the definition ofp-ess. sup f. O

We now prove the converse theorem.
Proof: (Proof of Theorem 1) By Lemmas 3 and 4

To(2) = lim sup

n—oo

L l(pu (")

1
2 o o8 iy
=hu(#), p-as.
Therefore, we have (1) and
E%H = [1-€SS. SUpT,
> [i-ess. supﬁ#
-7,
by Lemma 5. O

IV. PROOF OF THEACHIEVABILITY THEOREM

To prove Theorem 2, we prepare the following lemma, which
assures a nice coding property of the prefix set.
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Lemma 6 ([3, Theorem 5.2.1])Let A7 C A" and assume that

L: A7 — N satisfies the Kraft inequality

STt <

T A’!?.
z G.Ap

(4)
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Proof: First, we proved < H, by contradiction. Assume that
H, < 0. Then,

h.(#) <0, p-as. (5)

On the othej hand, for alt € A, we haveu (") < 1 for every
n > 1, soh,(#) > 0. Since this contradicts (5), we must have

Then, there exists a prefix sBf and a buectlon,,n A” — B} such 0 < Hy

that ((p,, (")) = L(z") for any 2" A;.

We now prove the existence theorem.

Proof: (Proof of Theorem 2) Lef: A" — N be defined by

1 f ngan
L“(i'n)E 1+’710g2 W—‘, |f}L (l' )>0
1+ [log, | A1, if u"(2")=0

Next, we proveH“ < log, | A|. Let = > 0. Then for everyn > 1

~ 100 1 1
M({l’ € ./4 H _ IOgQ W Z 10g2 |./4| + 6})
an ({ an An lln in) S 2—11[1052 ‘A‘+€] })

27n[log2 \.AH»E] . |A|n

IA

2—715-

for 2" € A". SinceL satisfies (4), it follows from Lemma 6 that we Hence

can construct a variable-length noiseless code
Pu = {(“Pu na“r’u, }n 1

such thatf(¢,, (")) = L,(2") for any &" € A".

On the other hand, singe satisfies the consistency restriction

p({d € A p"(3") >0, VneN})

=1—p({# € A®;In € Ns.t. " (2") = 0})

1—#<U {# € A= pm (&™) =0}>

&S]

vV

1= p({d € A= p"(3") = 0})

n=1
1= pn(fa" e A ") = o))
n=1

=1
and we have
1
L,(z")y=1+ [10 . —1 -a.s.
2 ) g2 Hn(wn) B
Hence

. . 1 o
iy () = limsup — ({0 (")

n—o00

1 1
= lim sup - |:1 + PO!—’JQ W—H

li 1 L
= limsup (0] —
n—»ao} n g? ‘u’n(}i.n)

=n,(%), p-as.

and we have (2). This gives us
F’W = H-ess. sup To,
= [t-€SS. sup ﬁ,‘,

=H,.

O

= | 1 5
> u({l €A™ = log, ——— > log, |A| +6})< oc.
n H‘n(wn)

n=1
By the Borel-Cantelli Lemma (cf. [4, Theorem 1.2]) we have

1 1
<77U1 77071 { ? IOgZ W

< log, |A|+ 6})

(o) oo . 1 1
= 1 — T oo 1 o T
# < ﬂ U {I E A ’ m ng Hm (:z,n)

n=1 m=n
> log, |A|+e}>
=1.

It follows that there existsV;. € N for p-a.s@ such that if
n > Nz.

1 1 -
— 1 ——— < log €
o 082 (i) < log, |A| +

which implies

lim sup 1 log,, #ﬁ <log, |A|+= p-as.
n—oo T < opn(an)
ConsequentlyH,, < log, |A| + = by the definition ofH . Since
¢ > 0 is arbitrary, it is proved thaH,, < log, |A|. O

V. RELATIONS WITH OTHER NOTIONS OF ENTROPY

In this section, we discuss the relations between our new definition
of the almost-sure sup entropy rate and other notions of entropy. We
denoteH M¥ as the almost-sure sup entropy rate defined in Section
Il.

The next theorem immediately follows from the AEP for a station-
ary ergodic source. As we have already seen a similar relation holds
for H,* and H,".

Remark 2: The code constructed in the proof of the theorem is

based on a probability distribution. In the event that

lim sup l L,(3") > log, | A

n— 00

Theorem 8: Let 1« be a stationary ergodic source. Then

o7 MK SMB
"M = HME,

MK : 77 K H H
has positive probability, then the code might be worse than the code//e Now compare " with H,". Kieffer considered the average
formed by a simple binary representation of the alphabet. HowevEPding rate, whereas we consider the worst case « cIc<>d|ng rate. The
the following theorem assures us that the constructed code is no wdrllowing theorem shows the relation amodg,". 77,* and the

than a simple binary encoding of the alphabet.

Theorem 7: Let 1 be a general source. Then
0<H, <log, A

average of thg:-complexity rateh,,.

Theorem 9: Let p be a general source. Then
H)Y < Eulhu(#) <HM'
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Proof: The left-hand side inequality follows from Fatou’swhich is equivalent to

lemma. The right-hand side inequality follows from the definition of oo oo 1 1 vk
"M, O (Ol mL;Jn {w € AT oy s > HLT 4 26}) =0.
Next, we comparef ** with H "V, which both deal with the )
worst case coding rate. However, the former considers variable- r%
. " nce for anyn e N
coding in an “almost-sure” sense, while the latter considers fixed-rate
coding in an “in-probability” sense. From the definitiods,™" and {4 ¢ A% = log, % >HM™ + 25}
H,"™ can be transformed to e ()
J— . > . foo . 1 MK
H“HV = inf {h;ylim ;t<{ e AT C L:J {l €A S log, m( ) > H,™" 422 }
1 1 we have from (7) and [5, Lemma 4.6.3]
= log, —— < h}) = 1} 1 1
n pm(En) lim <{i €A% S log, —— > MK +26}>
and n—oo n nr (@)
MK — inf {h;ﬂ({i’ e A= < L - . foo, l loo 1
' ' B TYLH;O ’u/ 77917, ! E A .’ m Obz Nm(‘i')
1 1
lim — log, ——— < h}) = 1} I
n—oo N 2 u"(at") > H:\’“‘ +25}
respectively. This is the definite difference betwdBfi'™ and 'V .
Our definition of 7 M* is based on the syp-complexity rate, which =0
is the amount of information needed per symbol to faithfully describienplying that
any specific source string when we know beforehand the squrce . .1 1 MK
The definition of ;""" is based on the notion of the entropy density Jim g <{'r € A™; — logy (2 >H, "+ 25}) =0.

rate, which is a random variable. At this point, it is worthwhile tol’hus it follows from the definition otH TV that

notice the following difference between coding in an “in-probability” —_ MK

sense and coding in an “almost-sure” sense {Get}52 ; be a fixed- H," <H," +2e

length code of coding ratd? > HH‘ for a general sourcg:.. Sinces > 0 is arbitrary, we have

Then, whether or not any given output strikgfrom the source is FHY o JF MK O

faithfully coded by the codgC,}5%; remains unknown until the o=

coding of & is completed. On the other hand, i, ¢, ') o2,

be a variable-length code of almost-sure coding fate H,\'" for

the sourceu. For any given output string from the source, one is

guaranteed beforehand that it will faithfully be encoded by the codeTheorem 11:Let 1 be a general source. Then

{(on, 2102, in the Iong un. o 0<ES <THY < TS < log, | A
Next, we show the relation betwedh, " and H MX. ! ! ! :

Then, combining Theorems 7 and 10 with the known fact that
0< H\F <H,"W (cf. [6]), we have the following theorem.

Han [6] presented a source such ti#af* < H,', and this fact

Theorem 10:Let  be a general source. Then shows that there is a rigorous difference betwégft and I,*.

FNY « FMK . . . .
woo S Hu - At this point, one may also be interested in the problem of whether
Proof: Let = > 0. From the definition off M there exists a strict difference betwe@h!’” and I »'*. The next

i 1 L <H MK as theorem gives the answer.
imsup — log, — g, p-a.s. o
h nee M " ( ") Theorem 12: There exists a sourge such thatd /¥ < H Y&,
S0 We have o e Proof: The following proof, in which we construct the source
H(ﬂ U N {¢ € A= 1 log, % p satisfying !V < H X, is due to [10].
k=1 n=1 m=n m pr (&) Let {51172, be the strictly increasing sequence of positive integers
AL 1 and {p. }72, the sequence such that< p, < 1 for eachk € N.
K Tk We assume thafp: }7, and{s;};2; have the following limits:
=1 (6) Jlim LU 8)
S0 Sk
On the other hand, since lim pe =0 9)
LA S e L 1 —F MK oo "
z ; — log. <H 2e k-1
nL;Jl nDn {l €A " 082 ,U,'n(;i’) — H + Z |A| - ] (10)
oo oo oo k=1 |A| k
) ﬂ U ﬂ {r € A %logz ) S <HM™ 42+ }} whereso = 0 andt; = s, — s,—1. For example,
k=1 n=1m=n v sp = k!

we have from (6) |A|Lk
Pk

<U ﬂ {r € A=, —logz m( 3 <HY +2¢ }):1 k[ At 1]

n=1m=n satisfy the above conditions.
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Vk(n)+1(i'.7:k(n>+1 K TR

Let v be the probability distribution opd’* defined by
Pk
Al

PP N
it 21 #£ atk

1—pe+ if;tk:a'
Pk
Al
where the symbok € A is given in advance. We defing” by
the expression at the bottom of this page for eathe A", where
k(n) = max{k; sy < n} andi! = (&,---,&;). It is easily verified
that {#n};ozl
construct the general source frofp"};2 ;.

First, we prove thatd 'Y = 0. Toward it letT,, be the subset
of A" defined by

T, ={2";
Then, the probability ofT,, is

Vk(.’;?fk) =

n L AM—Sh(ny_
"’k(n)fl""] =a k() 1}.

p"(Tn) = [1 ~Pr(n) T m}
A1 = Pr(ny+1 + %
. [1 = Pr(n)+1 T ﬁ%}

satisfies the consistency restrictions. Now we can

and the Borel-Cantelli lemma (cf. [4, Theorem 1.2]) gives us

) (ﬂ U Ak> =1.
=1 k=i
This implies that foru-a.s.z and for anyn there existsk; > k(n)
such thatt € Ay, . Therefore, lettingis = si, > sp()41 > n, We
have forp-a.s.@ and for infinitely manyn; > n
L 41 > i log, —1
? p(a'ke )

1 | AJ**s

By using (8) we have

= 10g2 |A|7

pr (@)
This implies thati ;" = log, | A|. Therefore, it is concluded that
p satisfiesH 'Y < H ™.

. 1
limsup — log, p-a.s.
n

n—oo
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evaluated by
ny DPk(n)
1- T0) <Prin) — ————
H ( )—p}'( ) |A|fk(n)
Spk'(zz) +pk(n)+l-
To prove the first inequality, we use the fact that— «f <
l—a]+[1-p]if0<a<1land0d < g <1 By(9), the error

Pk(n)+1

+ i —_
Pr(n)+1 A"k

probability tends to zero as goes to infinity. From the converse
theorem for the fixed-rate coding of general sources (cf. [7]) and bV]

using (8), we have

<

. 1
lim sup
n

n—oo

", log, |T|

. 1 5
limsup — log, |A[?k(—1
n

n—oo

< — " log, |A]

lim sup

n—oo

Sk(n)—1
Sk(n)
=0
which implies thatd ;'Y = 0.
Next, we prove thafl M* = log, | A|. Toward it let

A, = {4 € A 3% Al
Ap={s e A%k #Far)

It is evident from the definition of: that {A4,};Z, is a set of

independent events. By (10), we have
S (A0 = S pll A = 1)/1A* = o
k=1 k=1

Constructive comments and suggestions by anonymous reviewers
and Associate Editor M. Feder have significantly improved the
presentation of our results.
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