
T
he degree to which you trust
your environment—including
co-workers, software tools, and
systems—has a dramatic impact
on the performance of your

entire software development team. Con-
sider communication. Better communi-
cation—higher bandwidth, if you will—
is easier when trust exists. You won’t feel
as if you’re missing anything when you
walk past an important meeting, because
you trust your co-workers to represent
you well and to inform you of any key
decisions that might affect your work.
Furthermore, when you trust your co-
workers, you feel more free to ask for
help and to offer it. And if you can’t trust
someone during a code review, what are
the chances the code review will be any
good?

I’ve become increasingly aware of
another aspect of trust: the trust of a
method. In Object-Oriented Analysis
and Design with Applications (Benjamin
Cummings, 1994), Grady Booch defines
a method as “a disciplined process for
generating a set of models that describe
various aspects of a software system
under development, using some well-
defined notation.” More generally, I
think of a method as a disciplined
approach to problem solving that will
produce one or more well-defined out-
comes.

There appear to be two philosophies
when it comes to trust and methods. One
camp soundly rejects methods as a basis
for trust. This camp believes that the only
valid approach to problem solving is to
identify specific problems systematically
in their environment and solve these
problems, one by one. In other words, if
people in this camp can’t see a specific
and direct need to generate a model or
follow a process step, they don’t. Quite
often these people reject methods com-
pletely.

The other camp takes the opposite
approach, performing every process step
by preparing all of the models (and other
outcomes) defined by their method.
Sometimes developers execute this
approach reluctantly in order to satisfy

management. Other times developers or
their managers embrace methods as a
panacea for dealing with all the problems
they face, thinking, “If I just perform
each step, then we’ll create the system
our customers want.”

So why is the issue of trust in relation
to methods important? Ultimately, all
software is built according to some
process. It may not be defined or repeat-
able, as is the theoretical process pre-
scribed by a method, but there is a
process. Indeed, all human problem solv-
ing proceeds according to some process
and is supported or hindered by some
structure. The question is not whether
you build software according to a
process—you do—but whether you trust
the process you use.

Do you trust your development
process to generate accurate schedules?
Do you trust it to generate high-quality,
easily maintainable source code? Do you
trust that your process will generate
highly usable systems?

TRUST AND METHOD
The level of trust is not a property of a

method or a process, but a relationship
you have with the method or process. An
example should help clarify what I mean.
At SmartPatents, we don’t have a method
for hiring developers, in that we don’t
rigorously generate a set of models
describing each candidate. But we do
have a process. And we trust that
process.

Interestingly, I’ve found that asking
developers the degree to which they trust
their software development process pro-
duces a wide variety of answers. I’m not
asking whether they like it, but whether
they trust it.

My own attitude toward methods is
reflected in the following two observa-
tions:

• To assume blindly that the software
processes espoused in a book will
solve all of your problems is naive
at best, and more than likely just
plain wrong. No book can tell you
how to deal exactly with the prob-
lems in your environment, and few
methods, if any, are effective unless
customized to the specific needs of
your team.

In Methods
We Trust?

Luke Hohmann, SmartPatents Inc.

October 1997 119

So
ft

w
ar

e
Re

al
iti

es

Editor: James Bach, ST Labs Inc.,
3535 128th Ave., SE, 3rd Fl., Bellevue,
WA 98006; jamesb@stlabs.com

The degree to which you
trust your environment
has a dramatic impact
on the performance of
your entire software
development team.

.

120 Computer

Software Realities

• To reject the processes espoused by
methodologists is equally wrong.
Methodologists have been able to
gain a set of experiences that cover
a wide range of situations. They
have captured these experiences, as
best they can, in their methods. At
the very least, reviewing a method
can help you think of questions you
might want to ask yourself to make
certain you aren’t forgetting any-
thing that could enhance your own
process.

I tend to side with the methodologists. I
assume that methodologists are smart
and experienced people, and that I can
usually get more value simply by trying
what they recommend rather than by
inventing everything on my own. I’m not
claiming that every method is as good as
every other method. If I’m not certain
whether (according to a particular
method) a certain process step should be
followed, I will try to follow it. You might
say I tend to trust an established method
when working in unknown territory.

Suppose you asked me to write an

embedded, real-time microprocessor
control system for an MC68000-based
hardware device. Since I’ve never
designed such a system, I’d head down
to a bookstore and see if I could find a
book that described a method for build-
ing such systems. I’d read that book,
think through the process it proposes,
and then try to create the models it pre-
scribes.

Others may decide, on the basis of
their own experience, that they will only
create the models they know they need
to create, worrying about other models
(or process steps) later. Developers of this
type tend to trust themselves. I’ll leave it
to you to assess the relative advantages
and disadvantages of each approach.

A METHOD FOR TEAM
ENVIRONMENTS

How do these ideas scale to a team
environment, in which most professional
software is created? At SmartPatents, we
have organized the development group
and marketing organization into a set of
cohesive feature teams. Each feature
team is completely responsible for one or

more related product features. Certain
horizontal layers provide a core set of
“services” to the feature teams.

Feature teams do not solve every prob-
lem associated with software develop-
ment. Indeed, they create some. Consider
communication between feature teams.
If the first feature team chooses Fusion
for documenting classes while the second
feature team chooses Booch, the teams
can’t share diagrams. Sharing diagrams
is the primary goal of the Unified
Modeling Language (UML), which
defines a common way to communicate
information about software and system
models, while at the same time letting
individual teams and organizations
choose the most appropriate method of
creating and using these models. Because
of this advantage, SmartPatents selected
UML as the primary means of docu-
menting models.

By giving feature teams as much lati-
tude as possible in defining their own
process, we create an environment that,
over time, leads to processes developers
can trust. But getting to this trustworthy
process is itself complex. If you don’t
already have a process you trust, how
will you create one? One way to do it is
to find people you trust and to ask them
what process or method they use, and
then adopt one of their methods as your
own. Another way to create a process
you trust is to take a method that was
generally designed for your kind of prob-
lem and critically examine it in the con-
text of your given situation. In this case,
you’ll want to employ the parts that
seem to make sense. If you’re not sure,
plan to try the process step, method, or
model out anyway. You might find the
following questions helpful in making
your decision:

• Does what the method propose help
you understand the problem and
visualize its solution?

• Does the method help others under-
stand your understanding of the
method and your solution?

Then, put the process you’ve chosen into
action by following the method’s steps
and preparing the models you’ve
selected. When you’re finished, you’ll

Documentation

Quality assurance

Architecture review

Developer pool

Patent strategy

Marketing Engineering

Feature team

Marketing Engineering

Feature team

This “feature team” arrangement is somewhat common among development organizations that
produce commercial software. It is less common among other kinds of development organiza-
tions. The feature teams are given nearly complete latitude in deciding and controlling their
own software process. Not shown are the specific deliverables of the feature teams or the rela-
tionship of the different feature teams and development activities to the system architecture
itself.

.

have gained personal experience in what
works and what doesn’t work in your
environment. More importantly, you’ll
have gained that much more knowledge
about how to make these decisions in the
future. Keep track of what works and
what doesn’t. It is this kind of track
record that forms the foundation of trust.

Examining a method and enacting a
new process takes the one thing we
never have enough of: time. It takes

time to examine a method critically and
make a conscious decision to do some-
thing new. And there are no guarantees
that the changes you make will actually
improve your ability to generate soft-
ware, although making conscious deci-
sions about your process should help you
trust it. Quite simply, choosing to mod-
ify your current process in the hope of
generating a better process requires a
leap of faith. Of course, if you don’t think
you have the time to make any changes
to your existing process, then you must
trust your process enough to leave it
alone.

Trust is a quirky—but very impor-
tant—factor in human relations. We need
to learn to trust our co-workers and our
processes. Rejecting a method simply
because you haven’t tried it doesn’t strike
me as very effective.

One last thing. Read through this arti-
cle and replace every occurrence of the
word “method” with “CASE tool.” Get
my point? ❖

Luke Hohmann is vice president of engi-
neering at SmartPatents Inc., a provider
of analytical software tools for intellec-
tual property management. He especially
enjoys his mission of consulting, writing,
and speaking about the sociology of soft-
ware development. His recent book,
Journey of a Software Professional: A
Sociology of Software Development
(Prentice Hall, 1996), treats aspects of
trust in development environments.

Contact him at lhohman@smartpatents.
com

CALL FOR PAPERS

THE EVOLVING ARCHITECTURE
OF THE INTERNET

March/April 1998
Guest Editor: Miroslav Benda, Boeing

miro.benda@boeing.com

This special issue looks at evolving Internet architectures of Web-based
applications, mission-critical Web sites, and hardware platforms, as well
as the architectures that link these parts together.

Topics include:
■ innovative architectures of Web-based information systems
■ architectures linking Internet and legacy systems
■ e-commerce architectures
■ architectures of secure Web sites
■ trade-off analyses of architectural alternatives
■ trends in architecture (past and present)
■ frameworks linking Internet architectures with business process

architectures

SUBMISSION DEADLINE: 17 OCTOBER 1997
For submission instructions, see http://computer.org/internet/auguide.htm

Call for Articles
Networking Security
Security strategies for the emerging broadband environment
Submission deadline: January 15, 1998
Publication date: August 1998

As the explosive growth of networking technology continues to redefine the
rules for maintaining the privacy and integrity of electronic data, there is a
growing concern over security as an endpoint issue. Larger enterprises can
typically afford technical experts to configure firewalls and other security
devices. Smaller enterprises and homes, however, often do not have the
resources to create a level of security suitable for the emerging broadband
market. This special issue will focus on the integration of networking and
endpoint security.

Guest Editors
Patrick W. Dowd John McHenry
Univ. Maryland National Security Agency
p.dowd@ieee.org jtmchen@afterlife.ncsc.mil

Contact the guest editors in advance of submission.
Electronic submissions only: PostScript, Acrobat, Word, FrameMaker.
See the full call on p. 93 of this issue.

.

