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Abstract

Off-chip memories are typically used during behavioral
synthesis to store large arrays that do not fit into on-chip
registers. An important power-optimization problem that
arises in this context is the minimization of signal transitions
on the off-chip buses connecting the ASIC and the memory.
We address the problem of system power reduction through
transition count minimization on the multiported memory’s
address buses when these arrays are accessed from memory
at execution time. We exploit regularity and spatial local-
ity in the memory accesses and determine a power-efficient
mapping of behavioral array references to physical loca-
tions as well as ports of a multiport memory. Our experi-
ments on several image processing benchmarks show signif-
icant power savings through reduced transition activity on
the memory address buses, compared to a straightforward
mapping scheme.

1. Introduction

Most applications in the Image Processing and Digital
Signal Processing domain that are synthesized into ASICs
involve large arrays stored in off-chip memories. Often,
high memory access bandwidth requirements necessitate
the use of multiport memories to increase the effective speed
of memory data access. The high memory access freqency
makes the ASIC-memory interface an attractive region for
power minimization. An important power-optimization
problem that arises in this context is the minimization of
signal transitions on the off-chip data and address buses.
Most power-optimization efforts aim at reduction of signal
transition count, due to dynamic power forming a signifi-
cant fraction of the total power consumed in CMOS designs.
Given that off-chip capacitances are three orders of mag-
nitude larger than typical on-chip capacitances [1], we can
effect significant power savings by reducing the switched
capacitance of the off-chip address bus drivers through re-
duction of transition activity on the memory address bus.
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Furthermore, reduced activity in the address bus also leads
to reduced activity in the memory address buffers and de-
coding circuitry. Studies have shown that power dissipa-
tion in the address decoder and address buffers of typical
memory chips constitute a significant portion of the power
consumed (upto 50%) in the memory chip [8]. Hence, de-
sign techniques leading to decrease in power dissipation in
this part of the memory will significantly reduce the overall
power dissipation of the application.

Power-related cost functions have been incorporated into
phases of High-level Synthesis in [2, 3, 4]. However, they
have not addressed the impact of memory accesses in their
techniques. [8] presents transformations on the initial speci-
fication into a power-optimized form for reducing the num-
ber of memory accesses. [7] presents a technique for ex-
ploiting data encoding to reduce transition activity on /O
pins at the expense of a moderate increase in on-chip tran-
sitions, by analyzing data streams on I/O pins.

In [6], a technique for minimizing address bus transitions
was presented, which exploited regularity and spatial local-
ity in the memory accesses in a behavioral description and
determined the mapping of behavioral array references to
physical locations in a single memory. In this paper, we
present a generalization of the array mapping techniques to
an architecture employing multiport memories. Analysis of
the behavioral memory access patterns at compile-time en-
sures a guaranteed reduction in address bus transition ac-
tivity; our mapping strategy can thus result in additional
power minimization after other behavioral power minimiza-
tion techniques have been applied.

2. Problem Definition

The goal of this work is to assign arrays in a behav-
ioral specification to memory locations, and ports of mul-
tiport memories, so as to minimize the transition count on
the memory address buses when these arrays are accessed.
Figure 1 shows the model we assume for a typical memory-
intensive system, synthesized into an ASIC (consisting of
datapath and control blocks) and a multiport memory mod-
ule. We have a pair of data and address buses connecting
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the ASIC to each memory port. The datapath is connected
to an m-port memory, with ports Py.. P, _1, consisting of m
data buses Dy..D,,_1 and m address buses Ag..A,,—;. The
address generator generates the m addresses for the address
buses Ag..Am—1, so that upto m data words can be accessed
in parallel, in the same cycle. The address value is assumed
to be latched before being fed to the off-chip driver.
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Figure 1. Synthesis model of a memory-intensive system

For a given number of memory accesses, it is difficult to
design a hardware implementation for minimizing data bus
transitions because the data is not known a priori. However,
the sequences of memory access patterns in the behavior are
known at the specification stage, giving us an opportunity to
minimize power dissipation arising out of transitions on the
memory address bus.

3. Mapping into a Single-Ported Memory

[6] presents a power-efficient technique for mapping of
behavioral arrays into a single-ported memory. Essentially,
the technique minimizes the number of bits transitioning
on the address bus when successive data words are ac-
cessed from memory. Locality of reference considerations
are taken in to account when choosing one of the follow-
ing storage schemes for multi-dimensional arrays: (1) row-
major (row by row) (2) column-major (column by column)
and (3) tile-based (array is divided into rectangular tiles, and
the tiles are stored in sequence). The dimensions of the tile
follow from the smallest rectangular region enclosing the
pattern formed by array accesses in the inner loop. Fig-
ure 2(c) shows an example of a tile derived from the access
pattern in Figure 2(b).

We define a maximal transition as occurring when two
logical addresses with a large difference are accessed in suc-
cession. A minimal transition occurs when this difference
is small. In this case, large means comparable to the dimen-
sion of the array - we treat all consecutive accesses to ele-
ments in the same tile as minimal transitions. For example,
if row-major storage is used for u in Figure 2(b), successive
accesses to the pair of elements (u[z][j], w[¢][+ 1]) result in
a minimal transition, whereas those to (u[¢]{j], w[{ + 1][5])
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lead to a maximal transition. For each array, we choose a
mapping scheme that minimizes the number of maximal
transitions. In essence, we observe that if column-major
mapping is used when the tile has n columns, there will be
n maximal transitions in every inner loop iteration (assum-
ing at least one element from every column is accessed).
Similarly, row-major mapping would entail n maximal tran-
sitions in an n-row tile. In comparison, tile-based map-
ping leads to a maximum of 2 maximal transitions, indepen-
dent of the tile size. We thus have a heuristic for a 2-level
nested loop, involving a two-dimensional array (Heuristic 1
in [6]) that chooses tile-based mapping when the tile has
both dimensions greater than 2. Otherwise, it selects row-
or column-major as appropriate.

4. Mapping into a Multiport Memory

The problem of mapping into a multiport memory re-
quires the solution of two sub-problems: (i) determine the
mapping style to use for each array, and (ii) assign specific
array elements accessed within behavioral loops to memory
ports, such that the total transition count on all the address
buses is minimized.

An example port assignment for the code fragment in
Figure 2(a) is shown in Figure 2(b), for a dual-port mem-
ory with ports Py and P;. In every inner loop iteration, ele-
ments u[i — 1][4] and u[¢][;] are accessed from port B and
elements u[¢][j+1] and u[i+1][;] are accessed from port P,.
Note that we wish to satisfy the maximal access throughput
possible in order to retain the advantage of the multiport
memory in the architecture. This means, for instance, that
the assignment — (Py : {u[i ~ 1][5], w[Z] (5], u[¢ + 1][#]}; Pr :
{u[][7 + 1]}) is not possible, as this assignment would re-
quire three memory read cycles (on port Fp) in the inner
loop, as opposed to only two in the previous case.

for (i=1; i < MAX-1; i++) { u =110 port P, :
for (j=1; i < MAX-1; j++) { yd T -
a = a+ u[i-1][j] + u [iljl + u ['][l] u [ilfj+1] 1
u [i+1]0] + ulilli+1); N L ool

. e I

(b) Port Assignment

(a) Code Fragment (<) Derived Tile

Figure 2. Port Assignment for Example Code Fragment

First, we describe a port assignment pattern for which
tile-based mapping incurs no more than 2 maximal transi-
tions per iteration. We then describe the special cases for
which row- and column major styles perform equally well,
or better.

Let S be the number of new array elements accessed in
each iteration of the inner loop and the memory ports be
Py.. Py, 1. For example, in Figure 2(b), S = 4and m = 2.



The minimum number of cycles required to access all the
elements, T' = [S/m]. We assume that we are constrained
to operate at the highest possible performance level, i.e., the
S array elements should be accessed in no more than T cy-
cles. This requires the assignment of upto 7" elements to
each port.

Suppose the access pattern formed from the S new el-
ements accessed in the inner loop moves horizontally for
different iterations of the inner loop and the enclosing tile
has dimensions M x N. We call such a motion row-first. If
the pattern moves vertically in successive inner loop itera-
tions, we call the motion column-first. We use a procedure
PortAssignTILE to determine the port assignment of tile el-
ements. This procedure assigns the ¢-th group of T" elements
to port P;.

Figure 3(a) shows a tile of size 5 x 4, with the ele-
ments {eg...e1s} marked, and the port assignments com-
puted by procedure PortAssignTILE, withm = 3. Elements
{€o...es} are assigned to port Po; {es ... €1} are assigned
to port P;; and {e)3 ... e} are assigned to port P,.
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Figure 3. (a)Port Assignment for Tile-based Mapping
(b) Port Assignment for 2-Column Tile

We observe, using the same reasoning as in Section 3,
that there can be no more than 2 maximal transitions in ev-
ery loop iteration. Suppose the tile boundary ([6}) is hori-
zontal and separates rows 3 and 4 in Figure 3(a) (i.e., for a
particular iteration, rows 1,2, and 3 are in the same vicin-
ity in memory, and so are rows 4 and 5; but rows 3 and
4 are located far apart) . Since port P, has to access ele-
ments from two vertically adjacent (i.e., distant) tiles, it in-
curs one maximal transition. This occurs when element e;jg
is accessed after eg. The rest of the accesses (including all
accesses from ports Fp and P,) cause minimal transitions.
It is easy to see that the port assignment strategy described
above leads to 2 maximal transitions, no matter where the
horizontal boundary lies. !

We use the same reasoning as in Section 3 to conclude
that Row- and Column-major mapping can perform almost
equally well when the tile has one of its dimensions < 2.

I'The other maximal transition in the current example occurs when Py
accesses the corresponding e¢ in the next iteration.
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Figure 3(b) shows an example array access pattern witha 2-
column tile, with the port assignments as indicated, for m =
3,5 = 17, which gives T' = [7/3] = 3. This assignment
produces one maximal transition for port P; in a column-
major mapping. However, the following observations are
noteworthy:

Observation I -If the tile moves row-first then all m ports
incur a maximal transition in every iteration when column-
major mapping used. For instance, port Py (Figure 3(b)) in-
curs a maximal transition when accessing e; in one iteration,
followed by eg in the next iteration. Therefore, column-
major mapping is preferred for an access pattern with two
columns, only if the pattern moves column-first (otherwise,
tile-based mapping performs better). A similar argument re-
quires us to use row-major mapping only if the access pat-
tern moves row-first.

Observation 2 — Note that in Figure 3(b), a better port
assignment that causes no maximal transitions in the in-
ner loop, is — Py = {eq,e1,e2}, P = {e3,es} and P, =
{es, es}, assuming column-major mapping is used, and the
access pattern moves column-first. This is because all three
ports access consecutive elements, and hence, incur only
minimal transitions.

Procedure PortAssignCOLUMN below assigns elements
of the extracted tile to ports Py to Py, _; in a column-major
mapping, taking the above observations into account. 'We
begin by assigning blocks of T' contiguous elements in each
column. This uses up D; and D, ports in columns 1 and
2 respectively in procedure PortAssignCOLUMN. If more
than T elements now remain to be assigned (Cy + C, > T,
i.e., all remaining C; + C, elements cannot be accomo-
dated into the same port), we make the assignment that does
not require the same port to access elements from different
columns. Procedure PortAssignROW is defined symmetri-
cally to procedure PortAssignCOLUMN.,

procedure PortAssignCOLUMN

Let S and S5 be the no. of elements in Columns 1 and 2
LetT = [(S; + S2)/m]

——T is the max #elements assigned to each port

LetCy =S modT andCy = S, mod T

Let D; = {_Sl/TJ and D, = l_Sz/TJ

Assign first Dy x T elements in col 1 to the first D, ports (i)
Assign first Dy x T elements in col 2 to the next D, ports (ii)
KCi+Co>T, (iii)
—— 2ports, Py,_3 and P,,,_; are free

Assign the last C; elements in Column 1 to port Py,._;
Assign the last C elements in Column 2 to port Py,
—— C1 + C, elements fit into one port Pp,—;

Assign the last C elements in Column 1 and

the last C; elements in Column 2 to port Py,

else

Condition (iii) handles the problem raised in Observation
2. For the example of Figure 3(b), we have: S} = 5;5; =
;T = [(5+2)/3] =3,ie,Cy =5mod3 = 2;C, =



2mod 3 = 2; Dy = [5/3] = 1;D, = |2/3] = 0. There-
fore, the first Dy x T', i.e., 1 x 3 = 3 elements (eg, 1, and e3)
are assigned to port Py (statement (i) of procedure PortAs-
signCOLUMN). Since D, = 0, no assignment takes place
in statement (ii). Now, C; + C, =2+2 =4 > 3,s0 we
assign the last C';(= 2) elements of column 1 to port P; and
the last Cy(= 2) elements of column 2 to port P;.

Row- or column-major mapping is also preferable if suf-
ficient number of ports are available to access the elements
in parallel. For the access pattern in Figure 2, if m = 4,
then we could assign one element to each port and select
row-major mapping. This ensures that there is no maximal
transition during an inner loop iteration. Further, since the
pattern moves row-first, each port incurs a minimal transi-
tion, since it always accesses an element located near the
previous one, in the same row. Similarly, in Figure 3(b), if
m = 5, we could have the assignment — Py = {ep}, P} =
{e1,es}, P, = {ez,e6},Ps = {e3}, P+ = {es} and se-
lect row-major mapping (if the access pattern moved row-
first), which would lead to all minimal transitions (note that
{e1, es} are in consecutive locations, and so are {ez, eg}).

The following computation enables us to check if we
have sufficient number of ports available to match the sit-
uation described in the previous paragraph. If there is to
be no maximal transition in an inner loop iteration, we need
that each port be assigned elements within the same row (as-
suming we have selected row-major mapping). Therefore,
if S; is the number of elements accessed from row i, we
need [S; /T’ ports for this tile row. Thus, the total number
of ports required = ) .[S;/T7]. That is, a zero maximal
transition assignment is possible if 3, [S; /T < m. If the
performance is to be better than or equal to tile-based map-
ping, we should have no more than 1 maximal transition,
ie., we can allow: }_,[S;/T] < m + 1. 2 The function
SufficientPortsAvailable below returns ROW (COLUMN)
if sufficient number of ports are available for ensuring < 2
maximal transitions per iteration for a row-major (column-
major) mapping. If this is not possible, it returns TILE.

function SufficientPortsAvailable
—— Determining the Best Mapping Scheme
Let the tile dimensions be M rows x N columns
Let S; ... Sa be the no. of elements accessed from
rows 1... M of tile
LetT = (3, Si)/m
it M [Si/T] < m+ 1 then
return ROW
Let U, ... Uy be the no. of elements accessed from
columns 1... N oftile
if SN [U:/T] < m+ 1 then
return COLUMN
else

2As explained earlier, a second maximal transition is automatically
incurred.
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return TILE

On applying function SufficientPortsAvailable to the tile
of dimensions 5 x 4 shown in Figure 3(a), withm = 5, we
observe that T = [17/5] = 4;3)_,[Si/4] =5< 5+ 1.
Hence, row-major is selected as the mapping strategy. This
is clearly advantageous, since each port would now be as-
signed elements from the same row, leading to all minimal
transitions in any single inner loop iteration of the behav-
ioral loop.

We now extend Heuristic 1 (Section 3) to select a map-
ping style and make the port assignments for mapping a sin-
gle array into a single physical memory module with mul-
tiple ports. Heuristic 2 below incorporates the conditions
discussed above, combines them with the original condi-
tions for tile-based mapping (in Heuristic 1), and invokes
the port assignment functions after selecting the mapping
scheme.

Heuristic 2

—— Selection of Mapping Strategy and Port Assignment
Let the inner loop index be ¢ and outer loop index be 5
Extract the basic repeating shape from the access patterns
Determine the enclosing rectangle R.

Let i-dimension of R be L; and j-dimension be L ;

Let A =TRUE if increment of j = L, else FALSE

if (not A) and ((SufficientPortsAvailable = ROW) or

(L; £2) then
Select Row-major mapping
PortAssignROW
else if (not A) and ((SufficientPortsAvailable = COLUMN) or
(Li € 2)) then
Select Column-major mapping
PortAssignCOLUMN
else

Select Tile-based mapping
PortAssignTILE

Condition (L; < 2) in Heuristic 2 ensures that Row-
major mapping is selected if the access pattern has two rows,
and moves row-first, and the condition (L; < 2) ensures that
column-major mapping is selected only if the access pattern
has two columns and moves column-first. The selection rule
assumes that only one array is accessed. The function Suffi-
cientPortsAvailable will need slight modification to handie
the case of multiple arrays. The summation Ef‘i L Si will
be over elements of all arrays accessed in the loop iteration,
instead of over one array.

We have thus formulated and solved the problems of
selecting a mapping scheme for arrays into a multi-ported
memory, and finding an efficient assignment strategy for
mapping the array elements accessed in the inner loop of a
behavioral specification into ports of the memory, with the
objective of minimizing total number of transitions on all
the address buses.



5. Experiments and Results

Experiments reported in [6] showed that Heuristic 1,
which selects an appropriate array mapping scheme, results
in a transition count reduction of 27-63% over the sim-
ple row-major mapping used by most compilers and syn-
thesis tools. The experiments we report here confirm that
the memory mapping and port assignment performed by
Heuristic 2 results in significant power reduction through
reduced cumulative transition count on the multiport mem-
ory buses. The transition count measurements were per-
formed on several benchmarks from the Image Processing
domain [5]. All the examples involve manipulation of two-
dimensional arrays. Our experiments were performed using
the value of 1000 x 1000 as the dimensions for the arrays.
We present a comparison of the transition counts observed
during the execution of the examples, using two configura-
tions — (i) a single physical memory with 2 ports and (ii} a
single physical memory with 3 ports.

Table 1 shows the experimental results for dual-port and
3-port memories, with read and write accesses possible on
both ports. Column 1 shows the benchmark examples on
which we performed our experiments. For a dual-portmem-
ory: Column 2 shows the off-chip transition counts incurred
when a simple port assignment strategy that does not con-
sider access patterns is used, and Column 3 shows the cor-
responding counts for our port mapping strategy. Column
4 shows the percentage reduction in transition count on the
memory address buses. Columns 5, 6, and 7 show the cor-
responding results for a 3-port memory. The reductions

2-Port Memory 3-Port Memory

Example | Smpl Our | %rd | Smpl Our | %rd
Compress | 13394 | 3992 | 70.2 | 5988 3992 | 333
GSR 35641 | 35575 | 18.8 | 32689 | 18310 | 44.0
Laplace | 30356 | 28330 | 6.7 | 26332 | 22790 | 13.5

Linear 59.25 | 13.99 | 76.4 | 12.00 | 12.00 0
Lowpass | 23986 | 16738 | 30.2 | 16594 | 7964 | 52.0
SOR 44121 | 9900 | 77.6 | 49657 | 14331 | 71.1
Wavelet 5.71 571 0 392 3.78 34

Table 1. Transition Count Comparison for Port Assign-
ment Strategies (x 1000)

observed in Columns 4 and 7 demonstrate show that our
memory mapping and port assignment strategies result in
significant power savings (transition count reduction of upto
77.6%) over a simple random port assignment. Moreover,
the assignment has no overhead in terms of area or perfor-
mance of the system. Note that we always ensure a port
assignment that satisfies the maximum throughput in the
memory accesses, so there is no delay overhead. The area
(and on-chip transition count) overhead due to the tile-based
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mapping strategy were shown to be negligible in [6]° . In
both experiments, there are cases where there is no reduc-
tion in transition count (0% decrease was observed in one
example each in Columns 4 and 7). These are the cases
where the random assignment strategy performed the same
port assignment as Heuristic 2.

6. Conclusions

We described a technique for mapping of behavioral ar-
rays to memory location, and port assignment of mem-
ory accesses in multiport memories, targetting low power
through transition count reduction on the memory address
buses. Our experiments showed that the power dissipation
during memory accesses, as measured through off-chip sig-
nal transition count on the memory address bus could re-
duce by upto 77% over a straightforward port assignment
scheme. The concept of maximal and minimal transitions
used in Section 3 has performance implications in DRAMs,
apart from power. A minimal transition roughly corre-
sponds to accesses in the same memory page (faster access),
while a maximal transition indicates accesses from different
pages (slower access). Thus, a reduction in maximal transi-
tion count also leads to reduced access time.

The mapping strategy we have described works only for
array references in loops of the form a[i & k], where 7 is
the index and & is a constant. The formulation and solution
of the problem to handle multi-dimensional arrays remains
exactly the same.
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