Fast Timing Analysis for Hardware-Software Co-Synthesis

W.Ye, R.Emst, Th.Benner, J.Henkel
Technische Universitit Braunschweig

Institut fiir Datenverarbeitungsanlagen, Hans-Sommer-Str. 66
38106 Braunschweig, Germany, wei@ida.ing.tu-bs.de

Abstract

Al the current time, an iterative approach seems to be
best suited for hardware/software partitioning in hard-
ware/software co-synthesis with time constraints. To
check the timing constraints the iteration loop contains a
timing analysis. Only computation time intensive RT-level
simulation provides sufficient timing precision for com-
plex processor architectures. We present a hard-
ware/software timing analysis, which comes close 10 the
precision of an RT-level simulation in a fraction of the
computation time and, thus. removes a bottleneck from
iterative hardware/software co-synthesis. We present
some results for our co-synthesis system COSYMA.

Keywords: Run Time Analysis, Embedded Systems,
Hardware-Software Co-Design, Hardware-Software Co-
Synthesis.

1 Introduction

Recently, bardware-software co-design has gained
some attention as a promising way to design process
improvement and to a reduced system design time. Hard-
ware-software co-synthesis tries to automize the design
process by combining synthesis and compiler technology
with techniques to partition hard- or software functions.
While some approaches are targeted to a very quick sys-
tem implementation [ChRa92, WHILG92, BuVe92], in
particular for prototyping, there are also co-synthesis
approaches [GuMi92, ErHe92, WWD92, BaR092] aiming
at cost optimization under timing constraints. We will
restrict the term hardware-software co-synthesis to such
optimizing systems because they follow the same optimi-
zation objectives as hardware synthesis.

In the next chapter, we will explain why iterative par-
titioning seems to be best suited to hardware-software co-
synthesis. We will expalin why speeding up the timing
analysis of the target system is key to practical iterative
partitioning under timing constraints. Chapter 3 scruti-
nizes the problems of fast timing analysis, and chapters 4
and 5 introduce our hybrid timing analysis approach.
Chapter 6 and 7 give results and conclusions.

1063-6404/93 $03.00 © 1993 IEEE

452

2 Co-Synthesis with iterative hardware-soft-
ware partitioning

Given a target hardware system consisting of proces-
sors and application specific hardwired functions, a par-
ticular problem of co-synthesis is hardware-software
partitioning. The partitioning must anticipate the com-
piler and synthesis results to be able to partition under
cost optimization and time constraints.

Systematic and precise estimation of high-level syn-
thesis results is an unsolved problem, especially with
transformations such as tree height reduction and perco-
lation based synthesis [P0o90] altering the data flow. The
synthesis tool might not even be fixed but there could be
different synthesis tools used for different parts of a
system. Even a precise estimation of software timing is
hard in the context of optimizing compilers and complex
RISC architectures, as we will show later.

Furthermore, hardware-software communication over-
head must be considered. Our experiments with coproces-
sor generation have shown that it is reasonable to parti-
tion with fine granularity, at the basic block or statement
level (simple examples from manual co-design: floating
point coprocessors, vector coprocessors). In this case,
communication overhead can be significant.

So, at the current time, there is little hope for suffi-
ciently precise estimations, and iteration over the soft-
ware implementation and synthesis - at least the high-
level transformations and scheduling - seems to be the
only choice for cost optimization in cosynthesis, in par-
ticular if hard timing constraints are involved.

Fig. 1 outlines our system COSYMA [ErHe92] for the
co-synthesis of small embedded architectures, such as
microcontrollers consisting of a processor and application
specific hardware. The embedded system is described in
CX, a superset of C with parallel processes and timing
constraints. The description is translated to an extended
syntax graph (ES graph). A simulator is provided for
verification and system profiling. Those parts of the
system going to software are translated to C and are ex-
tended by statements for communication with hardware

components before they are compiled to object code. At
the moment, we only use a SPARC RISC processor core
[Cy89]. Those parts going to hardware are translated to
HardwareC, the language of the synthesis system
OLYMPUS from Stanford [MiKuMa90].

Hardware-software partitioning is executed in a nested
loop. In an inner loop, partitioning is executed using
simulated annealing based on cost and timing estimation.
The partitioning starts with an all-software solution
moving parts of the system to hardware functions until all
time constraints are satisfied.

The estimations are corrected with an outer loop
including the allocation and scheduling steps of high-
level synthesis and a run time analysis of the resulting
hardware-software system. The run time analysis is pro-
vided with the allocation and scheduling data (and clock
cycle) of the hardware as well as with the object code.

CX
system
description

Com.

ES graph->HardwareC

HardwareC
description

* Partitioning
object Loop
code

processor simulator

Fig. 1: COSYMA system

We developed our own processor simulator for run
time analysis and target system verification, which accu-
rately models program execution on the Cypress SPARC
processor [Cy89] (and some others) at the register-trans-
fer (RT) level (modelling all internal operations and
states) with a single clock cycle as minimum time unit. A
second simulator, Mercury, is available for simulation of
the synthesized hardware. For realistic examples
(ErHe92], run time analysis with simulation takes in the
order of minutes to several hours for processor simulation
(see results) and several days for Mercury hardware

453

simulation, both on a dedicated SPARC 10/41 with 64
MBytes of main memory. This is unacceptable for itera-
tive partitioning. As a comparison, high level synthesis
scheduling&allocation and simulated annealing in the
inner loop need typically less than an hour.

So, the run time analysis dominates the computation
time of the partitioning system. This is not a peculiarity of
COSYMA, but is considered generic for iterative parti-
tioning with timing simulation.

The COSYMA system is now operable for coprocessor
synthesis in a preliminary version.

3 The run time analysis problem

As seen, iterative co-synthesis requires much faster
timing analysis. At the level of granularity at which we
are partitioning (function, basic block, statement), an
accurate modelling of processor instruction execution and
hardware behavior is necessary to precisely account for
the hardware-software communication overhead. This
overhead is significant, even for simple communication
mechanisms [ErHeBe93]. For synchronous communica-
tion RT level architecture modelling and simulation are
sufficient but they are also necessary:

- Instruction execution in RISC processors is a complex
interplay of several functional units. In particular
pipelining leads to program dependent instruction
execution times through pipeline interlocks. Fig. 2
shows the throughput of the last pipeline stage of a
SPARC processor with 5 pipeline stages for a diesel
engine control process compiled with the GNU C-
compiler. The throughput is measured at the last pipe-
line stage (the write-back stage) and is averaged over
an interval of 5 clock cycles ("filter width"). The
throughput shows wide variations and, even worse,
coprocessor communication would require additional
load and store instructions which lead to further pipe-
line interlocks. The SPARC architecture is still rather
simple compared to newer superscalar architectures
with scoreboarding, such as the new Motorola 88100
[DiA192].

- Another problem of timing analysis are data depend-
ent instruction execution times of functions, basic
blocks and statements, on the level of assembly in-
structions and on higher levels. Data dependent in-
struction execution times are a problem of the smaller
microprogrammed processors but also of RISC proc-
essors, when instructions are not implemented in a
particular processor and are translated to function
calls with data dependent execution times, such as in-
teger division in our SPARC processor (20 to 200
clock cycles).

To summarize, the timing analysis must consider the
processor architecture at the RT-level and data depend-
encies.

So, as a primary goal, we would like to reach the ac-
curacy of an RT-level simulation for the software and
hardware parts, but in a much shorter time. Only as a
secondary goal, we would welcome any progress towards
worst case timing verification,

During partitioning the overall sysiem function re-
mains fixed, only the distribution of software and hard-
ware functions changes. This could be used for preproc-
essing.

We will now split the problem in two parts, software
run time analysis and hardware-software run time analy-
sis. First, we will show that known techniques are not
appropriate to even solve the software analysis problem
alone and present a hybrid approach to drastically speed
up software run time analysis. Then, we will show that
this hybrid approach can also solve the hardware-software
analysis problem in the form of a very precise estimation.

Throughput

10+
09
0.8
0.7 -

0.6
0.5
04

0.3
0.2
0.1

0.0

Ok 10k

In this paper, we will focus on timing requirements for
process run times. With simulation, the these timing
conditions are checked for each input stimulus pattern at
the end of the corresponding process execution. Usually,
one cannot identify a single "worst case" input stimulus
pattern because, when a time critical part is moved to
hardware, the worst case might change. Furthermore, we
assume that if the system uses caches (infrequent in small
embedded real-time systems), cache effects are determi-
nistic and covered by simulation.

454

4 Software timing analysis

There are many software timing estimation and analy-
sis techniques in use today. Program Profiling
[GrKeKu83, Bal.a92] measures or samples the execution
frequency of statements and the computation time spent
in these statements, but only accumulated for program
execution. Program tracing [La93] keeps track of the
sequence of all executed statements or even their data
references. Both require a simulator or the target architec-
ture to be available for program execution. Because the
target architecture is not available during iteration, (RT-
level) simulation would remain in the loop.

Formal approaches can be used to cut software analy-
sis times. Some of them use FSM modelling {CoR083] or
Petri-Nets [LeSt87]. Approaches to analyzing parallel
tasks are usually limited to the level of tasks or program
segments [LeSt87, CoRo83] based on timing estimations
for tasks or segments and communication overhead. More
precise approaches to single process analysis work on the
level of individual program statements [PaSh91] or the
assembly language [PuKo89, Mok89]. In [PaSh91], high
level language statements are executed on the target
processor and the derived timing is then used to estimate
execution times. These approaches do not consider inter-
instruction dependencies such as pipelining or data de-
pendencies.

There is little hope that there could be a precise as-
sembly or programming level timing estimation suitable
to fine grain partitioning for pipelined and superscalar
RSIC processors.

5 The hybrid timing analysis approach

The problem of simulation times as compared to for-
mal analysis is repeated execution of the same statements
in loops and function calls. To overcome the repeated
execution of statements, we developed an approach,
where a program is only simulated once and formal
analysis is used in the sequel. We, therefore, call it a hy-
brid timing analysis (HTA) approach.

The first step is the identification and labelling of cor-
responding fork and join points in the program flow of the
system input description in CX using standard techniques.
If we assume a structured input description with nested
fork and join points, which we force the programmer to
follow, each fork point has exactly one join point while
join points may have several corresponding fork points
(We removed the go to instruction from our CX -
compiler. Break operations need a particular treatment
which is not explained here). The fork and join points
mark the basic blocks of the input description. Accessing
the compiler's debug information, the labels are
transferred to the assembler level. The linker provides the

label addresses for the object code, which are stored for
the following simulation.

Now, RT-level simulation is executed controlled by a
profiler/tracing function which exactly protocols the
frequency of execution of a block A of the object code,
fA, (a basic block in the input description can consist of many
basic blocks in the object code) and the overall time spent in
each basic block, t5. What is new is the separate protocol
of the time spent in executing two adjacent blocks A and
B with pipeline overlap. More precisely, top is the time
interval where instructions of A are still in the pipeline
while B already started to execute. The time topg and the
frequency of this transition fop are stored in a table.
Simulation is data true, such that data dependent execu-
tion times and even data dependent block overlap are
modelled correctly.

This system tracing and profiling based on simulation
is done once as a preprocessing step before iteration on
the initial all-software solution. No hardware simulation
is necessary for preprocessing. Tracing and profiling is
recorded for each process input stimulus pattern indi-
vidually.

For the further steps, a control flow graph is con-
structed with the assembly level basic blocks as nodes -
weighted with the profile and timing information - and
with edges, which are weighted with the basic block
overlap timing. Fig. 3 shows an example. The graph
weights contain the aggregate tracing data, such that the
total process run time (for the given input pattern) is sum
of all times in the graph. Other than in the usual longest
path analysis, this sum takes all data dependencies of the
simulation into account.

During iterative partitioning in COSYMA, source level
functions, basic blocks or statements are moved to hard-
ware. The new process run time tg is simply the sum of
all execution times:

s = tSW + tHW *+ [COM - tHW/SW:

tyw is the total run time of the synthesized hardware
for the given stimulus. Again, we want to abstract from
the individual hardware function execution, which can be
data dependent and are only interested in the total run
time of hardware computation steps. This total time can
be derived from the hardware scheduling and the profil-
ing information. The synthesis scheduling defines which
operations are scheduled in each control step which is
executed in one clock cycle. Because all operations in a
control step c are executed in parallel, the total time spent
in ¢ is the maximum number of iterations Itop of any
operation scheduled in c. The iterations for the corre-
sponding basic block in the source code are given in the
control flow graph. The communication profile is fixed

455

during partitioning. Then, the overall time spent in hard-
ware is just the sum:

tgw= 2 Max (Itgp)
C

For operator pipelining, the iterations must be divided
by the number of stages, for mutual exclusive operations,
the iterations must be added (not in OLYMPUS) OLYM-
PUS uses relative scheduling with anchors. Using anchors,
independent loops can possibly be scheduled in parallel
with no synchronization except at the end. When such
loops are data dependent, the HTA approach is not appli-
cable. We did not encounter such presumably rare cases.

Basic Block

iteration/tot. cycles

tot. delay of pipeline

PR B R A IR)

10

@D
@

~35/15000

40/400

tow is estimated from the control flow graph. When a
source level basic block or function b has been moved to
hardware, the corresponding join and fork points are
missing on the assembly language level (debug informa-
tion). Then the node is marked in the graph and the time
tp is subtracted from the previous time tgy'. The timing
of the data independent load/store instructions for com-
munication tcop is simulated and then added to the
graph (fig. 3). So,

tsw = tSW - t *+ {COM

The overlap timing of b is still counted, which is a
worst case assumption because tcop also contains a
pipeline load phase. When a basic block b has changed on
the assembly code level, because either single statements
have been moved to hardware or the compiler optimiza-

tion has chagged, it is locally resimulated, and the execu-
tion time t, is multiplied by the number of block itera-
tions It,. Data dependencies are not correctly modelled in
local simulation, but the possible error due to data de-
pendencies in a single basic block is usually very small,
except for data dependent execution times. We can also
bound the error by a formal worst case analysis of the
block execution giving time thC.

tp=1Itp * " ; Max. Emr. = Ity * (i, WC - p)

source code level timing analysis is not sufficiently accu-
rate.

Tab. 2 shows results for partitioned circuits. Currently,
COSYMA can only partition the simpler of the examples
automatically. The hardware timing analysis approach in
HTA is exact. Therefore, we only compared the deviation
in software and communication timing. In all cases, the
deviation of HTA-estimation and simulation is less than
1% with analysis times of less than 1s per input stimulus

bench- simulation HTA (devt.=0) || worst case analysis || source code analysis
mark simulated cycles | simulation time simulation time deviation deviation
key 170545286 2688.4s 2.0s 961.8
smooth 1781712 41.2s 0.3s 45.9 32.7%
trick 636450099 16007.0s 1.1s 782.3
diesel 22403 1.4s 0.1s 673.1 1.6%
3d 1377 0.2s <0.1s 100.1 121.0%

Tab. 1: Precision and ion time of analysis methods, (it ing)

tgwysw is the overall time where hardware and soft-
ware functions execute concurrently. In COSYMA, we
currently use a simple mechanism with mutual exclusion,
such that tpryy/sw = 0.

6 Results

First, we want to compare our results to formal analy-
sis without partitioning. Tab.1 shows the execution times
of benchmarks from several sources: HDTV studio
equipment (key [Ri92], trick), a diesel engine control
[MoYo087] (diesel), a and DSP-filters (3d, smooth). For
each benchmark, we give three data. The first column
shows the results of the RT-level simulation, the target
processor clock cycles and the CPU time for simulation
on a SPARC 10/41 and a single input pattern. The second
column gives the CPU time for HTA after profiling and
tracing. The results must be identical, because it uses the
exact timing and profiling from the control flow graph.
Then, a formal worst case analysis is executed without
regarding data dependencies between basic blocks. The
results are far off the real behavior, as checked by in-
spection in some examples. Obviously, worst case analy-
sis is not usable for our purposes. To improve the preci-
sion of formal worst case analysis, the user is often asked
to provide loop bounds manually [PaSh91,PuKo89]. The
4th column shows a source code timing analysis, only for
the smaller examples, where the execution time of com-
piled high level statements was measured [PaSh91], and
then these times where mafitiplied with the number of it-
erations taken from profiling. The large deviations are
due to data dependent statement execution times and
compiler optimizations. This supports our claim that

pattern.

7 Conclusion

We presented an approach to fast and precise timing
analysis in iterative hardware-software co-synthesis. It is
a hybrid approach combining RT-level simulation and
formal analysis. An initial simulation provides profiling
data to account for data dependencies. The analysis is
applicable even for complex processor architectures. The
results show, that it reaches the timing precision of an
RT-level simulation at a fraction of the computation time.

partitioned Tsw +Tcom
simulated analysed
bench- simulated | ¥™ || analysed | 202
mark lation lysis | devt.
cycles . cycles T
time time
diesel 14230 | 1.1s 15121 | <0.1s | 0.6%
smooth 1325409 40.28 1436779 0.9s | 0.8% |
3d 1377 | 0.2s 1429 | <0.1s | 0.5% |
Acknowledgement

This work has, in part, been supported by the Deutsche
Forschungsgemeinschaft. Clemens Hardewig provided
the fig. 2.

References

[GrKeKu83] S.L. Graham, P.B. Kessler, M.K. McKusick. An
execution profiler for modular programs. Software-Practice
and Experience, Vol.13, pp.671-685.

[BaLa92] Th. Ball, J.R. Larus. Optimally Profiling and Tracing
Programs. ACM Sigplan Symp. Principles of Programming
Lang., Albuquerque 92, pp. 59-70.

[La93] J. R. Larus. Efficient Program Tracing. IEEE Computer,
May 93, pp. 52-61.

[Mok89] A. Mok et al. Evaluating Tight Execution Time
Bounds of Programs by Annotations. Proc. IEEE WS Real-
Time Operating Systems and Software, May 89, pp.74-80.

[ErHeBe93] R. Ernst, J. Henkel, Th. Benner. Hardware-
Software Co-Synthesis for Microcontrollers. Accepted for
IEEE Design&Test.

[BaRo92] E. Barros, W.Rosenstiel. A clustering approach to
support hardware/software partitioning. Handouts from IFIP
Workshop on Hardware-Software Codesign, Grassau,
Germany, May 1992.

[BuVe92] K. Buchenrieder, C. Veith. CODES. A Practical
Concurrent Design Environment. IEEE WS on Hardware-
Software Co-Design, Estes Park, Colorado, Oct. 92.

[ChRa92] D.C.Chen, J.M.Rabaey. A Reconfigurable Multiproc-
essor IC for Rapid Prototyping of Algorithmic-Specific
High-Speed DSP Data Paths, JSSC, Dec. 92, pp. 1895-1904.

[CoRo83] J. E. Coolahan, N. Roussopoulos. Timing Require-
ments for Time Driven Systems Using Augmented Petri
Nets. IEEE Trans. on Softw. Eng.. Sep. 83, s. 603-616.

[Cy89] Cypress Semiconductor, Seminar Series 1989. The
Cypress Semiconductor RISC 7C600.

[DiA192] K. Diefendorff, M. Allen. Organization of the
Motorola 88110 Superscalar RISC Microprocessor. IEEE
Micro, April 1992.

(ErHe92] R.Emst, J.Henkel. Hardware-Software Codesign of
Embedded Controllers Based on Hardware Extraction. IEEE
WS on Hardware-Software Co-Design, Estes Park, Colo-
rado, Oct. 92.

{GuMi92] R.K.Gupta, G.D. Micheli. System-level Synthesis
using Re-programmable Components. EDAC'92, Brussels,
Feb. 92, pp. 2-7.

457

[LeSt87] N. G. Leveson, J. L. Stolzy, Safety Analysis Using
Petri Nets. IEEE Trans. on Softw. Eng, May 87, pp. 386-
397.

[MiKuMa90] G.D. Micheli, D.C. Ku, F. Mailhot et al.. The
OLYMPUS Synthesis System for Digital Design, Design &
Test Magazine, Oct. 90, pp. 37-53.

[MoYo87] N.Mort, S.S.Young. Identification and Digital
Control of a Turgocharged Marine Diesel Engine, IFAC 87,
10th World Congress on Automatic Control, vol. 3, pp. 250-
253.

[PaSh91] C. Y. Park, A. C. Shaw. Experiments with a Program
Timing Tool Based on Source Level Timing Schema IEEE
Trans. on Comp. May 91, pp. 48-57.

[Po90] R. Potasman et al., Percolation Based Synthesis, 27th
DAC, 90, pp. 444-449.

[PuKo89] P. Puschner, Ch. Koza. Calculating the Maximum
Execution Time of Real-Time Programs. Real-Time Sys-
tems, Sep. 89, pp. 159-176.

[Ri92] Ch. Ricken. Optimierung der automatischen Ein-
pegelung eines HDTV-Chromakey-Mischers. Master Thesis,
Technische Universitat Braunschweig, 92.

[WWD92] N.Woo, W.Wolf, A.Dunlop. Compilation of a Single
Specification into Hardware and Software. IEEE WS on
Hardware-Software Co-Design, Estes Park, Colorado, Oct.
92.

[WHLG92]
M.Glesner.
Mechatronic Systems.
92, pp.194-199.

P.Windirsch, H.-J. Herpel, A.Laudenbach,
Application-Specific Microelectronics for
EURODAC 92, Hamburg, Sep.

