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The main ideas:

1. Need: Why this research was needed
designers need fast, dynamic, fine-detail, source-level estimation techniques;
current techniques do not satisfy these requirements;

2. Theory: How my technique works
I assign a (time-, energy-) cost to each AST node in a C program;

3. Results: The technique is accurate and fast
an ANSI-C compliant tool flow implementation is available;
mean modulo error within 8%; 10,000x faster than ISS;

4. Uses and developments 
optimization: an automated transformation exploration flow is available;
extension for VWR architectures is ready, for VLIW coming;  
prospective extension to C++ language possible;



1. The need
● 1.1 Requirements: 

designers need fast, dynamic, fine-detail, 
source-level techniques to estimate 
the energy consumed by their software;

● 1.2 Focus:
I focus on the the core of single-issue CPUs
(no memory hierarchy, no VLIW, ...)

● 1.3 State of the Art:
current techniques do not satisfy 
the above requirements;
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1.1. Requirements

1. fast

2. dynamic

3. source-level

4. fine-detail

● the size and complexity of modern embedded 
applications is increasing quickly;

● simulating non-toy apps at the circuit level
or gate level is unaffordable;

● instruction-set simulation is also unaffordable
for apps of sufficient complexity
(e.g. video decoders);

● whichever technique is cycle-accurate,
or close to cycle accuracy
is doomed to obsolescence very soon;

● estimation techniques with a high performance are 
needed, even at the expenses of inferior accuracy;



1.1. Requirements

1. fast

2. dynamic

3. source-level

4. fine-detail

● modern applications are becoming 
more and more dynamic in nature;

● the behavior of multimedia en-/de-coders depends 
more and more on the contents of the streams they 
process;

● the variability in workload is high and increasing;
● the gap between typical and worst case is very large;
● static techniques are worst-case techniques, 

and lead to expensive, oversized systems 
which are underutilized most of the time;

uncompressed,
constant resolution

I,P,B 
(MPEG-2)

object-based encoding
(MPEG-4)



1.1. Requirements

1. fast

2. dynamic

3. source-level

4. fine-detail

● many energy estimation flows operate at the assembly 
level, but designers do not code in assembly any more;

● designers use high-level languages instead,
estimation flows should provide information 
at the same abstraction level;

● compilation is a (more and more) complex process;
lot of skill and experience required to relate 
instruction-level estimates to the source-level causes; 

● source-level optimizing transformations 
have been showed to lead to the highest gains;
only source-level analysis can guide them;



1.1. Requirements

1. fast

2. dynamic

3. source-level

4. fine-detail

● most of the time and energy are spent in small 
computational kernels;

● “small” is much smaller than a program and a 
function, potentially smaller than inner loops;

● many estimation techniques 
(even source-level ones)
cannot “look inside functions”

● fine-detail analysis techniques are needed;
“fine-detail” = individual operator instance;



What I mean by fine-detail source-level



● Static Timing Analysis (STA) cannot deal with dynamism:
● its main objective is the determination of the WCET
● cannot deal with dynamic features:

unbounded loops, recursion, dynamic function reference;
● unfortunately, code is becoming more and more dynamic

(e.g. object based video coding, wireless ad-hoc networks, ...)
● Instruction-Set Simulation (ISS) is slow and at a low level:

● it is 10k-100k times slower than application execution;
● provides estimate at assembly level whereas developer works at source level;
● estimates are difficult to interpret: not much helpful for optimization:

(deep pipelines, superscalarity, wide-issue, speculation, branch prediction, ...)

● ISS + gprof provide estimates only at a function level
● Atomium/PowerEscape is source-level, 

but only for memory aspects
● SoftExplorer is a static technique

– user interaction required to determine loop iterations: unthinkable for real sized projects

● Compilation-based approaches do not provide link to source level
● SIT is source level (good!) but still unable to resolve chosen clusters
● Black-box techniques do not provide any link with code

[Puschner89,..., 
Chen01]

[Brooks00, 
Sinha01, Qin03]

[Simunic01]

[Bormans99,
Arnout05]

[Senn02]

[Lajolo99]

[Ravasi03]

[Muttreja04]

1.3. Current techniques are not ok



1.3. Current techniques are not ok
● Static Timing Analysis (STA) techniques cannot 

deal with dynamism;

● Instruction-Set Simulation (ISS) is slow 
and at a low level:

● ISS + gprof provide estimates 
only at a function level;

● Atomium/PowerEscape is source-level, 
but only for memory aspects (not our focus);

● SoftExplorer is a static technique;

● Compilation-based approaches do not provide 
link to source level;

● SIT is source level (good!) but still unable 
to resolve chosen clusters;

● Black-box techniques do not provide any link 
with source code;

Fast Dyn Src Fine
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Fast Dyn Src Fine

Fast Dyn Src Fine

(                     )



2. How my technique works

● 2.1 Divide and conquer: 

C
i
    =   n

i
   ∙   c

i
  

● 2.2 Determine single-execution costs
via an attribute grammar, founded on an abstract translation model

● 2.3 Determine execution counts
by instrumenting the original program in an efficient way
and running the instrumented program over real input data

cost of executing 
the i-th node in the AST

execution count single-execution cost



2.1. Divide and conquer:  Ci 
= ni ∙ ci  
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c
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=1 LogicTop

Execution count
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Atoms

Abstract instructions

Abstract translation model
... = ...
LogicLeaf = 1 jump
LogicTop = 1 alul + 0.5 jump
Switch   = 2 alul + 1 jump
If = 1 jump
... = ...

Execution cost
C

17 
=n

17 
∙ c

17 
= 4327 alul + 2163.5 jump

Time and energy
Target Platform Characterization

... = ...
alul = (178 mA, 1.715 cycles)
jump = (170 mA, 1.0     cycles)
... = ... Execution cost
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∙ c
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=  (1.311 ms,  471.8 mJ)



2.2. Determining single-execution costs

Attribute Name Defined for which AST nodes

c  synthesized total cost expressions and statements

ci synthesized inherent cost expressions and statements
cc synthesized conversion cost expressions and statements
cf inherited flow control cost expressions and statements

k  synthesized constancy expressions
e  synthesized constant value expressions
t  synthesized real result type expressions
v  inherited valueness expressions
r  inherited restricted result type expressions
b  synthesized register-boundedness expressions
f  inherited translation flavor expressions and statements

● the cost is due to 3 contributions:
● inherent cost
● conversion costs
● flow-control cost

● I compute costs with an attribute grammar:



2.2. Determining single-execution costs



Why all these attributes?
● Full C type system needed (attribute t)

● cost of operations depend on the operands' types

● conversions depend on types;

● Full constant expression evaluation needed (attributes k,e)
● constant expressions are resolved at static time (no translation, no runtime cost)

● constant expressions appear in type declarations, and influence operator costs;

● Example:
struct tag
{

int  field1;
char field2 [sizeof(type_x)*5];

} s1, s2;

int main() 
{

...
s1 = s2;
...

}
s1 s2

=

t = [struct tag]
W(t) = ...

t = [struct tag]
W(t) = ...

t = [struct tag]
ci = W(t) mov
cc = 0
cf =0



Why attribute r (restricted type) is needed

=

b.

m*

a

(*a).m = b;

=

s

*

a

*a = s;

v= L
t= [struct tag]

ci = 1 LValueStar  + (W(t)-1) LValueStarNext v= L
t = [struct tag] 

ci = 1 LValueStar  + (W(t)-1) LValueStarNext
v= R
t= [pointer][struct tag]

ci= 0

v= R
t= [struct tag]

ci = 0

v= L
t= [type]

ci = 1 DotOffset

v= R
t= [pointer][struct tag]

ci = 0

(the cost of a star operator depends on its type) (not really!)



Why attribute r (restricted type) is needed

=

b.

m*

a

(*a).m = b;

=

s

*

a

*a = s;

v= L
t= [struct tag]
r= [struct tag]
ci = 1 LValueStar  + (W(r)-1) LValueStarNext v= L

t = [struct tag] 
r = [type] 
ci = 1 LValueStar  + (W(r)-1) LValueStarNext

v= R
t= [pointer][struct tag]
r= [pointer][struct tag]
ci = 0

v= R
t= [struct tag]
r= [struct tag]
ci = 0

v= L
t= [type]
r= [type]
ci = 1 DotOffset

v= R
t= [pointer][struct tag]
r= [pointer][struct tag]
ci = 0

(the cost of a star operator depends on its type) (not really!)



Why attribute v (valueness) is needed

*a = ...; ... = *a;

=

*

a

...

=

*

a

...



Why attribute v (valueness) is needed

=

*

*

*

*

*

*

*

p

q

v= L
t = [double]
r = [double]
ci= 1 LValueStar + 1 LValueStarNext

v= R
t = [pointer][double]
r = [pointer][double]
ci= 1 RValueStar 

v= R
t = [pointer][pointer][double]
r = [pointer][pointer][double]
ci= 1 RValueStar 
v= R
t = [pointer][pointer][pointer][double]
r = [pointer][pointer][pointer][double]
ci= 1 RValueStar 

v= R
t = [pointer][pointer][pointer][pointer][double]
r = [pointer][pointer][pointer][pointer][double]
ci= 1 RValueStar 

v= R
t = [double]
r = [double]
ci= 1 RValueStar + 1 RValueStarNext

v= R
t = [pointer][double]
r = [pointer][double]
ci= 1 RValueStar

v= R
t = [pointer][pointer][double]
r = [pointer][pointer][double]
ci= 1 RValueStar
v= R
t = [pointer][pointer][pointer][double]
r = [pointer][pointer][pointer][double]
ci= 1 RValueStar

****p = ***q; double **** p 
double  *** q;



The dot operator's anomaly

=

a

(*a).n.m = b;

v= R
t = [pointer][struct tag_outer]
r = [pointer][struct tag_outer]

b.
v= L
t = [type]
r = [type] 

v= R
t = [type]
r = [type]

m
n= m

.
v= L
t = [struct tag_inner]
r = [type]

*
v= L
t = [struct tag_outer]
r = [type]
ci = W(r) LvalueStar

n
n= n

The dot operator 
propagates valueness and 
restricted type to its left 
child.



2.3. Determining execution counts
● optimal strategy to select probe insertion points

● I insert only one probe per each generalized basic block (g.b.b.);

● a g.b.b. is a maximal set of nodes which are all executed the same number of times 
(possibly larger than basic blocks); example:

/*section 1*/ ...
if (f())
{ 

/*section 2*/
...

} else {
/*section 3*/ 
... 

}
/*section 4*/
...

● transparent, probe-inserting source-to-source transformations:
● expressions: e ( __profile__(137), e )
● statements: s; { __profile__(137); s; }
● functions: int f(args) int f(args) 

{ { __profile__(151);  
...     { ... }

};   __profile__(152);  
            }

/*section 1*/ ...
if (f())
{ 

/*section 2*/
...

} else {
/*section 3*/ 
... 

}
/*section 4*/
...



3. The technique is accurate and fast
● 3.1 ANSI-C compliant flow implementation
● 3.2. New experiments – Setup:

● Simulator: SimIt-ARM v2.0.3 with cache latency = 0 [Qin03]
● Platform: SA-1100 @ 206 MHz, 1.5 Vdd
● Parameters: avg. currents for each instruction, from JouleTrack [Sinha01]
● Compiler: gcc v2.95 -O2/-O3 
● Benchmarks: from MiBench [Guthaus01]

● 3.3. New experiments – Results:
● accuracy: average modulo error within 8%; 

correlation between estimates and reference  > 0.995;
● performance: simulation times 10,350 times shorter than ISS;

simulation only 2.2x slower than normal execution;



Program sources

Step 1: Analyzing

Step 2: Instrumenting

Step 3: Compiling

Step 4: Linking

Step 5: Running the instrumented executable

decorated syntax tree

instrumented source code

instrumented object code

execution counts

Step 6: Post-processing

time, energy statistics

Key: data

tool

library

abstract instr. costs

profiling library

~gcc

pseudo-
compiler

3.1 Tool flow



3.3. Accuracy results

Quality of result:

● (E,E) = 0,9960,   |Eρ E| = 7,49%

● (T,T) = 0,9987,   |Tρ T| = 5,65%,

SimIt e3tools Estimation error
E (mJ) T (ms) E (mJ) T (ms) E T

adpcm-s 46,1 166,3 41,9 156,4 -9,1% -6,0%
adpcm-l 910,2 3289,9 722,1 2710,5 -20,7% -17,6%
bitcount-s 65,7 242,8 55,0 204,0 -16,3% -16,0%
bitcount-l 981,9 3628,6 977,1 3649,2 -0,5% +0,6%
blowfish 1067,0 3742,7 748,3 3371,0 -29,9% -9,9%
CRC32 38,3 132,2 35,4 129,6 -7,5% -2,0%
FFT-s 207,9 764,6 207,1 770,3 -0,4% +0,7%
FFT-l 3213,2 11851,5 3264,8 12142,5 +1,6% +2,5%
IFFT-s 205,1 755,1 207,3 771,0 +1,1% +2,1%
IFFT-l 3181,8 11744,7 3266,2 12147,8 +2,7% +3,4%
jpeg 87,9 309,9 91,2 328,5 +3,8% +6,0%
rijndael 63,8 221,3 71,4 257,3 +12,0% +16,3%
sha-s 22,1 78,9 21,9 78,6 -0,9% -0,4%
sha-l 229,4 820,0 224,7 818,3 -2,1% -0,2%

ˆ

ˆ ˆ

ˆ



3.3. Accuracy results
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4. Uses & developments

1. Opt.: Automated source-code optimization

2. VWR: support for VWR architectures

3. VLIW: support for VLIW architectures

4. C++: estimating C++ sources



4.2. Uses & developments: Optimization

1. Opt.

2. VWR

3. VLIW

4. C++

● The need for source-level optimization:
● applications are becoming larger and larger;

● the degree of optimization influences feasibility, performance,
usability, cost and commercial success of the product;

● current optimization techniques involve a long exploration loop, 
with many, slow steps;

● Goal: 
● an automatic technique for the source-to-source optimizing 

transformation steering

● steering: 
where to optimize?
which transformation to apply?

● Limitations:
suitable for local transformation 
with loose mutual interaction



4.2. Uses & developments: Optimization

1. Opt.

2. VWR

3. VLIW

4. C++
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Long vs. short exploration loop:



4.2. Uses & developments: Optimization
What the new approach offers:
● Import a project

● Analyze it

● Get source-level 
optimization directives,
generated at the source level

● Apply them 
and measure 
the result

File Time Energy
image.c  21.638 µs  16.561 µJ
main.c  28.962 µs  21.158 µJ
vertfilter.c 356.222 ms 396.261 mJ
(glibc) 305.800 µs  21.158 µJ
TOTAL 356.509 ms 396.921 mJ

File Time Energy
image.c  21.638 µs  16.561 µJ
main.c  28.962 µs  21.158 µJ
vertfilter.c 377.672 ms 421.048 mJ
(glibc) 305.800 µs 622.000 µJ
TOTAL 378.029 ms 421.708 mJ

1. Opt.

2. VWR

3. VLIW

4. C++



What a short-loop methodology needs:

source code
analysis

influence
metrics

transformation
steering

transformation
application

analyze the code and determine 
which are the critical sections

decide which transformation
to apply and where

apply transformation
on the source code

determine what is the gain in
applying a trf over a section

analysis must be performed at source level;
profile data must be available at source level

steering engine must operate 
automatically on source-level data 
provided by above analysis and metrics

Problem Task Additional Requirements

SLE is the first approach

Many exist, e.g. [Brandolese03]

None exists!

e.g. [SUIF94]

4.2. Uses & developments: Optimization



How we perform transformation steering
● We employ a Network of Fuzzy Rules 
● It is a modified version 

of a neural network; differences:
● weights and connections model explicitly 

transformation influence metrics;
● each rule (~neuron) accesses complete 

syntactic and profiling information;
● Base component: NFR rule

● Advantages:
● scalable O(n∙Q)
● modular (no IP disclosed)
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4.2. Uses & developments: Optimization



4.2. Uses & developments: Optimization

1. Opt.

2. VWR

3. VLIW

4. C++
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● Results:
energy reduction: -5.1 – -22.0%
execution time reduction: -7.8 – -22.3%



4.2. Uses & developments: VWR

1. Opt.

2. VWR

3. VLIW

4. C++

Scratchpad

SIMD Datapath

Data Memory Hierarchy

Loop buffer

Register file

256

256

256

● Very wide register (VWR) architectures
achieve extreme low power via:

● a wide data-path (e.g. 256 bit) and
very wide registers (e.g. 2048 bit) 
with SIMD instructions;

● a software controlled scratchpad
in place of a L1 cache;

● a loop buffer (32 instructions);

● We have augmented our technique with features to:

1. map code to different executors
2. mark concurrent code
3. define intrinsics to map scratchpad transfer costs;
4. define intrinsics for SIMD operations;

support for simulation and estimation at the same time;
all these features are ANSI C-transparent;

2048



4.2. Uses & developments: VWR

Multiple CPUs
● Now, users can define multiple CPUs, 

each with distinct abstract assembly parameters and operating 
conditions;

● To map code on a different CPU, use a pragma:
#pragma e3tools CPU n

● Example:

int main() {   

  int i,j;
   
#pragma e3tools CPU 1
  for (i=0; i<20; i++) {
    printf("This code is executed on CPU 1");
  }
 
#pragma e3tools CPU 0
  for (j=0; j<20; j++) {
    printf("This code is executed on CPU 0");
  }
      
  printf("This code is also executed on CPU 0");
  return 0;   
}

1. Opt.

2. VWR

3. VLIW

4. C++



4.2. Uses & developments: VWR
Concurrent code
● create split/join paths, using a pragma before a compound statement:
#pragma e3tools concurrent

● All the statements inside this block will start concurrently; 
implied rendez-vous at the end of the block 
(simulation remains additive)

● Example:

...
#pragma e3tools concurrent
  {
#pragma e3tools CPU 0
    printf("I run on CPU 0");
 
#pragma e3tools CPU 1
    for (j=0; j<20; j++) {
      printf("I run on CPU 1");
    }

#pragma e3tools CPU 2
    {
      printf("Everything inside this block...");
      ...
      printf("... will run on CPU 2");
    }

  }
...

1. Opt.

2. VWR

3. VLIW

4. C++



4.2. Uses & developments: VWR
User definable-intrinsics
● prepend a “#pragma e3tools intrinsic” directive;
● provide code implementing the simulation semantics

(e.g. perform a real complex multiplication, if needed)
● provide declaration for an atom with the same name:

ComplexMul = 2 rfrd + 4 aluh + 2 alul + 1 rfrw;
● Example:

#pragma e3tools intrinsic
complex ComplexMul(complex a, complex b)
{
  complex result;
  result.real     = (a.real * b.real - a.imag * b.imag);
  result.imag     = (a.real * b.imag + a.imag * b.real);
  return result;
}

int main(int argc, char** argv)
{
  ... 
  for (a = 0; a < CHAN_HEIGHT; a++) {
    ...
    Out[a][index]= ComplexAddShr(
       ComplexMul(F[a*2][0], Data[a][index]),
       ComplexMul(F[a*2+1][0],Data[a+52][index]), DEC_SDM );
    ...
  }
  ...
}
 

1. Opt.

2. VWR

3. VLIW

4. C++



4.3. Uses & developments: VLIW
Extending the e3tools to VLIW architectures.

Goals:
● trace-based:

model exactly the per-trace compilation results of VLIW compilers;

● incremental rebuild: 
rebuild only the intermediate products actually needed
by changes made in the source code, architecture, input data;

● keep the current efficiency;

1. Opt.

2. VWR

3. VLIW

4. C++



  trace source generator

4.3. Uses & developments: VLIW

original C source code

per-trace compile [CRISP]

assembly translation
instruction counter

e3tools

cost accumulator

C source code + LU +SIMD
+ IVR + fixed wordlength
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loop preconditioner

final E, T estimates

E, T assembly model

architecture description

...

The new flow.1. Opt.

2. VWR

3. VLIW

4. C++



4.3. Uses & developments: VLIW

if (condition)
{
   ... /* then branch */
} else {
   ... /* else branch */
}

trash = condition;
if (FALSE)
{
   ... /* then branch */
} else {
   ... /* else branch */
}

trash = condition;
if (TRUE)
{
   ... /* then branch */
} else {
   ... /* else branch */
}

switch (condition)
{
  case value1:
     /* code for value 1*/
  case value2:
     /* code for value 1*/
  ...
  default:
     /* code for value 1*/
}

trash = condition;
switch (value1)
{
  case value1:
     /* code for value 1*/
  case value2:
     /* code for value 1*/
  ...
  default:
     /* code for value 1*/
}

trash = condition;
switch (value2)
{
  case value1:
     /* code for value 1*/
  case value2:
     /* code for value 1*/
  ...
  default:
     /* code for value 1*/
}

trash = condition;
switch (valueN)
{
  case value1:
     /* code for value 1*/
  case value2:
     /* code for value 1*/
  ...
  default:
     /* code for value 1*/
}

trash = condition;
switch (valueN)
{
  case value1:
     /* code for value 1*/
  case value2:
     /* code for value 1*/
  ...
  default:
     /* code for value 1*/
}

...

Note: a table is required to store all the possible cases 
(<=256 by std) and select one among the unused ones.

... ( condition ? 
      expression1 : 
      expression2 ) ...

... ( (condition, FALSE) ? 
      expression1 : 
      expression2 ) ...

... ( (condition, TRUE) ?     
  expression1 : 
      expression2 ) ...

● if statements:

● switch statements:

● conditional expressions

Rewriting code to generate all the traces:1. Opt.

2. VWR

3. VLIW

4. C++



4.3. Uses & developments: VLIW

22

1

20

20

22

22

2

t1
t2

21

t3

n6=22

n5=1

n2=20

n1=22

n4=2

n3=21

t1 + t2 + t3 = n1
t1 = n2
t1 + t2 = n3
       t2 + t3 = n4
              t3 = n5
t1 + t2 + t3 = n6

1 1 1
1 0 0
1 1 0
0 1 1
0 0 1
1 1 1

t =

22
20
21
2
1

22

A t =b

# octave script
>a = [1 1 1; 1 0 0; 1 1 0; 

0 1 1; 0 0 1; 1 1 1]
>b = [22; 20; 21; 2; 1; 22]
>t = a \ b

t =
  20.0
   1.0
   1.0

● Trace-based profiling: how many times each traces was executed?

● It can be solved with current, node-based instrumentation technique

● Need to determine trace counts from node counts

node counts collapsing basic blocks enumerating blocks
per each trace

solving the 
corresponding equations

1. Opt.

2. VWR

3. VLIW

4. C++

=

=



4.4. Prospective extension to C++
● Extending the technique to the C++ language

is possible and involves reasonable effort;

● Tasks required:
● lexer (28 new keywords, negligible effort);
● parser: 213 << 560 syntax rules;
● new type system and scoping rules (significant effort);
● parser needs some semantic-level disambiguation techniques;
● overloading / templates / late binding

(current instrumentation technique is sufficient to determine
which function has been actually called);

● extension of theoretical abstract translation model
(significant effort);

● Required effort: 1 “me-year”

1. Opt.

2. VWR

3. VLIW

4. C++



Reference: the POET project

Part (approx. 1/3) of WorkPackage 2 of project “POET”, 
http://poet.offis.de

EU-funded integrated project IST-2000-30125, 
Sep 2001 – Mar 2005;
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Reference: the POET consortium

Consortium:

•OFFIS
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•Cefriel
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•ChipVision
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Selected Scientific Publications

● Book chapters:

● “Estimation of the execution time and energy consumption at source code”,
in F. Catthoor, J. I. Gomez, S. Himpe, Z. Ma, P. Marchal, D. P. Scarpazza, C. Wong, P. Yang,
“Systematic methodology for real-time cost-effective mapping of dynamic concurrent task-
based systems on heterogeneous platforms”, Springer Verlag [accepted];

● Journal papers:

● with Carlo Brandolese, “A source-level software analysis methodology able to resolve clusters 
of operations and finer details”, Journal on Low-power Electronics (JOLPE) [accepted];

● with Carlo Brandolese, “Energy estimation for Embedded Software”, 
IEEE Transactions on Computers;

● Conference papers:

● with C. Brandolese, “A fast, dynamic, source-level and fine-detail technique to estimate the 
energy consumed by embedded software on single-issue processor cores”, 
CODES+ISSS’06, Seoul, Korea [submitted];

● with P. Raghavan, D. Novo, C. Brandolese, F. Catthoor, D. Verkest, 
“Software Simultaneous Multi-Threading, a technique to exploit Task-level Parallelism to 
improve Instruction and Data-level Parallelism”, 
PATMOS’06, Montpellier, France [submitted];



The End. 
~

Questions
welcome.



Backup slides follow



What e3tools can and cannot do
● The e3tools perform source level estimation 

of the ALU and control flow contributions
of {time, energy} consumption of a ANSI C program

● They are NOT designed for data transfer and storage
exploration and optimization
(although: possible estimation for software-controlled memories,
e.g. Feenecs SPM + VWR)

● In this sense, e3tools are perfectly complementary 
with Atomium/PowerEscape



4.3. Uses & developments: VLIW
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Minimal incremental rebuild. 
Example: when the input data changes:1. Opt.

2. VWR

3. VLIW

4. C++
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Minimal incremental rebuild. 
Example: when architecture changes:1. Opt.

2. VWR

3. VLIW

4. C++
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Example: when source code changes1. Opt.

2. VWR

3. VLIW

4. C++



User-definable models
● Parsing (1) is defined by the language;

● Cost association (2, in atoms) to syntax nodes:

● theoretically founded, not user “serviceable”

● see Chapter 4 of my Thesis;
warning: implementation is not yet aligned with the theoretical 
developments!

● Mapping of atoms to abstract-instructions (3):

● also theoretically founded
on some assumptions

● user can refine model:
/scratch/scarpaz/poet/4.3/root/lib/compiler

● Cost of abstract instructions (4):

● must be characterized:

● /scratch/scarpaz/poet/4.3/root/lib/tech/processor
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Atoms to abstract instructions:
See directories and associated files under:
/scratch/scarpaz/poet/4.3/root/lib/compiler

IntAdd                    = 1 alul;
IntSub                    = 1 alul;
IntMul                    = 1 aluh;
BitwiseOperation          = 1 alul;
IntRelation               = 1 cmpl + 1 jump;
IntImplicitRelation       = 1 cmpl + 1 jump;
...
RValueStar                = 1 mvld;
LValueStar                = 1 mvst;
RLValueStar               = 1 mvld + 1 mvst;
RValueStarNext            = 1 mvld           + 1 alul;
LValueStarNext            = 1 mvst           + 1 alul;
RLValueStarNext           = 1 mvld + 1 mvst  + 1 alul;
...
Break                     = 1 jump;
Continue                  = 1 jump;
Goto                      = 1 jump;
...
While                     = 1 cjt;
WhileBody                 = 1 cjn + 1 jump;
Do                        = -1 cjt + 1cjn;
DoBody                    = 1 cjt;
For                       = 1 cjt;
ForBody                   = 1 cjn + 1 jump;
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Abstract instructions to time/energy
See directories and associated files under:

● Cost of abstract instructions:
/scratch/scarpaz/poet/4.3/root/lib/tech/processor/
arm7tdmi-new/default/kis.dat

 aluh        196       4       0
 cmpl        178       0.950   0
 cmph          0       0       0
 call        170       7.430   0
 mvst        229      22.0     0
 mvld        196       0.75    0
 jump        170       0.98    0

● Operating conditions:
/scratch/scarpaz/poet/4.3/root/lib/tech/processor/
arm7tdmi-new/default/oc.dat

VDD       1.5   V
FCK     206.4   MHz
MAINI     0.0   uJ
MAINT     0.0   us
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Practical usage of the tools

● Prepare your project:
● must be ANSI C (make sure it compiles with gcc -ansi)

● must have a Makefile and use gcc

● An experimental installation is available on pc3643:
● ssh pc3643

● bash

● cd /scratch/scarpaz/poet/4.3

● . fake.sh

● cd /your-project-dir/

● make clean

● make

● <run your project>

● taylor -c gcc -t arm7tdmi *.e3.count



● Issue: Conditions may not be extracted inside loops
● Solution:

● we assume that functions are compiled individually, and
● we perform a loop preconditioning step
● we do NOT perform condition extraction inside surviving loops

● Loop conditioning:
● case 1) small loop body, few iterations: 

fully unroll the loop, perform condition extraction after unroll 
● case 2) small loop body, many/unpredictable iterations:

partially unroll code
● case 3) large body, few large conditional codes, few interactions with remaning code :

function-export the code (pessimistic, acceptable under constraints)
● case 4) large body, many large conditioned statements:

group them together and function-export them cumulatively
● Prototype implementation:

● SUIF2 tested successfully to unroll loops;
● a modified version of current instrumentation tool can be used for loop body exportation;

Loop pre-conditioning is needed



Trace source code generator

C source code + LU + SIMD 
+ IVR + fixed wordlength

CEE = condition extractor 
and enumerator
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CR = condition rewriter

e3tools

decorated abstract syntax tree

condition enumeration

• Assumptions on the compiler:
• it is capable of basic constant folding
• it performs no interprocedural optimization;
• it generates code on a per-function basis;
• inline functions already expanded;

• Issues ok:
• gotos, 
• short circuit evaluation, ...
• conditions inside loop (preconditioning)

•  Open issues:
• exponential explosion:

number of function traces is:

assuming per-function separation;
otherwise even worse:

• Development tasks:
• implementation of CEE:

as an extension to e3tools/democritos;
• implementation of CR: 

as a modified version of e3tools/stradivari

∑functions
2N if ∏ j =0

N switch

Choices j

∏functions
2N if ∏ j =0

N switch

Choices j

TSCG = trace source                 
code generator


