
POLITECNICO DI MILANO
SCUOLA INTERPOLITECNICA DI DOTTORATO

Research Doctorate Course in Information Engineering – XVIII Cycle

Final Dissertation

A SOURCE-LEVEL ESTIMATION AND OPTIMIZATION
METHODOLOGY

FOR EXECUTION TIME AND ENERGY CONSUMPTION
OF EMBEDDED SOFTWARE

Daniele Paolo Scarpazza

Tutor Coordinator of the Research Doctorate Course

Prof. William Fornaciari Prof. Stefano Crespi Reghizzi

May 2006

This page intentionally left blank.

POLITECNICO DI MILANO
Dipartimento di Elettronica e Informazione

DOTTORATO DI RICERCA IN INGEGNERIA DELL’INFORMAZIONE

A SOURCE-LEVEL
ESTIMATION AND OPTIMIZATION METHODOLOGY

FOR EXECUTION TIME AND ENERGY CONSUMPTION
OF EMBEDDED SOFTWARE

Doctoral Dissertation of:
Daniele Paolo Scarpazza

Advisor:
Prof. William Fornaciari

Tutor:
Prof. Fabrizio Ferrandi

Supervisor of the Doctoral Program:
Prof. Stefano Crespi Reghizzi

2006 - XVIII

This document was sent to the publisher on April 4th, 2006.

The author can be reached for comments, questions and suggestions at the
following e-mail address: scarpaz@scarpaz.com.

Copyright c© 2006 by Daniele Paolo Scarpazza. All rights reserved. You
may copy and distribute exact replicas of this document as you receive it, in
any medium, provided that you keep intact all the contents, including this
copyright notice. You may at your option charge a fee for the media and/or
handling involved in creating a unique copy of this document for use offline.
You may not charge a fee for the document itself. You may not charge a fee
for the sole service of providing access to and/or use of the contents via a
network (e.g. the Internet), whether it be via the world wide web, FTP, or
any other method.

Short Table of Contents

1 Overview 21
1.1 Designers need new software estimation techniques 21
1.2 Designing embedded software is getting difficult 23
1.3 Why I choose the C language 27
1.4 The fundamental approach of this thesis 29
1.5 Many techniques are possible, just one is chosen 31
1.6 The final objective of this thesis 35
1.7 Advantages of this approach 35
1.8 Frequently raised objections . 36

1.8.1 «Your novel contribution is not quite clear» 37
1.8.2 «Source-level estimation has already been done!» . . . 37
1.8.3 «Your approach is too limited» 37

1.9 Estimation: A motivational example 38
1.10 Source-level estimation can speed up optimization 40
1.11 Optimization: A motivational example 42
1.12 The organization of this thesis 45

2 Background 47
2.1 Performance estimation techniques 47

2.1.1 Static timing analysis . 47
2.1.2 Static Functional-level Power Analysis 49
2.1.3 Instruction-set simulation 49
2.1.4 Binary instrumentation 51
2.1.5 Compilation-based techniques 52
2.1.6 gprof: Program counter sampling 53
2.1.7 Source code instrumentation 54
2.1.8 Black-box techniques . 55
2.1.9 Memory-oriented techniques 56
2.1.10 Conclusions . 57

2.2 Source-level optimization exploration techniques 58

5

6 SHORT TABLE OF CONTENTS

3 An instance of the technique 63
3.1 Abstracting the reality, modeling the abstraction 63
3.2 From reality to the abstract flow 67

3.2.1 Architecture abstraction 67
3.2.2 Compiler abstraction . 68

3.3 The model flow . 77
3.3.1 Analytical cost model 77
3.3.2 Model application . 79
3.3.3 People and activities . 86
3.3.4 Overall scheme . 89

3.4 The optimization flow . 90
3.4.1 Modularity of the algorithm 93
3.4.2 Scalability of the algorithm 94
3.4.3 Current limitations . 95

3.5 Tool implementation . 97

4 Cost of syntax elements 99
4.1 Notation . 100

4.1.1 Denoting syntax and semantic rules 100
4.1.2 Concrete and abstract syntax trees 102
4.1.3 Describing semantic attribute evaluation 105
4.1.4 Denoting assembly translations 108

4.2 Which factors affect the cost of syntax elements 110
4.2.1 The valueness affects the inherent cost 110
4.2.2 The operand type affects the inherent costs 112
4.2.3 The operand type affects the conversion costs 114
4.2.4 The constancy affects all the costs 114
4.2.5 The translation flavor affects the control-flow and in-

herent costs . 115
4.2.6 The register boundedness affects the inherent cost . . . 116

4.3 An abstract translation model 117
4.3.1 I privilege understandability 117
4.3.2 Attributes . 117
4.3.3 Some useful functions 118
4.3.4 The attribute grammar which is the model 119
4.3.5 Observations . 124
4.3.6 Examples . 125

4.4 The attribute grammar . 136
4.4.1 Attribute ‘t’, result type 140
4.4.2 Attribute ‘r’, restricted result type 158
4.4.3 Attribute ‘k’ and ‘e’: constancy and constant value . . . 169
4.4.4 Attribute ‘v’, valueness 176
4.4.5 Attribute ‘b’, register boundedness 178
4.4.6 Attribute ‘f’, translation flavor 180
4.4.7 Attribute ‘ci’, inherent cost 183
4.4.8 Attribute ‘cc’, conversion cost 216
4.4.9 Attribute ‘cf’, flow control cost 225
4.4.10 Attribute ‘c’, total single-execution cost 230

SHORT TABLE OF CONTENTS 7

4.5 Grammar reference . 231
4.5.1 Expressions . 231
4.5.2 Statements . 232

5 Results, conclusions, developments 235
5.1 Results . 235

5.1.1 Estimation . 235
5.1.2 Optimization . 237

5.2 Conclusions . 241
5.2.1 Estimation . 241
5.2.2 Optimization . 241

5.3 Developments . 242
5.3.1 Extending the methodology to C++ 242
5.3.2 Modeling more complex hardware 245

A Floating point emulation cost 247
A.1 Motivation . 247
A.2 Experimental setup . 248
A.3 Benchmark construction . 249
A.4 Arithmetic operations . 252
A.5 Relational operators . 260
A.6 Dependence on data for arithmetic operations 268
A.7 Dependence on data for relational operators 274

8 SHORT TABLE OF CONTENTS

Detailed Table of Contents

1 Overview 21
1.1 Designers need new software estimation techniques 21
1.2 Designing embedded software is getting difficult 23
1.3 Why I choose the C language . 27
1.4 The fundamental approach of this thesis . 29
1.5 Many techniques are possible, just one is chosen 31
1.6 The final objective of this thesis . 35
1.7 Advantages of this approach . 35
1.8 Frequently raised objections . 36

1.8.1 «Your novel contribution is not quite clear» 37
1.8.2 «Source-level estimation has already been done!» 37
1.8.3 «Your approach is too limited» . 37

1.9 Estimation: A motivational example . 38
1.10 Source-level estimation can speed up optimization 40
1.11 Optimization: A motivational example . 42
1.12 The organization of this thesis . 45

2 Background 47
2.1 Performance estimation techniques . 47

2.1.1 Static timing analysis . 47
2.1.2 Static Functional-level Power Analysis 49
2.1.3 Instruction-set simulation . 49
2.1.4 Binary instrumentation . 51
2.1.5 Compilation-based techniques . 52
2.1.6 gprof: Program counter sampling . 53
2.1.7 Source code instrumentation . 54
2.1.8 Black-box techniques . 55
2.1.9 Memory-oriented techniques . 56
2.1.10 Conclusions . 57

2.2 Source-level optimization exploration techniques 58

3 An instance of the technique 63
3.1 Abstracting the reality, modeling the abstraction 63
3.2 From reality to the abstract flow . 67

3.2.1 Architecture abstraction . 67
3.2.1.1 Instruction-set architecture 67
3.2.1.2 Memory . 68

3.2.2 Compiler abstraction . 68

9

10 DETAILED TABLE OF CONTENTS

3.2.2.1 Front-end . 69
3.2.2.2 Semantic analysis . 70

3.2.2.2.1 Context handling 70
3.2.2.2.2 Early liveness analysis 70

3.2.2.3 Intermediate code generation 71
3.2.2.4 Intermediate code optimization 72

3.2.2.4.1 Constant folding . 72
3.2.2.4.2 Arithmetic simplification 72
3.2.2.4.3 Liveness analysis 72
3.2.2.4.4 Other optimization steps 73

3.2.2.5 Target code generation . 73
3.2.2.5.1 Instruction selection 73
3.2.2.5.2 Register allocation 74

3.2.2.6 Target code optimization . 75
3.2.2.7 Machine code generation . 76

3.3 The model flow . 77
3.3.1 Analytical cost model . 77
3.3.2 Model application . 79

3.3.2.1 Step 1: Analyze . 81
3.3.2.2 Step 2: Instrument . 82
3.3.2.3 Step 3: Build . 84
3.3.2.4 Step 4: Run . 84
3.3.2.5 Step 5: Collect . 85
3.3.2.6 Step 6: Report . 85

3.3.3 People and activities . 86
3.3.3.1 Founding the technique . 86
3.3.3.2 Targeting the technique . 86
3.3.3.3 Using the technique . 87

3.3.4 Overall scheme . 89
3.4 The optimization flow . 90

3.4.1 Modularity of the algorithm . 93
3.4.2 Scalability of the algorithm . 94
3.4.3 Current limitations . 95

3.5 Tool implementation . 97

4 Cost of syntax elements 99
4.1 Notation . 100

4.1.1 Denoting syntax and semantic rules 100
4.1.2 Concrete and abstract syntax trees . 102
4.1.3 Describing semantic attribute evaluation 105
4.1.4 Denoting assembly translations . 108

4.2 Which factors affect the cost of syntax elements 110
4.2.1 The valueness affects the inherent cost 110
4.2.2 The operand type affects the inherent costs 112
4.2.3 The operand type affects the conversion costs 114
4.2.4 The constancy affects all the costs . 114
4.2.5 The translation flavor affects the control-flow and inherent costs . . . 115
4.2.6 The register boundedness affects the inherent cost 116

4.3 An abstract translation model . 117
4.3.1 I privilege understandability . 117
4.3.2 Attributes . 117
4.3.3 Some useful functions . 118
4.3.4 The attribute grammar which is the model 119
4.3.5 Observations . 124
4.3.6 Examples . 125

4.4 The attribute grammar . 136
4.4.1 Attribute ‘t’, result type . 140

DETAILED TABLE OF CONTENTS 11

4.4.1.1 The ‘sizeof’ operator . 145
4.4.1.2 Integer-type unary operators 145
4.4.1.3 Operand-type unary operators 145
4.4.1.4 Integral promotion operators 146
4.4.1.5 The referencing operator . 146
4.4.1.6 The dereferencing operator 147
4.4.1.7 The cast operator . 147
4.4.1.8 Integer-type binary operators 148
4.4.1.9 First-operand type binary operators 148
4.4.1.10 Second-operand type binary operators 149
4.4.1.11 The arithmetic binary operators 149
4.4.1.12 The access operators . 151
4.4.1.13 The conditional operator . 152
4.4.1.14 The function call operator 152

4.4.2 Attribute ‘r’, restricted result type . 158
4.4.2.1 Anomaly affecting the precedence 159
4.4.2.2 Anomaly affecting valueness 160
4.4.2.3 Anomaly affecting the transferred size 161
4.4.2.4 Attribute ‘r’ calculation rules 167

4.4.3 Attribute ‘k’ and ‘e’: constancy and constant value 169
4.4.3.1 The ‘sizeof’ operator . 171
4.4.3.2 Simple unary operators . 171
4.4.3.3 Other unary operators . 172
4.4.3.4 Simple binary operators . 172
4.4.3.5 Logical binary operators . 172
4.4.3.6 Access and compound assignment operators 173
4.4.3.7 Simple assignment, comma and cast operators 174
4.4.3.8 The conditional operator . 174
4.4.3.9 The function call operator 174

4.4.4 Attribute ‘v’, valueness . 176
4.4.5 Attribute ‘b’, register boundedness . 178
4.4.6 Attribute ‘f’, translation flavor . 180
4.4.7 Attribute ‘ci’, inherent cost . 183

4.4.7.1 The ‘sizeof’ operator . 183
4.4.7.2 Comma operator . 183
4.4.7.3 The cast operator . 183
4.4.7.4 The logical ‘and’ and ‘or’ operators 184
4.4.7.5 The logical ‘not’ operator . 184
4.4.7.6 Unary arithmetic operators 184
4.4.7.7 Identifiers . 185
4.4.7.8 Arithmetical and bitwise expressions 185
4.4.7.9 The unary dereferencing operator, ‘*’ 187
4.4.7.10 The subscript operator ‘[]’ 195
4.4.7.11 The access to member of pointed compound operator ‘->’ . 198
4.4.7.12 The member access operator ‘.’ 208
4.4.7.13 The function call operator 211
4.4.7.14 The simple assignment operator 212
4.4.7.15 The compound assignment operators 214
4.4.7.16 Equality and relational operators 214
4.4.7.17 The ‘return’ statement . 215

4.4.8 Attribute ‘cc’, conversion cost . 216
4.4.8.1 The no-conversion unary operators 219
4.4.8.2 The integral promotion unary operators 219
4.4.8.3 The no-conversion binary operators 220
4.4.8.4 The cast operator . 220
4.4.8.5 The integral promotion binary operators 220

12 DETAILED TABLE OF CONTENTS

4.4.8.6 The usual arithmetic conversions operators 221
4.4.8.7 The simple assignment operator 221
4.4.8.8 The compound assignment operators 222
4.4.8.9 The conditional operator . 223
4.4.8.10 The function call operator 223
4.4.8.11 The ‘return’ statement . 224

4.4.9 Attribute ‘cf’, flow control cost . 225
4.4.9.1 Iteration statements . 225

4.4.9.1.1 ‘while’ statements 225
4.4.9.1.2 ‘do ... while (...)’ statements 225
4.4.9.1.3 ‘for’ statements . 225

4.4.9.2 Selection statements . 226
4.4.9.2.1 ‘if (...) ...’ statements 226
4.4.9.2.2 ‘if (...) ... else ...’ statements 226
4.4.9.2.3 ‘switch’ statements 226

4.4.9.3 Labeled statements . 228
4.4.9.4 Jump statements . 228

4.4.10 Attribute ‘c’, total single-execution cost 230
4.5 Grammar reference . 231

4.5.1 Expressions . 231
4.5.2 Statements . 232

5 Results, conclusions, developments 235
5.1 Results . 235

5.1.1 Estimation . 235
5.1.2 Optimization . 237

5.2 Conclusions . 241
5.2.1 Estimation . 241
5.2.2 Optimization . 241

5.3 Developments . 242
5.3.1 Extending the methodology to C++ 242
5.3.2 Modeling more complex hardware . 245

A Floating point emulation cost 247
A.1 Motivation . 247
A.2 Experimental setup . 248
A.3 Benchmark construction . 249
A.4 Arithmetic operations . 252
A.5 Relational operators . 260
A.6 Dependence on data for arithmetic operations 268
A.7 Dependence on data for relational operators 274

List of Figures

1.1 Growth of transistor counts for Intel processors (dots) and the Moore’s Law
(dashed line) with a 18-month and 24-month doubling period. 24

1.2 How the fundamental approach of this thesis derives from the designers’
requirements which, in turn, derive from the current context in the embed-
ded design scenario. 30

1.3 Even after discarding the non-Pareto-optimal ones, many techniques are
possible within our fundamental approach. They exhibit different trade-
offs between static speed and accuracy. In this thesis I choose one, which is
based on a model of the architecture and of the compiler. 32

1.4 The physical occurrence of cost (time, energy) is a complex process, de-
pending on language, compiler and architecture. In order to tackle one
problem at a time, I introduce atoms and abstract instructions. 33

1.5 Abstraction levels involved in this methodology. 34
1.6 This technique allows to estimate the cost of individual loops, lines of code,

and finer details, such as individual constructs and operators. 38
1.7 The abstract syntax tree corresponding to the sample fragment of code. . . 39
1.8 This approach allows a much shorter and quicker exploration loop, thanks

to the use of source-level profiles in place of assembly-level profiles. 41
1.9 Time and energy estimates for a critical section of the example benchmark,

as reported by the source-level estimation flow. 42
1.10 The list of optimization directives generated by the optimization flow

when applied on the example benchmark. 43

2.1 How the approach I propose compares with the currently available tech-
niques in terms of speed and accuracy. 57

3.1 Real compilation and execution are so complex that it is not convenient to
model all this complexity. Therefore I perform abstraction and modeling (see
Section 3.1). This figure represents the original flow, the abstract flow and
the model flow. 66

3.2 The steps which compose the estimation flow I propose. 80
3.3 A sample section of code where generalized basic block instrumentation is

more efficient than basic block instrumentation. 84
3.4 Tasks and artifacts involved in activity 1: “founding the technique”. 86
3.5 Tasks and artifacts involved in activity 2: “targeting the technique”. 87
3.6 Tasks and artifacts involved in activity 3: “using the technique”. 88

13

14 LIST OF FIGURES

3.7 The tasks and artifacts involved in all the activities related with the tech-
nique. 89

3.8 A NFR rule. 91
3.9 The structure of the Network of Fuzzy Rules (NFR) I employ for transfor-

mation steering. 92

4.1 The Abstract Syntax Tree (AST) for a simple expression. 103
4.2 The Concrete Syntax Tree (CST) for the same expression. 104
4.3 Example of transformation from CST to AST. The figure shows how the

CST presented before is transformed after Step 1. 106
4.4 Example of transformation from CST to AST. The figure shows how the

CST presented before is transformed after Step 2. 107
4.5 Example of transformation from CST to AST. The figure shows how the

CST presented before is transformed after Step 3. 108
4.6 Multiple alternatives could be possible for the same translation flavor. . . . 125
4.7 The parse tree for an ‘if’ statement involving a complex logical expres-

sion. For each node, the flavor which actually appears in the translation
is shown. Two T’s are annotated next to the ‘if’ node to indicate that two
distinct translations are possible. 126

4.8 Example illustrating the application of the abstract translation scheme to a
sample statement. 127

4.9 Abstract syntax tree of a more complex example statement, used to illus-
trate the abstract translation scheme. 129

4.10 Dependences between attributes. 138
4.11 Example of function designator conversion, when the expression is a sim-

ple function name. 154
4.12 Example of function designator conversion, when a function designator is

the operand of a referencing ‘&’ operator. 154
4.13 Example of function designator conversion, when a function designator is

the operand of a dereferencing ‘∗’ operator. 155
4.14 A partially decorated AST for the example expression, determined without

special care for dot operators. 159
4.15 The same expression as in the previous example, reworked with amended

valueness determination rules. The valueness of node ‘∗’ has been now
determined as ‘L’. 160

4.16 Example of application of the amended valueness determination rules on
an expression including nested instances of the ‘ . ’ operator. 162

4.17 Example expression. 162
4.18 Attribute r models appropriately how ‘. ’ operators restrict the type of in-

formation transferred by ‘∗’ operators. 164
4.19 Attribute r models appropriately how ‘. ’ operators restrict the type of in-

formation transferred by ‘ [] ’ operators. 165
4.20 Attribute r models appropriately how ‘. ’ operators restrict the type of in-

formation transferred by ‘−>’ operators. 166
4.21 Attribute r models appropriately the type of information transferred (e.g.

by ‘∗’ operators) even in presence of nested ‘ . ’ operators. 167
4.22 Trivial example illustrating the evaluation of attributes k and e. 169
4.23 ASTs of two example expressions involving the ‘∗’ operator. The two ex-

pressions have the same semantics and effects (as far as inherent cost is
concerned), but different parse tree. 190

4.24 Inherent cost decoration for the two previous example expressions. The
two expressions have the same cumulative cost, but costs associated to in-
dividual nodes may be different. 190

4.25 AST of an example expression involving multiple nested ‘∗’ operators. . . . 192
4.26 Inherent cost determination for an example expression involving multiple

instances of ‘∗’ operators. 193

LIST OF FIGURES 15

4.27 Inherent cost determination for an example expression involving multiple
instances of ‘∗’ operators. Detail. 194

4.28 Determining ci for a ‘ . ’ operator, when it is father of a ‘∗’ operator (right).
The operator has non-zero cost because its offset calculation instruction
cannot be merged with the translation of any node. An expression without
the ‘ . ’ is reported for comparison (left). 209

4.29 Determining ci for a ‘ . ’ operator, when it is father of a ‘ [] ’ operator (right).
The operator has non-zero cost because its offset calculation instruction
cannot be merged with the translation of any node. An expression without
the ‘ . ’ is reported for comparison (left). 210

4.30 Determining ci for a ‘ . ’ operator, when it is father of a ‘−>’ operator (right).
The ‘ . ’ operator has no cost, because the offset calculation can be merged
into the translation of ‘−>’. An expression without the ‘ . ’ is reported for
comparison (left). 210

4.31 Determining ci for a ‘ . ’ operator, when it is child of a ‘&’ operator (right).
The ‘ . ’ operator has no cost, because the address of any member field of
‘a’ is known at compile time. An expression without the ‘ . ’ is reported for
comparison (left). 211

5.1 Comparison between reference and estimated energy in the experimental
benchmarks. 237

5.2 Comparison between reference and estimated execution time in the exper-
imental benchmarks. 237

5.3 Results: how much execution time and energy are gained after applying
each of the transformations proposed by our flow. 240

A.1 Prototypes of the emulation functions belonging to the soft-float library. . . . 250
A.2 Parametric source code template for the generation of arithmetic operation

benchmarks. 253
A.3 The Tcl script used to generate benchmark source files for the arithmetic

operations benchmarks. 254
A.4 Average cost of arithmetic operators between operands of the various

floating-point types. 255
A.5 Statistical distribution of the latency of emulation routine for operator ‘+’.

Horizontal axis is latency in cycles, vertical is frequency over 1000 cases. . . 256
A.6 Statistical distribution of the latency of emulation routine for operator ‘−’.

Horizontal axis is latency in cycles, vertical is frequency over 1000 cases. . . 257
A.7 Statistical distribution of the latency of emulation routine for operator ‘∗’.

Horizontal axis is latency in cycles, vertical is frequency over 1000 cases. . . 258
A.8 Statistical distribution of the latency of emulation routine for operator ‘/’.

Horizontal axis is latency in cycles, vertical is frequency over 1000 cases. . . 259
A.9 Average cost of relational operators between operands of the various

floating-point types. 261
A.10 Statistical distribution of the latency of emulation routine for operator ‘==’.

Horizontal axis is latency in cycles, vertical is frequency over 1000 cases. . . 262
A.11 Statistical distribution of the latency of emulation routine for operator ‘!=’.

Horizontal axis is latency in cycles, vertical is frequency over 1000 cases. . . 263
A.12 Statistical distribution of the latency of emulation routine for operator ‘>=’.

Horizontal axis is latency in cycles, vertical is frequency over 1000 cases. . . 264
A.13 Statistical distribution of the latency of emulation routine for operator ‘<’.

Horizontal axis is latency in cycles, vertical is frequency over 1000 cases. . . 265
A.14 Statistical distribution of the latency of emulation routine for operator ‘<=’.

Horizontal axis is latency in cycles, vertical is frequency over 1000 cases. . . 266
A.15 Statistical distribution of the latency of emulation routine for operator ‘>’.

Horizontal axis is latency in cycles, vertical is frequency over 1000 cases. . . 267

16 LIST OF FIGURES

A.16 Average cost of operator ‘+’ depending on arguments. Horizontal and ver-
tical axes are operand exponents, color is average cost over 30 random cases.270

A.17 Average cost of operator ‘−’ depending on arguments. Horizontal and
vertical axes are operand exponents, color is average cost over 30 random
cases. 271

A.18 Average cost of operator ‘∗’ depending on arguments. Horizontal and ver-
tical axes are operand exponents, color is average cost over 30 random cases.272

A.19 Average cost of operator ‘/’ depending on arguments. Horizontal and ver-
tical axes are operand exponents, color is average cost over 30 random cases.273

A.20 Average costs of floating-point comparison operations depending on
which parts of the operands’ encoded value match. 276

List of Tables

1.1 The various programming languages, sorted by the total number of source
lines of code, in a representative Linux distribution [12]. 27

3.1 Summary of the symbols introduced. 79
3.2 Instrumentation syntactic techniques . 83

4.1 The attributes in the grammar attribute which constitutes my abstract
translation model. 119

4.2 The operators of the C language, classified on the basis of how their result
type (attribute t) is determined. 144

4.3 The operators of the C language classified on the basis of their behavior
with respect to the determination of their constancy and constant value
(attributes k, e). 170

4.4 Summary of the rules for the determination of the register-boundedness of
a given AST node. 178

4.5 The inherent cost of arithmetical and bitwise operators, depending on the
resulting type. 186

4.6 The inherent costs of pointer arithmetic expressions, expressed in atoms,
abstract assembly instructions and corresponding classes of instructions. . . 186

4.7 Summary of the rules which determine the cost of a type conversion. The
order of the rules is meaningful: multiple rules could match a given case,
the first matching one is applied. 217

4.8 The operators of the C language (and the return statement) classified by
conversion behavior. 218

5.1 The comparison between energy and execution time estimates provided by
SimIt-Arm and our tool shows that our methodology is quite accurate. . . . 236

5.2 Results: which transformations are selected by our flow for each bench-
mark, and how much execution time and energy gains they cause. For a
key to the acronyms (FS, LU, ...) see Section 3.4.1 (page 93). 239

A.1 Map of the emulation functions used in the GCC compiler [86]. 249
A.2 Bit composition of the floating-point data types. 249
A.3 Average measured cost of floating-point operators on operands extracted

from uniformly-distributed populations, expressed in clock cycles. 254

17

18 LIST OF TABLES

A.4 Standard deviation of the measured cost of floating-point arithmetic oper-
ators on operands extracted from uniformly-distributed populations, ex-
pressed in clock cycles. 255

A.5 Average cost of floating-point relational operators, on operands extracted
from uniform populations, expressed in clock cycles. Values with an as-
terisk (*) were not measurable due to deficiencies in the soft-float library
implementation, and have been interpolated. 260

A.6 Standard deviation of the cost of floating-point relational operators, on
operands extracted from uniform populations, expressed in clock cycles.
Values marked with an asterisk (*) were not measurable due to deficiencies
in the soft-float library implementation, and have been interpolated. 260

A.7 Average costs of floating-point comparison operations depending on
which parts of the operands’ encoded value match. 275

Abstract

The contributions of this thesis are in the two main areas of the estimation
and optimization of the software for embedded systems.

Estimation
Embedded system designers frequently face the problem of estimating how
much energy and time are spent in significant clusters of operations in their
software, such as loop bodies or their subportions. This is crucial to de-
termine how fast their software runs on a platform, how much energy it
consumes, where optimizations are needed, or what hardware it requires to
ensure a given speed.

This problem is not effectively solved by current approaches: instruction-
level simulation, static timing analysis and source-level instrumentation. In-
struction level simulation provides too low-level information and is too slow;
static timing analysis cannot deal with dynamism, while current source level
instrumentation tools only provide global or function level estimates.

I propose a novel methodology which is able to provide time and energy
estimates for any flexibly defined cluster of operations in the program. With
it, designers do not need to define their interested clusters in advance, and
not even to re-run the tool for different cluster choices. With this information,
designers can better understand which portions of the source code cause the
major consumptions, and apply optimizations there.

The tool which implements the methodology exhibits simulation times
10,000 shorter than a reference ISS, and a good estimation accuracy.

Optimization
Optimizing the software of embedded systems is of primary importance, and
source-level transformations have been showed to offer the highest gains.
However, exploring the source-level transformations is currently a slow task.
In fact, the current approaches repeat many times an exploration loop which

19

20 LIST OF TABLES

involves slow steps such as instruction-level simulation. Additionally, the
selection of the portions to transform is done manually, which is impractical
for large projects.

Thanks to the availability of a source level estimation technique like the
one presented in this thesis, it is now possible to develop techniques for
the automatic selection and targeting of source-level transformations. These
techniques allow a shorter and quicker exploration loop. I propose an exam-
ple of such techniques, which is well suited for transformations which have
a predominant local effect and show small mutual interactions. It employs
a network of fuzzy rules for the steering task. It is designed to scale well on
large projects, and it is modular, so new transformations can be added easily.

The application of this technique over a set of realistic benchmarks ob-
tained significant energy and execution time savings (approx. 15%). The
technique is fast enough to allow the optimization exploration of large-scale
applications.

Chapter 1
Overview

THIS chapter provides an overview of this thesis, including its goal, its
motivation, its fundamental approach and the benefits it offers. It
first motivates why embedded system designers need a new gener-
ation of estimation and optimization techniques, on the basis of the

current context. From this context I will derive the requirements that such
techniques must meet. Finally, I will show how these requirements derive
precise research choices, leading to a specific technique, which I will adopt.

1.1 Designers need a new generation of soft-
ware estimation techniques

Modern embedded systems comprise larger and larger software compo-
nents. When designing and engineering these products, designers need as
soon as possible estimates of the energy and processing power requirements
for the software they write. This information is crucial for many purposes: to
determine whether the product is feasible, to compare different implemen-
tations, to optimize the code. One of the crucial consumption areas they are
interested in is the processor core. This thesis deals with this very problem:

Estimating the execution time and the energy consumption
caused by the processor core when executing software on a
given architecture, exposing the contribution of each individual
element of the source code.

There are two reasons why I restrict my attention to the processor core rather
than trying to achieve the same estimates on an entire system: the first reason
is that the broader problem is so large that it cannot be effectively attacked in
a single thesis; the second reason is that for some portions of the system (e.g.
the data memory hierarchy) the state of the art already presents solutions

21

22 CHAPTER 1. OVERVIEW

which satisfy the designers’ needs effectively. I will motivate this claim in
Chapter 2.

As far as the core is concerned, a new generation of estimation tools is
needed. In fact, the characteristics of contemporary applications are making
the current tool impractical to use. Applications are becoming larger, more
complex and more dynamic, and the software estimation techniques are not
keeping the pace. I will provide details for all of these claims in the next
sections.

With respect to the problem of estimating the software energy consump-
tion and execution time for the processor cores, designers need tools which
satisfy the following requirements:

1. source level;

2. fine detail;

3. dynamic;

4. fast.

The following paragraphs clarify what I mean by each of the above re-
quirements. Chapter 2 will show that none of the current approaches satisfy
all the above requirements at the same time. Throughout all this thesis, the
choices I will make while designing my methodology will be guided and
constrained by the above requirements.

Source-level analysis: developers write code mostly in high level lan-
guages, rather than in assembly languages. Tools must be able to provide
estimates at the same level of abstraction: the source code entities. Tools
should be able to indicate how much energy consumption was caused by
elements which appear in the source code. Techniques which cannot relate
time and energy estimates to source-level entities are of little practical usabil-
ity.

Fine detail: the “hot spots” of programs (i.e. the portions which cause
the most energy and time consumption) are typically kernels of operations
inside loop bodies. Tools must be able to provide estimates at a degree of
detail which allow to resolve the single operation or cluster of operations.
Rougher detail levels (i.e. the function) are insufficient. Techniques which
cannot resolve this level of detail are insufficient for the contemporary and
future needs.

Dynamic: modern applications are becoming more and more dynamic
in nature. The behavior of multimedia encoders and decoders depend more
and more on the contents of the streams they process, and applications from
many other domains like wireless and gaming show the same trends. The
variability in the behavior of algorithms is high and increasing, and it makes
static estimation techniques unfit for the purpose. Estimation tools must be
able to keep the actual input data into account.

Fast: the size and complexity of modern embedded applications is in-
creasing significantly. Nowadays the simulation of an application of non-
trivial complexity at the circuit or gate-level is unaffordable. Instruction-
level simulation of contemporary video encoders may take days, even for

1.2. DESIGNING EMBEDDED SOFTWARE IS GETTING DIFFICULT 23

short sequences. In the future, simulation at the instruction level will be-
come not affordable anymore1. Whichever estimation technique requires cy-
cle accuracy or close-to-cycle accuracy is doomed to obsolescence quite soon.
Estimation techniques with a higher performance are required, even at the
expenses of inferior accuracy.

All of the above constraints must be met while keeping a reasonable es-
timation accuracy. Relative accuracy is important especially when designers
need to compare alternative solutions. Absolute accuracy is important espe-
cially when designers want to evaluate the performance of the same algo-
rithm on different architectures.

Unfortunately, as the sections dedicated to the related work will show,
none of the approaches currently available tackle appropriately all the above
requirements at the same time. For example, instruction-set simulation does
not fulfill the speed and source-level requirements. Static timing analysis
does not fulfill the dynamism requirement. Current source-level techniques
and black-box techniques do not satisfy the detail requirement. An informal
summary of the above considerations is given by the table below:

source fine dynamic fast
level detail

static techniques no
instruction set simulation (ISS) no no
ISS with counter sampling no no
current source-level no
black-box techniques no no

This thesis is dedicated to the research of an estimation technique which
fulfills the above requirements.

1.2 Designing embedded software is getting
more and more difficult

In the previous section, I derived the requirements for this research starting
from designers’ needs. This section is devoted to clarifying and motivating
these needs.

In the last forty years we have assisted to a sustained growth in the abil-
ity of silicon manufacturers to fit more and more transistors in the same area,
and to raise the clock frequency of their devices. The processing power made

1I have expressed the belief that there is a long-term drift toward higher levels in sys-
tem simulation. I believe the reason is the following: the complexity of systems is grow-
ing faster than our capacity to simulate them, therefore a shift to-wards higher abstraction
levels, where less details need to be simulated, is needed. I have been requested to com-
ment on this. My interlocutors’ belief is that the increasing complexity of simulating more
complex systems could be counterbalanced by the increasing amount of computational
power that these systems make available. I do not subscribe to this point of view. My
forecasts will be certainly either proved or disproved in a twenty-year span.

24 CHAPTER 1. OVERVIEW

10,000,000,000

1,000,000,000

100,000,000

10,000,000

1,000,000

100,000

10,000

2,300

N
um

be
r o

f t
ra

ns
is

to
rs

 o
n

an
 in

te
gr

at
ed

 c
irc

ui
t

1971 1980 1990 2000 2004
Year

4004
8008

8080

8086

286
386

486

Pentium
Pentium II

Pentium II

Itanium
Pentium 4

Itanium 2

Itanium 2
(9 MB cache)

Number o
f tr

ansist
ors d

oublin
g every

 24 months.

Number
of tr

an
sis

tors
doublin

g ev
ery

 18
 m

onths.

Figure 1.1: Growth of transistor counts for Intel processors (dots) and the
Moore’s Law (dashed line) with a 18-month and 24-month doubling period.

available by microprocessors and programmable devices grew accordingly.
Gordon E. Moore was the first, in 1965 to recognize [1] that the transistor
density was growing exponentially over the years, and to capture this ob-
servation in his famous “law”, originally formulated as: «The complexity
for minimum component costs has increased at a rate of roughly a factor
of two per year». Moore’s law and its less orthodox corollaries, which ex-
tend its predictions also on clock frequencies, process feature size, processing
power (measured according to arbitrary benchmarks), and RAM capacities,
still seem to hold on, even though undergoing a number of revisions through
the years [2, 3].

There has been, and still there is, a number of potential threats which
challenge the almost prophetic beneficial effects of this law in the coming
future, mainly technological barriers such as power consumption, heat dis-
sipation, and the approaching of atomic dimensions [5]. Nevertheless, the
International Technology Road-map for Semiconductors [4], still estimates
for the period 2003–2009 an exponential growth trend for the “functions per
chip at introduction” (measured in millions of transistors), with an annual
increase equal to 26%, which leads to doubling this quantity every 3 years.

One of the consequences of the availability of more and more compu-
tational power on a single chip in the embedded systems field was the dif-

1.2. DESIGNING EMBEDDED SOFTWARE IS GETTING DIFFICULT 25

fusion, on portable devices, of a number of complex and computationally
heavy applications, which were previously possible on higher-performance
systems. The availability of higher computing power and storage densities
on portable terminals has enabled, in 1990s, the migration of a number of
applications from analog to digital platforms, e.g. the switch from the first-
to the second- generation cellular mobile telephony systems (such as ETACS
and GSM respectively in Europe). The same effect is currently driving the
migration to the third-generation mobile communications (e.g. the UMTS
system [7]), which enable the delivery to user terminals of services such as
full-motion video, Internet access, and videoconferencing; or the digital au-
dio and video broadcasting (DAB and DVB-T). In the meanwhile, researchers
are facing the challenges of fourth generation mobile platforms, which will
have even more complex and dynamic algorithms.

At the same time, video players for DVDs and for high-compression digi-
tal formats (such as DivX), which were once available only as appliances, are
now starting to appear in the form of portable devices. In the current and
future years, developers will face the new challenges associated to the real-
ization of portable devices able to deliver more and more complex contents,
such as synthetic video flows, content-based manipulation, animated mixed
media, for example as specified in the numerous parts of the MPEG-4 stan-
dard [8, 9]. The growth in the scale, complexity and flexibility of the appli-
cations that the designers want to implement on portable, battery-powered
embedded systems is impressive.

Additionally, there is an increasing demand in the connectivity and inter-
operability of personal devices: more and more systems come now equipped
with wireless devices on board, such as 802.11 wireless LAN [10] network
adapters, or Bluetooth [11] personal area network adapters. Such a dynamic
communication scenario introduces additional challenges, because modula-
tion methods are becoming more and more complex and refined, to max-
imize signal-to-noise ration, bandwidth, range, spectrum usage and noise
immunity, whereas communication protocols are increasing their complex-
ity to serve the increased demands in flexibility, mobility, interoperability
and security. In detail, modulation standards are evolving in order to better
exploit the spectrum slices where less noise is present (e.g. with orthogonal
frequency-division multiplexing, OFDM), and they are employing multiple
transmitter and receiver antennas (multiple-input multiple-output, MIMO)
to increase the data throughput (by exploiting spatial multiplexing) or to in-
crease the range (by exploiting spatial diversity). Both OFDM and MIMO
are part of a future extension to the 802.11 standard, on which the IEEE an-
nounced to start working in January 2004. On the other hand, new proposals
are reaching maturity which try to adapt the current network protocols to
new applications (such as sensor networks) or to extend the flexibility of the
current ones, for example to allow the dynamic adaptive routing of packets
over ad-hoc wireless networks, whose topology changes over time with the
dynamic addition, leave and mobility of participants.

One of the main threat to the feasibility of products exploiting the new
technologies and applications presented above is the increased importance
of their computational requirements, which immediately impacts on their

26 CHAPTER 1. OVERVIEW

energy consumption. Energy consumption has always been a parameter
of extreme criticality in the design of all the embedded systems which de-
pend on a limited source of energy. And in the above scenario, the energy-
efficiency of the software components is dramatically more important than
in the past. The degree of energy optimization of the software running on
a battery-powered embedded device can determine its commercial success,
and in cases indeed its feasibility. It is out of question that even a feature-rich
portable product would be scarcely appealing to the customers, if its battery
lifetime is short enough to makes it unusable.

The estimation of the energy demands of an innovative application is
dramatically more difficult than it used to be years ago. In the past, when
the first digital embedded system employed no or little software (written in
assembly language), the estimation of their consumed power depending on
the the different possible operating conditions was a moderately simple task,
involving for the largest part considerations at the analog electronics level.
Nowadays, embedded system comprise large software components, written
in high level languages, which often include a complete operating system
with a network stack and a middleware layer, and the load imposed on the
system by modern applications such as the decoding of natural or synthetic
video sequences, is extremely dependent on the data, and largely variable
over different conditions.

Despite the criticality of this task, embedded software designers have
limited means to evaluate the performance of their software and, conse-
quently, to explore and compare optimization alternatives. Traditionally,
they employ power-enabled architecture simulators or instruction-level sim-
ulators in order to obtain execution time and consumed energy estimates for
the software they write (I report a complete review of these tools in Chapter
2). These tools provide accurate estimates, but they are very slow: their sim-
ulation times can be hundreds to tens of thousands time slower than their
actual execution times. In such a scenario it is difficult for the designer to
operate alternative choices among different libraries, algorithms, implemen-
tation alternatives, optimization techniques. Additionally, the slowness of
instruction-level simulation techniques practically prevents the performance
evaluation of very complex applications: simulating the decoding of a few
video frames encoded according to the novel standards may require many
hours of computation on the fastest workstations. Simulating the decoding
of a complete typical movie could require months. Simulating the decoding
of different movies would require years. This makes practically unfeasible
the estimation of the system workload in the average- and worst-case sce-
narios, because this would require unacceptable simulation times.

Additionally, instruction-level tools provide estimates which are mean-
ingful at the instruction level, whereas the complexity of contemporary ap-
plication has forced developers to abandon almost completely the coding
in assembly language. Embedded software developers now write code in
high level languages. Due to the advent of complex architectures featur-
ing deep pipelines, superscalarity and wide-issue or VLIW, the compilation
steps from high-level languages to assembly has become less and less in-
tuitive and transparent, and developers encounter increasing difficulties in

1.3. WHY I CHOOSE THE C LANGUAGE 27

Language Number of lines Percentage
of source code

1 C 21461450 71.18%
2 C++ 4575907 15.18%
3 Shell (Bourne-like) 793238 2.63%
4 Lisp 722430 2.40%
5 Assembly 565536 1.88%
6 Perl 562900 1.87%
7 Fortran 493297 1.64%
8 Python 285050 0.95%
9 Tcl 213014 0.71%

10 Java 147285 0.49%
11 yacc/bison 122325 0.41%
12 Expect 103701 0.34%
13 lex/flex 41967 0.14%
14 awk/gawk 17431 0.06%
15 Objective-C 14645 0.05%
16 Ada 13200 0.04%
17 C shell 10753 0.04%
18 Pascal 4045 0.01%
19 sed 3940 0.01%

Table 1.1: The various programming languages, sorted by the total number
of source lines of code, in a representative Linux distribution [12].

interpreting instruction-level estimates obtained by the above tools.
The gap between the source and the assembly level increases, and the

burden of bridging this gap in order to understand how to optimize the
source code is entirely on the developer’s shoulders. Additionally, source-
level transformations have been shown to produce the highest energy gains.
All these reasons motivate the crucial need for source-level, fine-detailed,
fast, dynamic and accurate software estimation engines.

1.3 Why I choose the C language
A source-level estimation technique relates its estimates to entities in a source
code, and a source code is a program, written in some programming lan-
guage. Therefore, the choice of the programming language in which the
source code is described is a crucial element for this technique.

The technique I propose is largely independent from the language to
which it is applied. Although I show an instance of this technique which
applies specifically to the C programming language, the technique does not
rely on any specific feature which is provided by C only. Porting the same
technique to another language, especially imperative languages is, in most
cases, just a matter of syntactic flavors.

28 CHAPTER 1. OVERVIEW

Nevertheless, the choice of the C language for the particular instance
of the technique which I show in this thesis demands some justification. I
choose C because it is currently the most widely used programming lan-
guage in the embedded design community.

Table 1.1 lists the programming languages present in a popular Linux dis-
tribution, sorted by relevance (measured in physical lines of code), published
in a 2001 study by Wheeler [12]. It may be argued that a Linux distribution
is not a representative embedded application, and that even if it was, it is
not representative of the market. Nevertheless, these are significant figures
because they are measured in an objective, quantitative, non-debatable way,
and because Linux (in its flavors) is one of the leading operating systems in
the embedded design community, and more and more embedded systems
feature some Linux distributions.

The study comments on the predominance of C, forecasts that this pre-
dominance is not to disappear soon, and motivates why:

«[...] C is pre-eminent (with over 71% of the code), followed by
C++, shell, LISP, assembly, Perl, Fortran, and Python. Some of
the languages with smaller counts (such as objective-C and Ada)
show up primarily as test cases or bindings to support users of
those languages. [...]

C++ has about 4.5 million lines of code, a very respectable show-
ing, but is far less than C (over 21 million SLOC2). Still, there’s
increasing use of C++ code; in the last survey, C had 80.55% and
C++ had 7.51%. There is slightly less C code in the total percent-
age of code, most of which is being taken by C++. One could ask
why there’s so much more C code, particularly against C++. One
possible argument is that well-written C++ takes fewer lines of
code than does C; while this is often true, that’s unlikely to en-
tirely explain this. Another important factor is that many of the
larger programs were written before C++ became widely used,
and no one wishes to rewrite their C programs into C++. Also,
there are a significant number of software developers who prefer
C over C++ (e.g., due to simplicity of understanding the entire
language), which would certainly affect these numbers. There
have been several efforts in the past to switch from C to C++
in the Linux kernel, and they have all failed (for a variety of
reasons).»[12]

The above figures and comments suggest that the residual useful life of the
C language is still long, and that a software estimation technique based on
C (like the one proposed here) will be of great practical usefulness still for a
long time to come. Were this not enough, the most important competitor of
C is C++, and I will show in Section 5.3.1 (page 242) that the technique de-
scribed in this thesis is extensible also to C++ with no significant conceptual
difficulties, and with a reasonable effort.

2SLOC = physical Source Lines Of Code

1.4. THE FUNDAMENTAL APPROACH OF THIS THESIS 29

To learn more in the exact version of the standard I choose to adopt for
the implementation of the tools associated with this thesis, refer to Section
3.3.2.1 (page 81).

1.4 The fundamental approach of this thesis
In this section I provide a quick overview of my approach. I summarize its
fundamental steps and motivate their choice in terms of the requirements
expressed in Section 1.1 (page 21). The same reasoning is also summarized
in Figure 1.2.

First, from now on I will generally use the term cost to denote execu-
tion time and energy consumption. Executing an instruction will cause some
cost. Executing the assembly translation of a source code will have a cost. Ex-
ecuting an entire program with given data on a given architecture will have
a cost. All this thesis is about cost, in this sense.

The ‘source level’ and ‘fine detail’ requirements constrain the estimation
technique to provide results to the user at a precise abstraction level. The
fundamental entities of this level must be the source-level objects in terms of
which the designer thinks his program. This entities are identifiers, opera-
tors, expressions, statements, functions. The best representation for informa-
tion at this abstraction level is the Abstract Syntax Tree (AST). A decorated
AST is the perfect container for all the information that the methodology
needs to collect, produce, store and report. For this reason, the entire tech-
nique will be AST-centric.

The AST level is also the perfect point where to make a “divide and con-
quer” operation. Although it is not generally true that the execution of the
same portion of code leads to the same time and energy time consumption,
this assumption leads to negligible estimation errors, which are statistically
obliterated. This assumption is of great help to our approach. I express it
more precisely in the following way:

Ci = ni · ci

the total cost Ci of executing a given AST node i shall be the
product of ni, the number of times it was executed (i.e. its exe-
cution count, or profile), and ci, its single-execution cost.

This assumption allows me to split the problem of determining Ci into the
two separate subproblems of determining ci and ni.

The determination of ci needs not to be dynamic (thanks to the above as-
sumption) and is, in the end, an arbitrarily complex static analysis of the AST.
The technique I choose to adopt for this specific task is based on a multi-visit
attribute grammar over the AST. It is probably the main single contribution
of this thesis, and Chapter 4 is entirely dedicated to its description.

The task of determining ni could be carried out exactly or, worst-case
bounds could be found for it. Since modern applications are becoming more
and more dynamic in nature, worst-case estimates are not representative of

30 CHAPTER 1. OVERVIEW

Designers describe
software in high level
languages rather than

assembly.

The major causes of
consumption are

inside “small”
elements of the code.

Applications are
becoming more and

more dynamic in
nature.

The size and
complexity of
applications is

growing rapidly.

Context:

Requirements:

Source level Fine detail Dynamic Fast

The AST (Abstract
Syntax Tree) is the
preferred program

representation.

Decisions:

Determine the cost of
an AST node as:

Ci = ci · ni

divide and conquer

Determine ni exactly
rather than doing a
worst-case analysis.

Determine ci via a
convenient analysis

of the AST.

Determine ni via
source-level

instrumentation
rather than slower

techniques.

Fundamental approach:

Figure 1.2: How the fundamental approach of this thesis derives from the
designers’ requirements which, in turn, derive from the current context in
the embedded design scenario.

the actual system properties anymore. This is the spirit of the ‘dynamic’ re-
quirements. Therefore, ni should be determined exactly. This could be done
at many layer of abstraction, but at the lower ones, this operation is computa-
tionally too demanding. As motivated before, for many modern applications
instruction-level simulation is not a viable choice. For this reason, I choose
to employ a source-level instrumentation technique which exhibits minimal
overheads still allowing the exact determination of all the ni. I propose an
optimal source-level instrumentation technique which allows the determi-
nation of all the ni, but which requires the insertion of one probe every gen-
eralized basic block (I will define this term later). I will show that simulation
of source-level instrumented code is on the average 10,000 times faster than
instruction-level simulation, and only 2 times slower than the execution of
the same program at natural full speed, i.e. without any instrumentation.

As a consequence of this line of reasoning, the desired technique (which

1.5. MANY TECHNIQUES ARE POSSIBLE, JUST ONE IS CHOSEN 31

is the objective of this thesis) should accept inputs, yield outputs, and be
composed as I describe below.

The technique shall get as inputs:

• the source code which the developer wants to analyze;

• a corresponding set of input data which the source code accepts;

• a description of the compiler, at an appropriate level of abstraction;

• a description of the architecture and its energy/time consumption.

It shall yield as output an estimation of the energy and time consumed
by each individual AST node in the source code.

It shall be composed of three fundamental phases:

1. cost analysis,

2. profiling,

3. collect.

More detailed explanations of the above steps follow.
In the ‘cost analysis’ phase, the source code is parsed and its AST deter-

mined. Then, a static analysis decorates each node with appropriated cost
terms. These contributions may be expressed in a variety of forms and ab-
straction levels, on which I do not need to comment now. The choice of ap-
propriate levels of abstraction for expressing costs is subject to some degree
of freedom, and demands a thorough discussion, that I prefer to postpone.
The definition of source-level cost terms and their attribution rules is, in fact,
the most significant contribution of this thesis.

In the ‘profiling’ phase, the execution count of each AST node is deter-
mined by compiling and running an source-level instrumented version of the
original program. This instrumented program is run with real input data.

In the ‘collect’ phase, Ci terms are determined as the product of ci and ni
terms, determined above. Then, ci costs are translated from the abstract units
in which they are expressed, to physical units of time and energy (seconds
and Joules). Also, statistical corrections may be applied to take into account
second-order effects which are not accounted by the previous steps or are
neglected by the above “divide and conquer” approach.

1.5 Many techniques are possible, just one is
chosen

The above general approach allows many degrees of freedom. Many estima-
tion techniques may be built, which all show the above general approach.
I choose to develop and describe in detail just one of them, for reasons of
time, simplicity and incrementality. In this section I detail and motivate this
choice.

32 CHAPTER 1. OVERVIEW

Si
m

pl
ic

ity
 /

St
at

ic
 S

pe
ed

Accuracy

constant per-operator
cost contribution

actual compilation
performed

more statistical
corrections

more stages
modelled exactly

...

simplistic compiler
modeling

abstract translation
and execution model

“You are here”

...

...

...

Figure 1.3: Even after discarding the non-Pareto-optimal ones, many tech-
niques are possible within our fundamental approach. They exhibit differ-
ent trade-offs between static speed and accuracy. In this thesis I choose one,
which is based on a model of the architecture and of the compiler.

The ‘cost analysis’ step described above may be carried out in a very
broad variety of ways. The very purpose of this step is to model how the
source code contributes to spending time and energy when executed on the
target processor. This is a complex process, which involves modeling how
the compiler and the architecture work. Different approaches may be chosen
in order to model the compiler and the architecture. For each of the stages
which compose the compiler, and for each of the considered architectural
components (provided that the technique remains ‘fast’), one may choose to
account exactly for the components’ behavior, or to summarize its behavior
in a small set of statistically-tuned parameters, or to model one of the many
possible abstractions that lay between these two extremes.

More detailed models are more complex (therefore more difficult to build
and to maintain, and slower to execute), but they may ensure better accuracy.
All the possible modeling choices can be represented in a complexity/accu-
racy space. Among these models, the ones which are non-Pareto-optimal do
not deserve any further attention, because they are surpassed by some other
model in both the objectives. The remaining ones generate a discrete (very
large) set of models which I intuitively represent in Figure 1.3.

The space and time allowed by a doctoral thesis permit the complete
analysis of just one of these many points. I choose to focus my attention on
single-issue architectures. The fundamental approach presented here can be
extended also to more complex architectures. I have recently worked on an
extended version of the estimation technique presented here, which is able to

1.5. MANY TECHNIQUES ARE POSSIBLE, JUST ONE IS CHOSEN 33

Source code Atoms

Source code level:

Instruction level:

Assembly code Abstract
instructions

Physical level:

Actual execution Physical time (s)
and energy (J).

mapping depends only on
language (compiler- and

architecture- independent)

mapping depends only
on compiler

(architecture- independent)

mapping depends
only on architecture

Figure 1.4: The physical occurrence of cost (time, energy) is a complex pro-
cess, depending on language, compiler and architecture. In order to tackle
one problem at a time, I introduce atoms and abstract instructions.

perform source-level estimation for VLIW architectures and data-level paral-
lel architectures. I will not support these claim in this documents, as it would
require too much time and space.

Single-issue architectures allow assumptions which facilitate modeling:
more precisely, it is possible and convenient to model their instruction set in
terms of smaller terms named abstract instructions, such that an abstract in-
struction represents at the same time a time and an energy contribution. For
these architectures, it is true (with a negligible error) that abstract instruc-
tions are additive. Therefore, executing two sequential abstract instructions
will cause a cumulative latency which is the sum of the latencies of the two
sequential instructions, and an energy consumption which is the sum of the
energies of the two abstract instructions.

For my convenience, I introduce an additional abstraction layer: the
atoms. An atom is a source-level cost term, which represents the cost (of
a portion of it) of executing a given source code element. Atoms are, in a
way, the source-level unit of measurement of cost. The rules which deter-
mine what is the cost of an AST node expressed in atoms are compiler- and
architecture-independent.

Thanks to abstract instructions and atoms, it is possible to account for the

34 CHAPTER 1. OVERVIEW

&&

|| j

|| &&

if

g ||&&

a <

e

=

d ==

a +

b c

=

g =

e <<

f 2

h i

b +

c d

...

if ((a && (b<c+d) ||
 e || g && (h||i))
 && j)
{

d = (a == b+c);
}
else
{

g = e = f << 2;
}

...

Input
source
code

Abstract
syntax
tree

&& Node N
17

Execution cost
C

17
=n

17
· c

17
= 4327 LogicTop

Single-execution cost
c

17
=1 LogicTop

Execution count
n

17
=4327

Atoms

Abstract
instructions

Abstract
translation

model

... =...
LogicLeaf =1 jump
LogicTop =1 alul + 0.5 jump
Switch =2 alul + 1 jump
If =1 jump
Break =1 jump
... =... Execution cost

C
17

=n
17

· c
17

= 4327 alul + 2163.5 jump

Time and
energy

Target
Platform

Characterization

... =...
alul =(178 mA, 1.715 cycles)
jump =(170 mA, 1.0 cycles)
... =...

Execution cost
C

17
=n

17
· c

17
= (1.311 ms, 471.8 µJ)

Figure 1.5: Abstraction levels involved in this methodology.

entire compilation and execution one element at a time, in a ‘divide and con-
quer’ style. Figure 1.4 depicts this concept. My technique associates atoms
to AST nodes by just considering its language model, then translates atoms
to abstract instructions by only considering its compiler model, finally it con-
verts abstract instructions into time and energy values by only considering

1.6. THE FINAL OBJECTIVE OF THIS THESIS 35

its architecture model. An example of this process is given in Figure 1.5.

1.6 The final objective of this thesis
In the light of all the above considerations,

this thesis researches a source-level, fine-detailed, dynamic and
fast technique to estimate the execution time and the energy con-
sumed by a given single-issue processor core when executing a
program written in the C language, running on given input data.

The technique must comprise appropriate tools to support the estimation of
the performance of realistic projects without need for modifications by the
developer, and appropriate visualization tools which allow the inspection
of the source code in search for the most resource-consuming portions. The
methodology should be able to suggest which are the most beneficial source-
level transformations to apply to a given project, and where to apply them.

1.7 Advantages of this approach
The approach proposed here offers a number of advantages with respect to
its competitors:

• faster-than-real-time speed:
the optimized source-level instrumentation technique I propose and
employ for profiling impacts minimally on the speed of the instru-
mented program: profiling times are on the average 10 000 times
shorter than ISS simulation times (when run on the same platform),
and only 2.2 longer than the original, non-instrumented executables.
Additionally, source-level profiling provides to users the possibility
to profile their source code on a generic simulation platform which
does not need to be the target platform. These two features, combined,
allow to completely decouple the profiling speed on the simulation
platform from the execution speed on the target platform. Since de-
velopers typically employ simulation workstations which are at least
one order of magnitude faster than the embedded platforms for which
their applications are targeted, this results in a simulation speed which
can be actually faster than real-time;

• high level of abstraction:
instruction-level estimation techniques can provide information at the
level of the microprocessor’s instruction, instead this technique pro-
vides estimates for each element of the original source code. There is
a fundamental difference in the level of abstraction and the usability
of the two pieces of information. The former is loosely coupled with
the source code on which the programmer is working, and its usabil-
ity for exploring the optimization space relies on the programmer’s
deep understanding of the target assembly language and insight on

36 CHAPTER 1. OVERVIEW

the compiler’s behavior. The latter, on the other side, is immediately
usable. Souce-level estimation provides estimates for operators, at the
same level of abstraction at which the user is thinking.

• silicon not required:
users do not need the physical availability of their target platform. In
fact, in order to be usable for estimation with respect to a given target
platform, our methodology just needs an appropriate set of statistical
parameters which describe that platform. Target specialists can de-
termine these parameters and made them publicly available, enabling
any developers to estimate and optimize their software for the target
platform, even when the platform has not been released and without
disclosing any intellectual property;

• build toolchain not required:
source-level estimation is the only technique which yields accurate es-
timates for a specific scenario (with a given datapath width, given reg-
ister width and length, ...) even when an entire toolchain (compiler,
linker, simulator, instruction-level power model) is not available for
the given scenario;

• purely symbolic evaluation possible:
unlike any instruction-level simulation technique, this source-level es-
timation technique can provide architecture-independent estimates.
These estimates allow the comparison of different implementations of
the same algorithm, and allow the exploration of optimizations that
improve the performance of the source code independently from the
underlying architecture;

• integration with library and operating system call estimation flows:
a source-level estimation technique needs to appropriately interface
with other techniques designed to estimate portions of the software
whose source code may not be available (libraries, operating system).
The technique I present provides a seamless way to integrate the re-
sults of such estimation flows.

1.8 Frequently raised objections

When working in a research area which is populated and has been thor-
oughly investigated in the past, it is often difficult to convince one’s own
audience about the novelty of his approach and its soundness. Energy es-
timation for embedded system is for sure such a field. Additionally, in the
specific topic covered by this thesis, research papers often “overclaim” their
accomplishments in their titles, with respect to the actual contribution de-
scribed in their texts. This practice pollutes the research concept space, in-
ducing the idea that a problem was effectively solved when it was in fact just
described, or tackled incompletely.

1.8. FREQUENTLY RAISED OBJECTIONS 37

This section is designed to help reviewers not being mislead by these
practices, and to anticipate criticism. It is therefore structured as a “Fre-
quently Asked Questions” section of a manual. It is written in an informal,
straight-to-the-point style. The reader will indulge me, as long as my claims
are correct and motivated.

1.8.1 «Your novel contribution is not quite clear»
This work has novelty in its objective, in its method and in its results. The
scientific merit is obviously in the method. This technique is the first work
which attempts the definition of source-level cost terms, and which defines
a set of rules, based on the language semantics, which determine this cost.

1.8.2 «Source-level estimation has already been done!»
Yes and no. The matter is ambiguous. It all depends on how you define
“source-level estimation”. Since this ambiguity is a potential danger to un-
derstanding the contribution of this thesis, then I prefer to disambiguate the
term.

I motivated above why designers need a technique to characterize fine-
grained elements of the source code, and such technique must rely on a
source-level simulation (i.e. it must be fast). Because of this need, I de-
fine “source-level estimation” the ability to provide individual estimates for
each source code entity, obtained while performing simulations at the source
level.

Accordingly with this definition, this thesis presents the first source
level estimation technique. No other techniques before have provided fine-
grained estimates without resorting to lower level simulations (typically, the
instruction level). On the other hand, all the techniques which employed
source-level simulations, were unable to characterize fine elements (typi-
cally, the C function).

The terminology is debatable, you may apply broader definitions of the
“source-level estimation” term. In this case, a number of works in literature
may be considered to have already applied this technique. Nevertheless, the
above considerations must be kept clearly in mind, otherwise the novel con-
tribution of this work is neglected just for lack of precision in terminology.

1.8.3 «Your approach is too limited»
This thesis presents a broad methodology which may apply to a variety of
architectures, but it details only one instance of the possible methods which
may derive from it. This instance is especially suited for single-issue proces-
sors. I did that because I wanted to stick to a good principle: do one thing,
do it well.

I claim that a solid but narrow theoretical foundation which may be ex-
tended with some effort is more desirable than than a set of broader but less
solid foundations. It is clear that in the scope and duration of a single Ph.D.
thesis it is impossible to achieve breadth and solidity at the same time. That

38 CHAPTER 1. OVERVIEW

is obviously the ideal goal, but not practically achievable. To some extent,
generality can be traded with accuracy, and I have chosen to privilege accu-
racy.

1.9 Estimation: A motivational example

This section illustrates how the technique applies on a practical example.
Consider the following fragment of code, taken from a real FFT imple-

mentation [150]:

74 for (i=rev=0; i < NumBits; i++)
75 {
76 rev = (rev << 1) | (index & 1);
77 index >>= 1;
78 }

With our technique, the designer obtains estimates for the loop, for each line
of code (as shown in Figure 1.6), and he can also go further into the details
of this view and inspect the consumptions of individual constructs and op-
erators (such as ‘<<’).

Figure 1.6: This technique allows to estimate the cost of individual loops,
lines of code, and finer details, such as individual constructs and operators.

Currently, no other approach to the problem can provide source-level es-
timates at this fine granularity and with this speed. I motivate this claim
in Chapter 2, by comparing this approach with the state of the art. Now I
briefly explain how this result is obtained. First, the above code is parsed,
thus yielding obtaining the AST in Figure 1.7. Then, for each of the above
AST nodes i, the single-execution cost ci is determined via a multi-visit at-
tribute, described in Chapter 4). ci is initially expressed as a sum of atoms.
Atoms are language-level cost terms, independent from the compiler and
the architecture, which represent the contribution to consumption of all the
constructs and operators of the C language. Atoms are attributed to nodes
depending on the context, analyzed in the attribute grammar.

Atoms have context-independent translation: given a compiler, a transla-
tion comprises always the same count and class of abstract instructions. The
actual atoms added per each syntax node of the previous code fragment are
listed below (nodes not listed have zero cost):

1.9. ESTIMATION: A MOTIVATIONAL EXAMPLE 39

#140:
Statement For

#118:
Operator =

#114:
Terminal “i”

#117:
Operator =

#115:
Terminal “rev”

#116:
Terminal “0”

#121:
Operator <

#119:
Terminal “i”

#120:
Term. “NumBits”

#123:
Operator ++

#122:
Terminal “i”

#139:
Compound Stmt

#133:
Statement

#132:
Operator =

#124:
Terminal “rev”

#131:
Operator |

#127:
Operator <<

#125:
Terminal “rev”

#126:
Terminal “1”

#130:
Operator &

#128:
Terminal “index”

#129:
Terminal “1”

#138:
Statement

#137:
Operator >>=

#128:
Terminal “index”

#129:
Terminal “1”

Figure 1.7: The abstract syntax tree corresponding to the sample fragment of
code.

Node Line Atoms

#117 74 1 Assignment
#118 74 1 Assignment
#121 74 1 IntCompare
#123 74 1 IntAdd
#139 75 1 For
#127 76 1 BitwiseShift
#130 76 1 BitwiseOperation
#131 76 1 BitwiseOperation
#137 77 1 BitwiseShift

The attribute grammar evaluates the nodes’ consumption exploiting all the
contextual information such as type of variable and expressions, constancy,
assignment direction, size of the transferred data and others. This is why
two instances of the same operator (e.g. assignments in nodes #118 and #132
above) may have different costs, depending on their context.

Then, ci terms are converted by mapping their atoms into abstract in-
structions. This mapping is general, but it can be arbitrarily specialized
by amending it with architecture-dependent corrections, which account for
instruction- and data-level parallelism. In the case of an ARM processor, it is
as straightforward as follows:

40 CHAPTER 1. OVERVIEW

Node Line Abstract instructions

#117 74 1 alul
#118 74 1 alul
#121 74 1 cmpl
#123 74 1 alul
#139 75 1 jump
#127 76 1 alul
#130 76 1 alul
#131 76 1 alul
#137 77 1 alul

Then, I instrument the code and I run it with real inputs to obtain the
execution count ni for each node. The usage of real input data is an advan-
tage over static techniques, which either always assume the worst case, or
interrogate the user. Finally, I determine each node’s global execution cost
Ci = ni · ci.

From the cost of each node in terms of classes of abstract instructions, the
‘collect’ phase determines the consumed time, energy and memory footprint
for each node and line of code, also accumulating estimates for the library
and operating system calls provided by an external library estimation flow,
thereby obtaining the view presented at the beginning of this section.

1.10 Source-level estimation can speed up op-
timization

In the previous sections I have introduced the novel estimation technique
presented in this thesis. In this section, I discuss how this technique can en-
able a new generation of short-loop methodologies to explore the optimiza-
tion space of source-level transformations. The proposed approach is espe-
cially suited for local transformations which exhibit negligible inter-effects.

Given the increasing importance of pervasive computing applications
(e.g. ubiquitous computing, sensor networks, intelligent patches, etc.), and
their stringent energy budgets, the efficiency of embedded software is a crit-
ical parameter. The degree of optimization of embedded software can deter-
mine the commercial success, and in cases indeed the feasibility of battery-
operated products. As said before, the majority of embedded software de-
velopers does not write assembly code anymore. They employ high-level
languages, mainly C, for reasons of portability, ease of debugging and main-
tainability. Unfortunately, the degree of optimization provided by conven-
tional compilers for these high-level languages is much lower than writing
efficient source code. Source-level transformations have been extensively
studied as a means to reach this desired degree of optimization. They are
not only highly portable, but have been proved to provide a much larger
scope for performance improvements than any other low-level technique.

Nevertheless, selecting which transformations to apply –and where– is
still an effort-intensive task, especially for modern, large-sized applications.
From now on, I call transformation steering this task of selecting and targeting
transformations.

1.10. SOURCE-LEVEL ESTIMATION CAN SPEED UP OPTIMIZATION 41

Embedded software designers have limited means to explore the opti-
mization space of source-level transformations. Optimization flows are often
based on instruction set simulation (ISS), which exhibits unacceptable simu-
lation times with modern applications. These flows have a long exploration
loop: in order to use them, the developer must iterate many slow steps,
mainly target compilation and instruction set simulation, as depicted in Fig-
ure 1.8(a). I will provide a complete discussion on these these approaches in
Section 2.2 (page 58).

Thanks to the availability of source-level estimation techniques like the
one presented in this thesis, I claim that it is possible to realize a short explo-
ration loop, like the one in 1.8(b).

Front-end

Transformation
steering

Compiler

Instruction set
simulator

Instruction-level
profiles

Initial source code

Transformation
application

Influence metrics

Optimized
 source code

lo
ng

 e
xp

lo
ra

tio
n

lo
op

Optimized
 object code

Source-level
estimation

Compiler

Initial source code

Transformation
steering

Optimized
 source code

Optimized
 object code

Source-level
profiles

Transformation
applicationsh

or
t e

xp
lo

ra
tio

n
lo

op

Previous approaches This approach

(a) (b)

Influence metrics

Figure 1.8: This approach allows a much shorter and quicker exploration
loop, thanks to the use of source-level profiles in place of assembly-level pro-
files.

42 CHAPTER 1. OVERVIEW

In the current state-of-the art, methodologies and tools for all the blocks
in Figure 1.8(b) are present, except for the block “Transformation steering”
block. Without this block, designers must either resort to ISS-based tools,
which are too slow for modern applications, or perform transformation
steering by hand, which is also impractical due to their large size. Here, I
propose a methodology to fill this gap, automatically performing the trans-
formation steering, on the basis of the source code of the program, and its
source-level profiles. My approach generates a set of optimization guide-
lines specifying which transformations to apply and where to apply them.

1.11 Optimization: A motivational example

In order to provide a quick overview of the possibilities offered by this tech-
nique, I show how it is applied on a sample benchmark. As a benchmark,
I employ a computer-vision application: a Hough transform used to detect
vertical lines in panoramic images captured from conical mirrors. I import
the benchmark project in the source-level estimation flow. After setting the
architectural parameters and running the estimation, the time and energy
estimates per line of code, as shown in the screenshot in Figure 1.9.

Figure 1.9: Time and energy estimates for a critical section of the example
benchmark, as reported by the source-level estimation flow.

The source-level estimation of the entire project on a realistic input image
takes less than a second on a modern workstation, and the following time
and energy consumption figures are returned:

File Time Energy

image.c 21.638 µs 16.561 µJ
main.c 28.962 µs 21.158 µJ
vertfilter.c 377.672 ms 421.048 mJ
(glibc) 305.800 µs 622.000 µJ

TOTAL 378.029 ms 421.708 mJ

1.11. OPTIMIZATION: A MOTIVATIONAL EXAMPLE 43

I now employ the original transformation steering engine I propose. The
engine takes as inputs the source-level analyses and profiles made available
by the source-level estimation flow employed in the previous step, and it
generates a list of optimization directives. Each directive consists of a title,
such as “inline this function”, a score, and the target point (file, function, line
interval). The score is a number between 0 and 1 which indicates how much
that transformation is beneficial for the program. It is calculated according
to fuzzy-logic algorithm described in Section 3.4 (page 90), based on metrics
to measure the influence of transformations already presented in literature.
Figure 1.10 gives a visual representation of the set of optimization directives
generated for the benchmark project, sorted by descending score.

Figure 1.10: The list of optimization directives generated by the optimization
flow when applied on the example benchmark.

It is beyond the scope of this research to also perform automatic appli-
cation of source code transformations. Mature tools are available for the
purpose and there is no conceptual difficulty in utilizing the optimization
directives I generate to drive those tools. As an example, I apply by hand the
first optimization directive in the above list.

Then, I run the source-level estimator over the transformed source code
in order to verify the impact of the transformation, obtaining the figures be-
low:

44 CHAPTER 1. OVERVIEW

File Time Energy

image.c 21.638 µs 16.561 µJ
main.c 28.962 µs 21.158 µJ
vertfilter.c 356.222 ms 396.261 mJ
(glibc) 305.800 µs 21.158 µJ

TOTAL 356.509 ms 396.921 mJ

Again, the estimation process takes less than a second. The figures show
that the applied optimization caused an approximate 6% decrease in execu-
tion time decrease and energy consumption. As this motivational example
shows, the proposed engine allows a fast, automated, profile-based selection
and targeting of optimizations. Once connected with a tool able to apply
them automatically, the optimization of even large scale programs can be
performed in a small amount of time.

1.12. THE ORGANIZATION OF THIS THESIS 45

1.12 The organization of this thesis
This thesis is organized as follows.

In this chapter, I have proposed a fundamental approach to the estima-
tion of the execution time and energy consumed by a program. The funda-
mental approach is broad and may lead to a large number of specialized in-
stances, targeting narrower domains and internally relying on different sub-
approaches.

In Chapter 2 I present, for the research areas related with the main objec-
tives of this thesis, the most important works present in the literature. For
the works which present competing approaches, I try to give a critical com-
parison, illustrating advantages and shortcomings.

In Chapter 3 I present the complete details of one of the possible in-
stances of techniques inspired by my fundamental approach. The Chapter
discusses the ideas which are at the basis of proposed technique, and all the
steps which allow to realize it.

Chapter 4 illustrates the core of the methodology: a model for the deter-
mination of the execution cost of syntax elements in a given source code. I
define this model in the form of a multi-visit attribute grammar. The seman-
tic rules in this model account for all the semantic aspects of the C program-
ming languages, including the type system, constant expressions, position
with respect to assignment operators, et cetera.

Chapter 5 presents experimental results which prove the accuracy and
utility of the technique presented, it draws final conclusions on the quality
and breadth of the theory and results proposed here, and it sketches the cur-
rent and future developments on the topic.

46 CHAPTER 1. OVERVIEW

Chapter 2
Background

THIS chapter summarizes the state of the art for the research areas re-
lated with the main objectives of this thesis. It compares the most
relevant works, also illustrating their advantages and shortcom-
ings.

2.1 Performance estimation techniques

2.1.1 Static timing analysis

One of the techniques which has been traditionally employed to estimate the
of software and, more generally, of systems including a software portion, is
static timing analysis (STA).

The main objective of static timing analysis is to determine bounds on
the execution time of a program on a given architecture, and the most useful
measure in static timing analysis is the worst-case execution time (WCET).
The WCET of a program is a critical factor in the design and verification of
real-time systems. The determination of the WCET of a piece of software
is, in general, a complex task which depends on the software and hardware
components which compose the system under analysis: it must take into ac-
count software factors which include the operating system and its schedul-
ing policies and the application (the execution flow, loop iterations, function
calls) and hardware factors, such as interrupt handling mechanisms, caches
and pipelines. A number of techniques in literature addressed the problem
[19, 21, 22], typically by dividing the problem into the subproblems of pro-
gram flow analysis and micro-architecture modeling.

Unfortunately, though being of major importance in the verification of
real-time applications, static timing analysis becomes less and less useful
in the general case. In fact, significant problems limit its usefulness when

47

48 CHAPTER 2. BACKGROUND

performing system dimensioning, design space exploration, hardware/soft-
ware partitioning and source-level optimization exploration:

• First of all, for the above purpose the designer may be much more in-
terested in estimating the typical performance of the system in a set
of realistic cases, representative of actual conditions in which the sys-
tem will be employed, rather than in obtaining a theoretical proof of
the performance in a worst-case, probably unrealistic, context. This is
especially true for systems which feature user interaction or systems
which are designed to deal with a multimedia or data stream. For
example, the designer of a portable video player needs to know how
much energy is required on the average to decode a frame, he needs
to know what is the average power absorbed by the processor when
decoding a real video, with a realistic distribution of I, P and B frames,
and with real motion compensation data. Simply assuming the worst
limits per each loop leads to estimation results which do not satisfy
this need. In addition, the gap between typical and worst-case perfor-
mance indicators is increasing in modern, highly dynamic and data-
dependent applications like synthetic video decoding, interactive ap-
plications, dynamic topology networks, etc. In these applications the
computational workload strongly depends on the input data, whereas
static analysis considers only the algorithm. Studies [26, 27] report that
worst-case analyses of the performance of video encoders lead to over-
estimates of one to two orders of magnitude with respect to the actual
values.

• Furthermore, reasoning about the WCET is an undecidable problem,
unless serious constraints are imposed on the program under analy-
sis. These constraints limit very seriously the designer’s freedom in
terms of language constructs and programming style he can use. For
example, the program must not contain dynamic data structures, un-
bounded loops, direct or indirect recursion or dynamic function refer-
ences [19, 20]. Unfortunately, modern application are increasing their
complexity indeed in those aspects where static techniques exhibit the
most difficulties, especially unbounded loops and use of pointers. In
practice, all these applications should be rewritten in order to be esti-
mated with STA techniques, which is definitely impractical.

• WCET techniques often rely on information provided by the user to
perform their analyses. This induces a strong limit on the size of the
applications which can be practically treated; moreover, some authors
[25] express concerns on the reliability of the obtained WCET, which
may be error-prone because the information provided by the users is
not completely reliable.

• Finally, the architectural modeling part of the timing analysis tech-
niques become more and more complicated in the attempt to model
the new complex features present in modern architecture, such as
branch prediction, predication and instruction pre-fetching, cache

2.1. PERFORMANCE ESTIMATION TECHNIQUES 49

policies[23, 24]. It is not clear whether and how these techniques will
evolve in order to account for the latest features like hardware multi-
threading.

In the end, in the light of all the disadvantages just mentioned, static
timing analysis does not provide an effective answer to the needs I have
described in Section 1.1 (page 21).

2.1.2 Static Functional-level Power Analysis
Julien et al. [45, 46] proposed SoftExplorer, a fast technique to estimate the
consumption of data-dominated loops from the C source code. It is based on
a functional-level model of the architecture, and on statistical parameters ex-
tracted from the assembly code in which the original program is translated.
The authors have shown the good accuracy of the technique by applying it to
a set of multimedia and signal-processing benchmarks, obtaining estimation
errors within 6% against measurements. The technique is very fast, virtu-
ally running in constant time with respect to the size of the input data of the
program under analysis.

The technique has two major drawbacks, which make it inapplicable to
satisfy the contemporary design needs:

• the technique is static, therefore it cannot determine the actual run-
time execution flow of the program under analysis, i.e., the number of
iteration of a loop. To overcome this limitation, the user must provide
this data, which is impractical for programs of realistic size, and error-
prone in all the circumstances;

• the technique is designed to work effectively on data-dominated soft-
ware, without any dynamism. It is not clear whether and how it is
possible to extend this technique in such a way that it handle source
code with control-dominated portions and dynamic behavior. For ex-
ample, it is impossible to analyze the motion compensation code in
most implementations of video decoders (for example the H263 imple-
mentation by Telenor [151]) which are highly control-dominated and
exhibit a strongly dynamic data-dependent behavior.

2.1.3 Instruction-set simulation
Tiwari at al. [28] were the first, in 1994, to recognize the increasing impor-
tance of estimating the software power consumption in the embedded sys-
tems. They also recognized the inadequacy of techniques such as circuit- or
gate-level estimation for the purpose: in the best case, these techniques were
too slow; otherwise they relied on low-level details of the modeled proces-
sors, which are not usually available. The authors developed an instruction-
level power modeling technique, applicable on both processors and embed-
ded cores. The resulting models are useful to evaluate software, for exam-
ple to verify if it meets its power constraints, or to search the design space
in software power optimization. In the experiments, authors employed a

50 CHAPTER 2. BACKGROUND

digital ammeter and measured the current absorbed by a 486DX2 proces-
sor board when executing loops of instructions. The instruction loops were
designed with the exact purpose of providing a stable power consumption
read, therefore they were long enough to make the effects of the jump neg-
ligible, but short enough to avoid any cache misses. This way, a base cost
for each instruction was determined, and discrepancies among different ex-
ecutions of the same instruction which employed different data turned out
to be negligible. Variations due to circuit state, measured for each couple
of instructions, is also negligible. Effects due to cache misses are simply ac-
counted for on a global scale, by measuring the number of cache misses, and
multiplying that by the average cache miss penalty. The same authors, on the
basis of the above experimental results, also presented an overview [29] on
the techniques to reduce energy consumption at the software level, includ-
ing instruction reordering to minimize switching activity, code generation
through pattern matching, reduction of memory operands.

Burger and Austin proposed SimpleScalar [31], an architectural simula-
tion infrastructure including a compiler based on GCC, an assembler based
on GAS, and a set of instruction set simulators. The simulators are designed
to simulate a MIPS derivative, and they provide different levels of detail,
ranging from fast functional simulation to a detailed simulation which fully
accounts for superscalarity, out-of-order issue, speculative execution and
non-blocking caches.

With the rising importance of power estimation, instruction set simula-
tors were augmented in such a way that they could provide power figures.

Ye et al. proposed SimplePower [32], a cycle-accurate simulator based
on SimpleScalar, providing RT-level energy estimates which account for the
consumption of the datapath, memory and on-chip bus. Brooks et al. pro-
posed Wattch [33], also an extension of SimpleScalar, including high-level
power models for caches, register files, branch predictors, reorder buffers,
TLBs, functional units, clock buffers and many other components.

Šimunić et al. [34] proposed an extension of the instruction-level simu-
lator provided by ARM with energy models. The result is an cycle-accurate
simulator capable of providing energy estimates for a system including a
StrongARM processor, a memory hierarchy including two levels of caches,
the memory, the interconnect and the DC-DC converter. The simulator
shows a good accuracy: estimation errors are within a 5% tolerance with
respect to real measurements.

Sinha and Chandrakasan proposed JouleTrack [42], a web-based soft-
ware profiling tool that enables an application developer to estimate the
energy consumption of software on the StrongARM processor. The user is
supposed to upload his source code on the web service, selects the processor
operating conditions, memory maps and compilation options. The service
provides a cycle accurate report of the program execution, along with en-
ergy statistics. It supports a hierarchical profiling technique that trades off
simulation accuracy for simulation time.

Suresh et al. proposed a Frequent Loop Analysis Tool set (FLAT) [37].
FLAT can provide profiling statistics at the granularity of loop and function,
and it is mainly designed to help hardware/software partitioning. The tool

2.1. PERFORMANCE ESTIMATION TECHNIQUES 51

set adopts two techniques. The first technique employs a compiler which is
a modified version of GCC, and which allows to insert basic-block based in-
strumentation, with a “compilation-based technique”, discussed below. The
second technique employs a conventional instruction set simulator to find
the execution counts of the loops. The approach is valuable and effectively
addresses the needs for which it was designed. Nevertheless, it is poorly
applicable for the needs described in Section 1.1. In fact, the first technique
is not at the source level and not fine-detailed; the second technique is not
source-level, not fine-detailed, and not fast.

In general, instruction set simulation does not deal effectively with the
needs discussed in Section 1.1. All the techniques proposed in this category
are not at the source levels. Additionally, they exhibit different speed grades,
depending on the level of abstraction of their power models, anyway all of
them are too computationally demanding to satisfy the ‘fast’ requirement.

2.1.4 Binary instrumentation
This technique consists in rewriting the executable of a program with ad-
ditional machine instructions, which allow to measure its desired proper-
ties. Binary instrumentation tools usually proceed by locating the executable
code inside the text segment, disassembling the code, determining the basic
blocks, inserting the desired measurement instructions at the beginning of
each basic block, and repacking the final, instrumented executable file.

The technique presents a large number of technical difficulties, because
no knowledge is available about the original structure of the program, and a
large number of processor-specific, compiler-specific and operating-system-
specific details must be taken into account. For example, the “code discov-
ery” phase, which consists in finding executable instructions inside the text
segment, may be especially cumbersome in those executable formats which
interleave code with data and jump tables, in an order and in formats which
depend from compiler to compiler. An incorrect or incomplete interpretation
of these formats lead to broken instrumented executable. The disassembly
phase could require significant effort in architectures with variable-length
instructions (e.g. Intel x86), in order not to lose alignment. At run-time, a
“module discovery” phase is often required, to identify and analyze the en-
tire graph of dynamically loaded code, which may be data-dependent and
may vary from execution to execution.

A number of tools have been proposed in literature which are based on
binary instrumentation. The large variety of them is explained by the fact
that these tools are architecture- and OS-dependent. Authors usually de-
velop a solution for a given architecture and OS, and the effort involved in
implementing a port of the same tool to a different architecture or OS is pro-
hibitive.

Smith proposed Pixie [61], which allows to insert basic-block based in-
strumentation and obtain complete execution traces on MIPS architectures
and Unix-like operating systems. Srivastava and Eustace proposed ATOM
[62], a link-time program modification tool which allows to insert custom in-
strumentation and develop analysis tools for the DEC Alpha platform run-

52 CHAPTER 2. BACKGROUND

ning the OSF/1 operating system. Larus and Schnarr proposed EEL [63], a
C++ library designed for machine-independent executable editing on MIPS
SPARC-based architectures and Unix-like operating systems. EEL internally
constructs the control-flow graph of each routine, and it is able to add foreign
code before or after almost every instruction. EEL is a generic building block
to write applications like QPT [64], which perform binary instrumentation in
a flexible way. Romer et al. proposed Etch [65], an instrumentation system
based on binary rewriting for the program executable binaries in the Win-
dows’ PE format for Intel x86 architectures, inserting instrumentation code
at each function and basic block.

Binary rewriting techniques exhibit a number of advantages:

• they do not require the source code, which is an advantage if the ap-
plication under analysis has been provided by a third-party;

• they are independent from the programming language in which the
code was written;

• they are fast; Uhlig and Mudge [41] in a comparative survey report a
time slowdown in the range 10–60;

• since they operate directly on the final binary code, they account for
any possible compiler optimization, therefore they may reach a high
level of accuracy.

However, in the context of embedded software design, the first two of the
above advantages are of little interest, because designers have full availabil-
ity of the source code they are developing, and because quite it is infrequent
to change the programming language once the development has started.

More important, these techniques show a critical drawback: they are not
source-level techniques according to the definition in Section 1.1 (page 21).
None of the tools allow to back-annotate the measured data on the original
source code. Therefore, they do not address effectively the contemporary
software design needs.

2.1.5 Compilation-based techniques
These techniques usually reach the same goals as binary instrumentation
but, since they work in conjunction with a compiler and operate on some
intermediate representation provided by it, they provide a higher degree of
flexibility and architecture- and OS-independence.

For example, Larus and Ball propose Abstract Execution (AE)[66], a com-
piler which produces instrumented executable. AE is basically a modified
version of GCC, and it relies on GCC’s internal Register Transfer Language
(RTL) representation. RTL is one of the intermediate representations used
by GCC, and it consists of an assembly-like code, corresponding to a simple
load/store architecture with infinite registers and an orthogonal instruction
set. AE takes as an input the RTL representation of the program under anal-
ysis, it builds the control-flow graph (CFG) and analyzes it to determine the
basic blocks and the points to instrument. Since AE is integrated in GCC, it

2.1. PERFORMANCE ESTIMATION TECHNIQUES 53

has complete visibility on the compilation output, and it can provide exact
counts of the number of instructions per each type which have been executed
on a given run.

Lajolo et al. [67] propose a similar compilation-based co-simulation tech-
nique. The authors have modified the GCC compiler providing a special
back-end, which regenerates an assembly-level C code, which includes in-
strumentation required to perform a cycle-accurate simulation. By actually
compiling the code, the technique accounts exactly for the effects of compi-
lation optimizations, but it is specific to the GCC compiler and, again, a way
to redistribute energy to source-level elements is not provided.

Thanks to the inclusion of GCC, a compiler which is available on many
architectures and operating systems, these approaches do not suffer from
the architecture, OS and executable format issues discussed in the previous
section. Nevertheless, these approaches show the same critical drawback
discussed in the previous section: they are not source-level techniques. The
highest level of abstraction which they can provide is the RTL level, which is
much closer to the assembly level than to the source level.

Additionally, Lajolo’s tool does not perform basic block instrumentation,
thus also suffering from the same problems of large overhead which I have
discussed for instruction-set simulation tools. Lajolo’s tool is valuable un-
der many respects: for example, generating a co-simulator within his frame-
work seems to involve significantly less effort than writing an architectural
simulator. Nevertheless, this approach does not meet the ‘fast’ requirement
presented in Section 1.1 (page 21).

2.1.6 gprof: Program counter sampling
GNU gprof is a popular profiling tool, to be used in conjunction with the
GNU GCC compiler. GCC can be instructed to add extra code during com-
pilation, which periodically samples the program counter in order to deter-
mine which is the currently active C function. Programs compiled within this
framework write sampled execution times to a dump files. gprof is able to
process these files, and determine the time spent in each function. This tech-
nique is fast, dynamic and even source-level. In fact, statistics are generated
at the level of functions, and functions are entities at the source level. Unfor-
tunately, the technique does not meet one of the requirements I set: the fine
detail. It is not fine-detailed because it provides statistics on a per-function
basis, and it does not allow to obtain profiles of code inside functions.

Simunic et al. [43] try to take advantage of the source level of abstraction
provided by gprof by coupling it to an instruction set simulator. Obviously,
this approach is able to determine the execution time of C functions, but
not of finer-grained elements. This is good enough for comparing different
algorithms, but not helpful for guiding precise optimization. As already mo-
tivated in the overview, in the vast majority of embedded applications, most
of the time is spent inside loops entirely contained in one function, and the
approach cannot resolve at that granularity.

Note that forcing the detail of the approach is not possible: moving loops
or even individual statements to separate functions leads to meaningless re-

54 CHAPTER 2. BACKGROUND

sults, because the overhead due to the added function calls would perturb
significantly the estimates.

Additionally, note that gprof must be either executed on the target plat-
form or in an emulated version of it, which includes a full-featured Unix-like
operating system. Many embedded systems may not include an OS or may
not have the necessary hardware requirements to support the memory foot-
print of an OS and the associated runtime framework needed to run gprof.

2.1.7 Source code instrumentation
Source code instrumentation analyze the input source code provided by the
user, and they generate a modified version of the same source code, in which
instrumentation code is added.

De Rose and Reed presented SvPablo [69], a multi-language and
architecture-independent performance analysis system. SvPablo provides
a framework for instrumenting application source code and browsing dy-
namic performance data. It supports interactive instrumentation of source
codes for 4 different languages. It relies on hardware counters which are
read at specific points, which may be inserted by the user at specific points,
the instrumentable constructs. It has two major drawbacks:

• the instrumentable points are only function calls and outer loops,
therefore it is not fine-grained;

• the instrumentation is interactive, therefore it requires multiple user’s
intervention. The user is supposed to mark the instrumentable points
in which he is interested, and to run the tool. Then, on the basis of the
knowledge acquired in this step, to refine his chosen points by repeat
the process again and again.

Templer and Jeffery proposed a Configurable C Instrumentation tool
(CCI) [68], which provides automatic instrumentation for ANSI C code. Un-
fortunately, the tool has no notion of basic block instrumentation, therefore
it suffers from code explosion (and associated slow-down). This limits se-
riously its practical usability, unless for interactive use. Basically, the user
must iteratively specify his investigation points, as in the previous case.

Bormans et al. proposed Atomium [136], an analysis tool which ad-
dresses the memory-related aspects of system design, by applying the Data
Transfer and Storage Exploration (DTSE) methodology. This tool, now com-
mercially available as PowerEscape [137], employs an analysis approach
which is similar to ours, operating at the behavioral level of an application,
expressed in C. Unfortunately, it is meant only for memory access analysis
and does not account for operations and control, which are also our main fo-
cus. Therefore, it cannot be employed to perform any computational analy-
sis. Additionally, data transfer and storage analysis performed is performed
for structs and arrays only, therefore code containing dynamic structures
should be rewritten.

Ravasi [47, 48] proposed Software Instrumentation Tool (SIT), a source-
level technique designed for C code. SIT accepts C code as input, promotes

2.1. PERFORMANCE ESTIMATION TECHNIQUES 55

it to C++, and provides overloaded instrumented operators and data struc-
tures. Then, it compiles the instrumented code with the regular GCC com-
piler.

The approach is clever: it relies on GCC to insert instrumentation code
transparently, thus avoiding the difficulties of parsing the C language. SIT
is very valuable to compare different implementations of an algorithm not
only from the point of view of the computation, but also for the memory-
oriented aspects, because the overloaded data structures may simulate any
form of memory hierarchy. From this point of view, SIT is probably the best
tool in its category. Nevertheless, in our context, the tool suffers from two
drawbacks:

• it provides estimates at the level of C function, therefore it is not fine-
grained;

• it causes instrumentation code to be executed at every execution of an
operation; this is significantly inefficient, and puts the tool at the same
speed grade as instruction-set simulation.

The approach I propose in this thesis can be considered a different variant
of the ones presented in this category. When compared with the techniques
presented in this section, my technique shows the following advantages:

• it provides estimates at the level of any C syntax entity, therefore it has
the finest possible grain;

• it inserts minimal instrumentation code (less than one probe per basic
block), therefore it is efficient and fast.

2.1.8 Black-box techniques
The work group of Raghunathan and Jha proposed [50] a fast and high-
level software energy estimation method, founded on characterization-based
macro-modeling. This method associates to each function an energy macro-
model which only requires black-box parameters to provide an energy es-
timate. During simulation, macro-models can be used instead of detailed
models, resulting in orders of magnitude simulation speedup. The construc-
tion of these models is done either on the basis of a complexity analysis or
profiling. The first technique is employed for those functions whose algo-
rithmic complexity can be easily expressed in terms of some parameters (e.g.
data-intensive functions). The second technique can be applied always, even
to control-intensive functions with data-dependent execution flow; with this
technique, internal profiling statistics are used as parameters for the energy
macro-model. The same work group extended [51] the above technique in
such a way that characterization-based high-level software macro-modeling
is performed automatically. The extension automates the steps of parame-
ter identification, data collection through detailed simulation, macro-model
template selection, and fitting.

Brandolese et al. [59] have also presented an automated methodology
to extract black-box execution time and energy consumption models. Their

56 CHAPTER 2. BACKGROUND

methodology is also black-box during characterization, i.e. no internal detail
about the characterized function is needed. The methodology is especially
suited to provide high-level, statistically-accurate models of library func-
tions, operating system calls and third-party modules, for which the source
code could not be available. The methodology allows to reach a good accu-
racy thanks to its ability to model semantical properties of input data, such
as their data structure and size.

Unfortunately, these techniques do not satisfy the requirements set in
Section 1.1. They are fast, and they satisfy the ‘dynamic’ requirement to some
extent, but they are not for sure source-level and fine-detailed.

2.1.9 Memory-oriented techniques

The energy consumption associated to accessing the memory hierarchy is
becoming nowadays a significant portion of the overall energy consumed by
the system. Additionally, since the speed gap between the processor and the
memory is also increasing, memory plays a significant role also in determin-
ing the execution time of an application.

The approach presented in this thesis does not tackle the memory hi-
erarchy, since it is quite difficult to tackle effectively both the problems of
estimating the execution costs of the processor core and of the memory hi-
erarchy at the same time. Additionally, good theory and tools are already
available for the purpose.

The most common method for evaluating memory-system designs be-
fore implementing them, or for evaluating software implementations over a
given platform, is trace-driven memory simulation. It consists in writing a
simulation model which mimics the memory design, and then applying to
it the sequence of memory accesses caused by a real algorithm which would
run over the platform under study. The sequence of accessed memory loca-
tions is called an address trace, and the method is called trace-driven memory
simulation. The task consists of three phases: trace collection, trace reduction
and trace processing. All the phases involve significant difficulties because
of the trace sizes (which may easily reach gigabytes) and of the complexity
of the system, which may include multiple processes and processors, operat-
ing systems, and dynamically linked code. Researchers have been working
extensively to tackle these difficulties at different levels, ranging from the
hardware level up to the operating system, creating a range of more than 50
simulation tools. Uhlig and Mudge [41] offer a survey of these techniques,
categorizing them on the bases of the approaches they employ, and compar-
ing them on the basis of accuracy, speed, space, portability, cost and ease of
use. The simulation models on which the above techniques rely simulate
the policies which the different caches may implement, but they must also
account for the time and energy required by each operation inside a given
cache level. One of the models which is commonly used to address this need
is CACTI, proposed by Wilton and Jouppi [40]. It is an analytical model
which allows to derive the access and cycle times for on-chip caches.

2.1. PERFORMANCE ESTIMATION TECHNIQUES 57

D
yn

am
ic

 sp
ee

d

Accuracy

circuit-level simulation

gate-level simulation

microarchitectural level simulation

instruction-set simulation
instruction-set + gprof

current source-level techniques

compilation-based techniques

blackbox techniques

this source-level estimation approach

static techniques

Figure 2.1: How the approach I propose compares with the currently avail-
able techniques in terms of speed and accuracy.

2.1.10 Conclusions
In the previous paragraphs I have presented an overview on the estimation
methods for embedded software. In this section I give a comparison of these
techniques against the technique advocated by this thesis.

All the above techniques can be compared with each other under many
respects. Two of the most important ones are the accuracy and the dynamic
speed. By accuracy I mean a small estimation error in determining the cost
of execution caused by the processor core (this comparison does not consider
the accuracy in estimating the cost due to the memory hierarchy, which some
of these techniques tackle). By dynamic speed I mean a small simulation
time. Here, I do not consider the static speed, which is the time required to
analyze the application before simulating it.

The above techniques compare with each other, in terms of dynamic
speed and accuracy, as qualitatively represented in Figure 2.1. Both axes are
to be intended empirical (intuitively, it is helpful to consider the logarithmic).
In this plot, the extremes are represented by circuit-level simulation (which
is the most accurate technique, and the slowest one) and by static/black-box
techniques, which may have less accuracy but have a virtually zero simu-
lation time. Note that there is not clear superiority of one technique with
respect to some other: all the techniques are Pareto-optimal, and each one of
them could be the most appropriate, given a specific set of circumstances.

The many possible technique instances generated by the fundamental
approach presented in this thesis are represented as a hatched bar, rather
than a single point. In fact, depending on the level of detail in the modeling
choices made, a specific instance may be accurate as much as compilation-

58 CHAPTER 2. BACKGROUND

based techniques or less. All the instances show the same dynamic speed,
since they all use generalized basic-block instrumentation. They may differ
in terms of static speed, as already shown in Figure 1.3 (page 32).

2.2 Source-level optimization exploration
techniques

The previous section was mainly concerned about estimation problems. This
section, instead, identifies the fundamental problems which must be ad-
dressed to build a source-code transformation exploration flow, and survey-
ing how the different approaches in literature have tackled these problems.

All the flows which allow to explore source transformations must deal
with the following four problems (either manually or with some degree of
automation):

(A) analyze the source code and expose optimization target points;

(B) given a target point, estimate the influence of transformations on it;

(C) select and target transformations;

(D) apply transformations on the code.

Additionally, if they want to realize a short-loop transformation exploration
methodology, which I have advocated in the Introduction, they must solve
the above problem in a more specific way, by providing respectively the fol-
lowing four components:

(A) a technique to analyze and profile programs at the source level, de-
tailed enough to expose optimization target points;

(B) metrics to estimate the impact of transformation on a given target
point;

(C) an automatic transformation steering engine, working on data pro-
vided by (A) and (B);

(D) a tool to automatically apply transformations selected by (C).

Briefly said, many approaches have been presented in literature to deal
with problems (A), (B) and (D), while problem (C) has been so far neglected
or treated marginally. I propose a technique to address problem (C), and a
flow which consists of the following components:

• as component (A), the source-level estimation technique which is the
main subject of this thesis;

• as component (B), metrics on the influence of source code transforma-
tions proposed by Brandolese [126];

2.2. SOURCE-LEVEL OPTIMIZATION EXPLORATION TECHNIQUES 59

• as component (C), a novel automatic transformation steering engine,
working on data provided by (A) and (B), which is described exten-
sively in Section 3.4 (page 90)

• finally, I have performed task (D) manually, but automatic tools for the
purpose exist [127] and there are no conceptual difficulties in integrat-
ing them with my flow. The task only involves a major implementation
effort.

To solve problem (A), many traditional approaches employed an instruc-
tion set simulators (ISS) [32, 33, 35, 42]. In these approaches, developers
run the ISS to obtain estimates of the time and energy consumed by the
program. Then, they iteratively search manually for the computationally-
demanding portions of the program, and they manually optimize them. Af-
ter each optimization, they verify its impact by running the ISS again. In
these approaches, the ISS addresses problem (A), while (B),(C) and (D) are
addressed manually, on the basis of the expertise and skill of the developer.
However, these approaches are impractical for many reasons:

• ISSs only provide assembly-level estimates, which are difficult to relate
to source-level entities; therefore, exposing the computational kernels is
often far from trivial;

• ISSs are very slow; they usually run thousands of times slower than
the target system, and this makes it impossible to apply them on many
modern and future applications, such as video decoding softwares;

• the entire approach is manual: the developer selects manually the
transformations and where to target them. There is no guarantee of
optimality, and the approach is impractical for large-scale applications.

Simunic et al. have used their coupled ISS with gprof to guide the op-
timization of an MP3 player [43], by applying source-level optimizations at
three different layers, as follows:

• at the algorithmic level, they have employed more efficient, published
alternative algorithms;

• at the data level, they have reimplemented the computational kernels
using fixed-point arithmetics in place of floating point;

• at the instruction-flow level, they have applied the usual loop trans-
formation and they rewrite matrix multiplications by inlining assem-
bly code which exploit a specific multiply-and-accumulate instruction
(MLAL) available in the ARM core they have relied on.

Unfortunately, there is weak improvement for problem (A), but steps (B),
(C) and (D) are clearly impossible to automate or to generalize to different
applications. At the algorithmic level, the developer must drop the current
implementation, search the literature for alternatives, choose one and imple-
ment it. It is clearly impossible to automate this step. At the data level, the

60 CHAPTER 2. BACKGROUND

use of fixed-point arithmetics is also not generalizable, because it does not
preserve the exact semantics of the original program, and it could endan-
ger the signal-to-noise ratio. At the instruction-flow level, the use of inline
assembly is clearly not a source-level transformation.

The static estimation approaches discussed in the previous section [22,
23, 45], may be a possible solution for problem (A). Although these tech-
niques are faster than ISS and proved to be useful for verifying real-time
constraints, they cannot assist optimization of modern applications. In fact,
these approaches cannot deal with dynamic behaviors, while modern ap-
plications (e.g. object-based synthetic video decoders, wireless ad-hoc net-
works, distributed gaming, ...) exhibit more and more dynamism.

Also black-box techniques [51, 59] have been employed to characterize
the performance of embedded software. These techniques are very fast, but
due to their inability to consider the impact of any elements inside of the
code, they cannot guide optimization.

The Software Instrumentation Tool proposed by Ravasi [48] is a valuable
alternative for component (A), but it lacks fine detail, as motivated above.

I believe that problem (A) is currently fully solved only by a source-level
approach I am proposing. This approach is able to provide time and en-
ergy estimates for any flexibly-defined cluster of operations in the program.
With this tool, designers do not need to define their interested clusters in ad-
vance, and not even to re-run the tool for different cluster choices. With this
information, designers understand precisely which portions of the source
code cause the major consumptions, and apply optimizations there. The
methodology exhibits simulation times 10,000 shorter than a reference ISS,
and shows good estimation accuracy.

Henkel and Li [54, 55] propose a comprehensive environment for design-
space exploration and optimization of low-power embedded systems. Their
environment comprises both hardware- and software-oriented techniques.
The software part is consistent with the scheme in Figure 1.8(a). It comprises
an ISS to solve problem (A), a metric based on ratio between the estimated
energy saving (EES) and the code size increase (CSI) to address problem
(B), an iterative algorithm based on the procedure call graph to address (C),
and SUIF [127] as component (D). Unfortunately, this estimation approach is
trace-based, therefore it exhibits the same inacceptable simulation times for
modern applications already discussed.

Agosta et al. [138] have recently proposed a technique able to co-explore
source code transformations an architectural parameters in an automated
way, also comprising a software flow. Unfortunately, it is again as in Figure
1.8(a). It employs an ISS in conjunction with the SUIF [127] front-end for (A),
and the SUIF back-end for (D). Authors provide their own system-level met-
rics as component (B), and an original heuristic transformation space explo-
ration module, based on Pareto Simulated Annealing for (C). The approach
is sound and well automated, and the results are convincing. Unfortunately,
also in this approach, module (B) relies on instruction-level profiles provided
by module (A), which makes the method too slow.

Franke et al. [130] have proposed a probabilistic feed-back driven tech-
nique to select source-level transformations, with very good results. They

2.2. SOURCE-LEVEL OPTIMIZATION EXPLORATION TECHNIQUES 61

also employ a tool flow very similar to Figure 1.8(a), therefore suffering long
simulation times.

Triantafyllis et al. [139] have proposed an interesting approach for com-
piler optimization-space exploration. The approach augments a regular
compiler with an iterative compilation strategy. However, this approach is
designed to optimally guide the choice of parameters for regular compiler
optimizations, not to guide source-level transformations.

Zitzler et al. [140] proposed an optimization space exploration strategy
for data-dominated code expressed in the form of a synchronous data-flow
graph, based on genetic algorithms. However, this approach is also not ori-
ented to source-level optimizations.

62 CHAPTER 2. BACKGROUND

Chapter 3
An instance of the technique

IN the overview I introduced a fundamental approach to construct
source-level, fine-detailed, dynamic and fast techniques, to estimate
the execution time and the energy consumed by embedded software
when running on given input data. This fundamental approach may

derive many techniques, depending on which modeling choices are taken.
This chapter presents one instance of these possible techniques, which is es-
pecially suited for single-issue processors.

This chapter discusses the models on which this technique relies, the ba-
sic steps which compose it, the activities which it involves and the people
which are supposed to carry them out.

3.1 Abstracting the reality, modeling the ab-
straction

The objective of this technique is to estimate the execution costs of source
code. The real path which leads from a source code to its physical execution
costs, in terms on energy and time, involves a large number of steps. Many
of these steps show great complexity, as I detail below. For reasons of effort,
performance and generality, it is not convenient to account completely and
exactly for this complexity. Instead, a convenient trade-off between effort,
performance, generality and accuracy should be chosen.

For example, a compiler step should be modeled exactly when the effort
is acceptable, it leads to a model which is general enough to be easily tuned
on other compilers, it has acceptable static time overhead and it leads to a
significant increase in accuracy. Otherwise, it is more convenient to model
its behavior in a statistically-consistent way. It may be a reasonable idea
to even completely neglect the effect of a compiler step, if the incremental
added accuracy is negligible.

63

64 CHAPTER 3. AN INSTANCE OF THE TECHNIQUE

In the light of the above considerations, this section discusses how to
obtain a model of the real compilation and execution processes, which is
presents an acceptable trade-off among the accuracy it can provide, how
easily can be generalized, the design effort it involves and the static time
overhead it causes.

I derive my technique by abstracting the real flow and obtaining an ab-
stract flow. Then I model the abstract flow and obtain an model flow. The two
terms “abstracting” and “modeling” are used in this context in the following
sense:

• abstracting an object means replacing it with a simpler object, which is
functionally equivalent and numerically consistent (either exactly or
statistically) with the original one, but it exhibits a behavior which is
easier to model. An abstraction is an operation which reduces com-
plexity. For example, abstracting a real pipelined processor may mean
replacing it with a simpler non-pipelined processor (where instruc-
tion latencies may be fractional numbers), such that the real and the
abstract processors exhibit statistically-similar latencies measured in
clock cycles and throughput. The original object and its abstraction
are functionally equivalent: in the example, both execute instructions,
both exhibit a deterministic behavior. Abstracting some stage of com-
piler, for example the target code generator, may mean replacing it
with another stage where some optimization steps are not executed or
where the same operations (e.g. register allocation) are performed in a
trivial way, thanks to the simplification hypotheses introduced during
the abstractions of the objects located in the previous stages of the flow.
As just suggested, introducing an abstraction at a given stage induces
a simplification not only on that stage, but also on its output infor-
mation and, consequently, on the following stages in the flow. This
means that not only behaviors but also information flows are subject
to abstraction, and that abstraction of objects which belong to the same
information-flow chain must be consistent with each other;

• modeling an object which takes some input and yields some output
means replacing it with a function which estimates the cost (in a gen-
eral sense) of the output from the cost of the input. Modeling is an
operation which replaces a behavior with a function which accounts
for the cost of that behavior. The model of an object is not functionally
equivalent to the original object: a compiler (real or abstract) produces
object code, whereas the model of a compiler yields an estimate of the
single-execution cost of the instructions in an object code; a machine
(real or abstract) executes object code, whereas the model of a machine
yields an estimate of the cost of executing some code.

Here I examine a real compilation and execution flow, and I prepare an
abstract version, providing abstract versions for most of its components. Fi-
nally, I prepare a model flow, which allows the determination of the cost of
executing a given source code. Figure 3.1 (page 66) represents the details of

3.1. ABSTRACTING THE REALITY, MODELING THE ABSTRACTION 65

a real compilation and execution flow, of its abstraction and of its model I
chose in this thesis.

I do not implement the abstract flow, since it would require the com-
plete definition (down to the bit level) of the abstract machine, its assem-
bly language, and the development of an associated compiler and simulator
or (even worse) silicon device. Such an implementation is not useful for the
purposes of this research. Instead, I do implement the model flow. The model
flow is the fundamental goal of this thesis.

66 CHAPTER 3. AN INSTANCE OF THE TECHNIQUE

Lexical analysis

Semantic analysis:
- context handling
- early liveness analysis

Intermediate code generation

Input source code

Abstract Syntax Tree (AST)

Annotated AST

Key: piece of information tool or device

Real world

Syntax analysis

Abstract syntax tree generation

Intermediate code optimization:
- constant folding
- common subexpr. elimination
- arithmetic simplification
- context handling
- node threading
- liveness analysis

Intermediate code (IC)

Target code generation:
- instruction selection
- register allocation,
 coalescing and spilling
- instruction ordering

Intermediate code (IC)

Target code optimization:
- peephole optimization
- architecture-dependent
 optimizations

 Target assembly code

Machine code generation

Target assembly code

Machine code

Lexical analysis

Semantic analysis:
- context handling

Abstract assembly code generation:
- instruction selection is trivial
- register allocation is trivial,
 coalescing is not performed,
 spilling is never required
- instruction order is
 uninfluential

Input source code

Abstract Syntax Tree (AST)

Annotated AST

Abstract flow

Syntax analysis

Abstract syntax tree generation

Abstract assembly code

Trivial machine code generation

Machine code

Machine executor:
- pipelining?
- (superscalarity)
- (wide issue)
- synchronous issue
- limited registers
- deep memory hierarchy

Abstract machine executor:
- single stage
- single issue
- fractional clock
- unlimited registers
- flat memory hierarchy

Lexical analysis

Semantic analysis:
- context handling
- constant expression detection
- arithmetic simplification

Profiling of the AST

Input source code

Abstract Syntax Tree (AST)

AST Annotated with atoms

Model flow

Syntax analysis

Abstract syntax tree generation

AST with atom execution counts

Mapping from atoms to
abstract assembly instructions

AST with abstract assembly
instruction counts

Post-processing:
- applying costs for abstract
 assembly instructions
- statistical corrections

Time and energy consumption Time and energy consumption AST with time & energy consumption

 flow of information abstraction/modelling

Abstract optimization:
- constant expression detection
- arithmetic simplification

Annotated AST

Figure 3.1: Real compilation and execution are so complex that it is not con-
venient to model all this complexity. Therefore I perform abstraction and mod-
eling (see Section 3.1). This figure represents the original flow, the abstract
flow and the model flow.

3.2. FROM REALITY TO THE ABSTRACT FLOW 67

3.2 From reality to the abstract flow

3.2.1 Architecture abstraction
3.2.1.1 Instruction-set architecture

A modern architecture comprises a CPU including features like pipelining,
dynamic scheduling, superscalarity, multiple issue and branch prediction,
and a memory hierarchy which may span multiple on-chip and off-chip
cache levels. Modeling the memory hierarchy is out of the goal of this
work, and the instance of the technique presented in this chapter is espe-
cially suited for single-issue architectures.

I adopt an abstract architecture which is a single issue, single stage ideal
executor. In this section I motivate how it is general enough to approximate
the execution behavior of more complex, single-issue architectures.

A real machine, depending on its class (stack, accumulator, register-
memory, load/store), has a corresponding instruction set composed of in-
structions with up to zero, one, two or three explicit operands, and instruc-
tions may feature many addressing modes, some of which involving remark-
ably complex address calculation steps. The registers available to the user
may be a small or a larger number, and they may be primarily composed by
general purpose or dedicated registers. Depending on the degree of orthogo-
nality of the machine, a more or less complex set of constraints rule whether
a given register may be used as an operand for a given instruction for a given
data type in a given addressing mode.

On the other hand, my abstract architecture has an infinite number of
user-available registers, which are all general-purpose. The instruction set is
extremely simple, and instructions may have up to three explicit operands. It
is a load/store architecture with three-operand instructions. ALU operations
may operate on a set of three arbitrary registers with no limitations. The
addressing modes are straightforward: being a pure load/store architecture,
only two instructions (‘mvld’ and ‘mvst’ to load and store, respectively) can
access data according to a register-indirect addressing mode. All the other
instructions must use a register-direct addressing mode to specify the target,
and either an immediate or register-direct addressing mode for the operands.

The latency of a given instruction in a real CPU may vary significantly
depending on the context: branch mis-predictions, instruction cache misses
and conflicts all cause stalls. Excluding the effects due to the memory hi-
erarchy, which are not dealt with here, the same instruction, located at the
same code segment address may exhibit significantly different latencies in
two different executions, and this latency is influenced by the state of the
system, in the most general sense. In my architecture, a given instruction
always requires the same amount of time to execute.

In a real processor, the average amount of current absorbed by the por-
tions of the processor involved in processing a given instruction over its la-
tency time is affected by the actual instruction encoding and operand data,
which cause a larger or lesser amount of switching activity on the busses.
In my abstract architecture, the same instruction always absorbs the same
amount of current during the time in which it is executed.

68 CHAPTER 3. AN INSTANCE OF THE TECHNIQUE

Modern computers are synchronous, since the processing which an in-
struction undergoes in a given functional unit always require an integer
number of cycles; the results of a stage in the pipeline are not used by the
subsequent stage even if they could become available before. On the other
hand, the abstract CPU presented here has an exotic property, which is de-
sirable for modeling reasons: it is asynchronous. It has a clock with the same
period of the real CPU which it abstracts, but the latency of any instruction
may be equal to a fractional number of clock cycles. It issues and executes
the next instruction as soon as the current one is completed, without regard
to the clock.

3.2.1.2 Memory

Modern architectures have registers, multiple level of caches and a RAM.
The latency associated to the retrieval of an operand may be zero clock cy-
cles (if the data is already in a register), one or a more clock cycles if the
data is available at some level in the cache (depending on the design of the
cache level and its operating frequency), or a large number of clock cycles if
the requested data needs to be fetched from the RAM. The architecture has
a flat memory hierarchy: all the addressable space is in the registers. Never-
theless, there is a fundamental difference on accessing operands depending
whether their address is known by name or by address. Scalar variables and
temporaries are allocated to fixed registers at compile time, and instructions
can operate on them directly (register-direct addressing mode). On the other
hand, for cells of an array or pointed by a pointer, their address must be de-
termined at run-time before accessing them. Therefore, the compiler must
emit code to load them into temporary register whose name is known (a
‘mvld’ instruction, which uses a register-indirect addressing mode), and to
operate on that register by name.

As previously motivated, in this technique, I do not estimate the cost
of the memory hierarchy. In the abstract architecture, the memory is byte-
addressable. Registers are 4 byte wide and also memory words. Reading
the ith register is the same operation as reading the memory at addresses
i · 4, i · 4 + 1, i · 4 + 2, i · 4 + 3. I assume that misaligned memory operations are
allowed, but they operate on bytes or double-bytes only, such that a single
instruction cannot access two memory words.

3.2.2 Compiler abstraction

Although compilers can be significantly different one from another from a
structural point of view, depending on the technique they employ to solve
problems, they all have to tackle the same set of problems, such as instruction
selection and register allocation. In Figure 3.1 (page 66), I tried to capture the
general structure of a generic compiler which accepts a imperative language
such as C and generates binary machine code. The compiler itself is, under
the column named ‘Real world’, the collection of the gray boxes starting from
‘Lexical analysis’ to ‘Machine code generation’.

3.2. FROM REALITY TO THE ABSTRACT FLOW 69

3.2.2.1 Front-end

There is a portion of the structure of every compiler which has the respon-
sibility of reading the input source code and determining its structure, ac-
cording with the rules which define the grammar of the language. This
part is usually called the front-end of the compiler. Despite the variety of
compiler-construction tools and implementation techniques, the front-ends
for the same language exhibit similar features. They employ a lexical an-
alyzer, a syntax analyzer and most likely a set of semantic actions which
generate an abstract syntax tree (AST).

A lexical analyzer (or lexer) reads the uniform flow of characters com-
posing the input source code and it identifies tokens, such as operators, key-
words, identifiers, string literals, and number literals. Lexical analyzers are
either written by hand or generated automatically; in the second case, they
are usually generated from a description of the lexical elements of the lan-
guage. These descriptions are usually given in terms of regular expressions,
therefore lexical analyzers are basically regular expression recognition tools.

A syntax analyzer (or parser) reads the flow of tokens identified by the
lexer and determines which rules in the grammar allow to generate them.
Parser are almost always generated automatically from the description of a
grammar, given as a set of BNF (Backus-Naur form) rules, e.g. the ones in
Section 4.5 (page 231). Informally, BNF rules tell how to rewrite a given sym-
bol into a collection of new symbols, some of which are terminal symbols
(i.e., they cannot be rewritten according to a rule), while the others, non-
terminal symbols, can be further rewritten. When a symbol is rewritten into
others, it is common to represent it in the form of a node connected with the
children symbols in a tree diagram. If a program is correct, there must be a
way to apply rewriting rules in the grammar, starting from the start symbol
until the exact sequence of terminal symbols which constitute it is obtained.
The tree which expresses how the start symbol is rewritten into the input
source code is the parse tree, or concrete syntax tree (CST) associated to the
program. Parsers do not usually output CSTs; instead they run designer-
specified semantic actions, which specify what to do when a given construct
is encountered. Simplistic compilers have semantic actions which directly
emit assembly code or machine code. A common choice in real-world com-
pilers is to design the parser’s semantic actions in order to generate the ab-
stract syntax tree (AST) of the input program. Then, the AST is used by
further processed by the remaining part of the compiler; to learn more on
concrete and abstract syntax trees, see Section 4.1.2 (page 102).

I have freedom to introduce as many simplifying abstractions on the ar-
chitecture and on the back-end of the compiler as desired, but not in the
front-end. Since the overall goal of this thesis is to determine the execution
cost for syntax elements, I must comply to the standards as the front-end is
concerned.

In fact, given a correct program and a grammar of its language, the CST
of the program is automatically determined and, in principle, all the parsers
in all the compilers for the C language should determine the same CST (apart
from non-standard language extensions). And also the conversion from the

70 CHAPTER 3. AN INSTANCE OF THE TECHNIQUE

CST to the corresponding AST presents little degree of freedom. This is the
reason why all the flows (real, abstract, model) represented in Figure 3.1
(page 66) are identical in their upper parts. They share the same, complete,
real-world front-end.

3.2.2.2 Semantic analysis

3.2.2.2.1 Context handling
Generally speaking, in this phase, compilers perform two tasks: they check
the context conditions required by the language specification, and they col-
lect information for the semantic processing. Specifically speaking about the
C language, in the first of the above tasks the compiler verifies the semantic
conditions described in the standard [80]. The vast majority of these con-
ditions regards the type system of the C language: e.g., assignments must
occur only between expressions of compatible type, the types of the actual
parameters of a function must be compatible with the types of the respec-
tive formal parameters, also the type of the operand in a ‘return’ statement
must be compatible with the declared return type of the enclosing function,
arithmetic operators cannot operate on non scalar types (e.g., it is not possi-
ble to use the ‘+’ operator between structs), the bitwise operators allow only
integral operands, name of fields in structs and unions must be among the
declared ones.

Other additional context checks, not immediately related to the type sys-
tem, which are usually done in this phase include: the absence of nested
functions, the presence of the target labels of ‘goto’ statements in the scope
where the statements appear, the absence of ‘continue’ statements outside
loops, the absence of ‘break’ statements outside loops or ‘switch’ statements,
the compliance with the standard of the signature of the ‘main()’ function.

As justified before, the details of the abstract flow do not need to be spec-
ified, so I do not further examine the details of the context handling in the
semantic phase of the abstract flow. On the other hand, I must detail the
semantic analysis step of the model flow. I feel free to assume the input
source code as correct. I assume that the designer submits his source code
to my model flow only when it has already successfully passed the checks
of a regular ANSI-compliant compiler. This assumption relieves me from
implementing a large quantity of sanity checks. Still, my syntax analyzer
needs to integrate a complete type system, since the cost of syntax elements
depends, in general from the type of operands, as motivated in Section 4.2.2
(page 112).

3.2.2.2.2 Early liveness analysis
Informally said, liveness analysis determines, for each variable at a given
point in a program, whether it holds a value which will be useful later. The
results of this analysis are useful at two levels:

• they can detect unused variables and the use of uninitialized variables;

• liveness analysis guides register allocation;

3.2. FROM REALITY TO THE ABSTRACT FLOW 71

in this paragraph I only consider the first one and I call it early liveness analy-
sis.

The C language specifications do not forbid the declaration of unused
variables or the use of uninitialized variables, nevertheless both cases are
undesirable. The presence of unused variables unnecessarily increases the
memory footprint of the final executable, whereas the use of uninitialized
variables usually denotes some serious programmer’s mistakes and may
have catastrophic consequences at runtime.

To avoid this, modern compilers perform an early liveness analysis as a
part of context handling, and generate warnings when one of the above cases
is detected. In case of unused variables, the compiler may avoid to allocate
those variables at all.

The abstract flow does not perform any semantic analysis on unused
variables or uses of uninitialized variables, therefore its semantic analysis
phase only comprises context handling.

3.2.2.3 Intermediate code generation

The concepts expressed by the nodes in the AST are at a high level of ab-
straction, and highly language-dependent. A compiler designer may try to
naively translate an AST into the corresponding assembly code, by deter-
mining the assembly translation per each AST node. This is quite a simple
tasks for arithmetic operators, but for some other types of nodes this is far
from trivial. For example, consider a node which represents a dot operator
in a C program (‘.’, the member-of- struct or -union resolution operator), and
try to determine its assembly translation. See Section 4.4.2 (page 158) for a
complete discussion on the topic.

To overcome the above difficulties, most compilers rewrite the AST
into another tree, whose nodes express conceptually simpler operations,
which are more easily representable at an assembly-language level but still
architecture-independent, in order to preserve portability. This tree is called
the intermediate representation (IR), and its linearized textual representation
is often called the intermediate code (IC). Usually, IR nodes belong to a nar-
row set of categories: expressions with no more than two operands, func-
tion headings and jumps (including calls and returns). Due to the fact that
high-level concepts may correspond to multiple lower-level nodes, during
the translation from an AST to the corresponding IR, the number of nodes
may grow significantly

I have selected simplification hypotheses on purpose, and I have no re-
targetability issues (I just need to compile for a single target architecture:
the abstract machine). Thanks to this, I can provide an abstract translation
model which describes how to generate abstract assembly code directly from
the AST, without the need for an intermediate representation. This abstract
translation process is described in Section 4.3 (page 117).

72 CHAPTER 3. AN INSTANCE OF THE TECHNIQUE

3.2.2.4 Intermediate code optimization

Most compilers apply a number of architecture-independent optimizations
on the intermediate code.

3.2.2.4.1 Constant folding
Compilers recognize constant-value expressions and determine their value
at static time, avoiding the generation of their corresponding assembly code.
I abstract and model accurately this behavior by recognizing constant-value
subexpressions during the semantic analysis phase, as I detail in Section 4.4.3
(page 169).

I do not support the detection of constant expression which involve func-
tion calls. Although sin(c), cos(c), pow(c), log(c), sqrt(c), ... are all constant
expressions if ‘c’ is a constant expression, most compilers do not perform
constant folding in these cases, sometimes in order to preserve the results
produced by the hardware floating-point rounding. Therefore, I also do not
support this cases, not even when integral values only are involved.

I also do not perform constant propagation [93] which is more complex
and requires a static single assignment (SSA) representation or equivalent.

3.2.2.4.2 Arithmetic simplification
Arithmetic simplification is a task in which arithmetic operations are either
removed or replaced with less expensive counterparts.

Arithmetic operations which can be removed completely are called null
sequences. Null sequences are addition with zero, multiplication by one, bit-
wise shift with zero offset, logical ‘and’ with true, logical ‘or’ with false and
similar. Although these expressions are not very likely to appear in human-
written code, such expressions can quite easily appear from the expansion
of macros. Modern compilers usually include the ability to detect and re-
move null sequences involving integral expressions and, sometimes, also
with floating-point expressions.

In other cases, it is convenient to replace an arithmetic operation with
another one which is guaranteed to be less expensive on every possible ar-
chitecture for which the compiler could be targeted. This optimization is
called strength reduction [96]. Integer multiplications and divisions by pow-
ers of two (‘a ∗ 2’, ‘a ∗ 4’, ‘a ∗ 8’, ... and ‘a / 2’, ‘a / 4’, ‘a / 8’, ...) are replaced
with left and right shifts respectively (‘a << 1’, ‘a << 2’, ‘a << 3’, ... and ‘a >> 1’,
‘a >> 2’, ‘a >> 3’, ...). Other strength reductions which replace power expres-
sions such as ‘a squared’, ‘a cube’,... with ‘a ∗ a’ or ‘a ∗ a ∗ a’ are not possible
for AST or IR trees derived from the C language, which lack a power opera-
tor such as operator ‘∗∗’ in Fortran.

In the model flow, I consider integral-arithmetic null sequences, and a
limited number of cases of strength reduction.

3.2.2.4.3 Liveness analysis
Though performing liveness analysis as a part of context handling is op-
tional, all real C compilers must perform liveness analysis at least to guide

3.2. FROM REALITY TO THE ABSTRACT FLOW 73

the register allocation phase, which takes place in the ‘Target code genera-
tion’ step.

One of the common techniques to perform liveness analysis is by solving
data-flow equations on the control-flow graph [98], and a common technique
to generate a control-flow graph from an AST is by node threading. Node
threading is a simple algorithm which consists in a tree visit of the AST, with
simple pointer-updating operations involved.

Since the abstract version of the register allocation phase is trivial (thanks
to the unlimited number of registers in the abstract architecture), it needs no
liveness information. As a consequence, the abstract and model flows do not
perform any liveness analysis at all.

3.2.2.4.4 Other optimization steps
Many other optimization are possible at this level if also the data-flow be-
tween statements is analyzed (e.g., constant propagation [93], dead code
elimination [94], inter-procedural constant propagation [95]), which lead to
smaller and faster programs, but due to their implementation complexity we
choose not to comprise their behavior in the abstract flow.

Another common task which real compilers perform during intermedi-
ate code optimization is the elimination of common subexpression [97]. I
choose not to model this optimization exactly because of the effort it in-
volves. Nevertheless, my model flow can be easily extended to do account
for this effect, either statistically or exactly.

3.2.2.5 Target code generation

During target code generation, a real compiler translates the intermediate
representation into a program, written in the target machine’s assembly
code, which realizes the same semantics. This is usually done by replac-
ing each node in the IR tree with segments of target assembly code which
realize the semantics of the replaced node. Then, the IR tree is linearized on
the basis of the constraints imposed by the data dependencies among nodes
and by the control flow. There are three main issues involved in this phase:
instruction selection, register allocation and instruction ordering. There is no
general technique which addresses effectively all the problems at the same
time; on the other side, most available techniques tackle more than one prob-
lem at the same time, nevertheless I present them separately.

3.2.2.5.1 Instruction selection
During the instruction selection phase, the compiler tries to determine a
good set of assembly instructions which translates the IR tree. It is conve-
nient to describe the problem of the instruction selection as the determina-
tion a good tiling of the IR tree, where each instruction in the target instruc-
tion set corresponds to a given tile. This ingenious formulation of the prob-
lem is by Cattell [87], who also presented an automatic instruction selection
algorithm and built a code generator generator to automatically produce an
instruction selection function from the description of an instruction set. I
said a good tiling in place of the optimum tiling because in the second form

74 CHAPTER 3. AN INSTANCE OF THE TECHNIQUE

the problem is NP-complete, and real compilers employ a variety of differ-
ent approaches to solve the problem, among which the maximal munch [87],
bottom-up rewriting systems [88] and dynamic programming [89].

The formulation of the instruction selection problem in terms of tree
tiling is quite appropriate for the instruction sets of RISC machines, which
usually have many general purpose registers, three-operand instructions, a
load/store architecture (i.e., simple addressing modes) and exactly one ef-
fect per instruction. When these hypotheses are verified, the matching be-
tween instruction and tiles is tight and convenient. When compilation for
older, RISC machines is concerned, things complicate dramatically. CISC
machines have few, dedicated registers, complex addressing modes, two-
operand instructions and instructions with multiple side-effects. Modeling
their instructions with tiles is tricky. These architectures demand special
care and ad-hoc solutions during the design of the instruction selection and
register allocation routines. The resulting routines are even more complex
to describe and model than the approaches described above. For these ar-
chitectures, also a revolutionary approach, called super-compilation [90, 91]
was recently proposed. Compilers which employ this technique use pre-
calculated optimal code sequences, determined by exhaustive searching the
solution space for common, critical IR node patterns.

The complexity and variety of the numerous above approaches is out of
the reach of any possible high-level model. For the abstract flow, I have no
other choice than providing an abstract version of the instruction selection
phase which disregards the approach-dependent low-level details, still pre-
serving the consistency with abstract architecture and assembly language,
and allowing the construction of a corresponding high-level model. The ab-
stract translation phase, architecture and assembly needs to be designed in
such a way that the corresponding high-level model can be made statisti-
cally consistent with the behavior of the real code generator via appropriate
statistical tuning.

The solution I propose relies on the the minimalistic choices made for the
abstract instruction set. I have deliberately designed the abstract instruction
set (especially its cardinality, architecture class, and addressing modes) in
such a way that instruction selection is trivial. I formally describe abstract
instruction selection as part of the abstract translation model, in the form of
a grammar attribute, as defined in Section 4.3 (page 117), and I model it with
translation rules from atoms to abstract instructions.

3.2.2.5.2 Register allocation
The intermediate code generated by the algorithms described in the previ-
ous sections (3.2.2.3 and 3.2.2.4) may use an infinite number of registers to
hold the temporary values, and may use as many ‘move’ instructions as de-
sired. On the other hand, all real CPUs have a limited number of registers,
and ‘move’ instructions are expensive. The register allocator is responsible
for assigning the temporaries to a small number of machine registers, and as-
signing the source and destination of move instructions to the same register
wherever possible, in such a way that the corresponding ‘move’ instructions
can be avoided.

3.2. FROM REALITY TO THE ABSTRACT FLOW 75

A common approach to perform this task is by constructing an interfer-
ence graph and coloring it [92]. The interference graph is a graph whose nodes
are temporaries and variables, and whose edges connect couple of nodes
which cannot be assigned to the same register. The existence of an edge be-
tween two nodes may be a consequence of the liveness analysis (i.e. the two
nodes are live at the same time) or may represent structural constraint (no
instructions exist in the current architecture which can produce the result in
the register already assigned to some node). The task of register allocation
coincides now with coloring the interference graph, where no pair of nodes
connected by an edge may be assigned the same color. Each color represents
a different register. If the target machine has n registers, then any valid n-
coloring of the graph is a valid register assignment for the given interference
graph. When such a n-coloring does not exist, some temporaries must be se-
lected for being kept in memory instead of a register: this operation is called
spilling. When there is no edge between the source and destination node of
a move instruction, the two nodes can be coalesced and the corresponding
move instruction is eliminated, as anticipated above.

Register allocation is trivial task in the abstract compiler, thanks to the
hypothesis that the abstract architecture has an unlimited number of regis-
ters (see Section 3.2.1 (page 67)). The generation of unique register names
and their use as temporary names during the abstract translation is a valid
register allocation. The cost of accessing spilled temporaries must be ac-
counted for statistically in the model.

3.2.2.6 Target code optimization

In real compilers, this phase dominates the others in complexity, and it is
the one in which they exhibit the greatest diversity, especially for pipelined,
VLIW, superscalar and dynamic scheduling architectures, not counting
coarse-grained parallel architectures. It may include some peephole op-
timization, loop unrolling [99, 118], code motion [100], hoisting, induc-
tion variable elimination, code replication [101], loop pipelining (with the
Aiken-Nicolau scheduling [102], or with Rau’s iterative modulo scheduling
[103, 104], trace scheduling [105]. It may also include static branch predic-
tion [106, 71, 109], possibly profile-guided [108, 110], predicated execution
[111, 112, 113], profile-guided code positioning [121] and function-inlining,
either statically determined [123, 122, 124] or profile-guided [125].

The memory hierarchy-oriented optimizations may include data
prefetching [114], scalar replacement [120], loop interchange [115], loop tiling
[116], loop blocking [117] and loop fusion.

My fundamental approach, described in Section 1.4 (page 29), does not
set any constraints on how to handle this complexity. Each of the above
optimization steps in the modeled compiler can be neglected, approximated
statistically or modeled exactly. The decision I take for the instance of the
technique I describe in this chapter, is to model all these phases statistically.
The reasons are the following:

• most of the above phases are not even applicable or not beneficial for
single-issue executors, to which the technique instance described here

76 CHAPTER 3. AN INSTANCE OF THE TECHNIQUE

is targeted;

• many of the above phases have been investigated in research and ex-
haustively described and evaluated in literature, still they have not
been implemented in available compilers;

• the amount of knowledge on the actual modeled compiler required
to model these steps correctly is so high, that writing such an accu-
rate model does not involve significant less effort than writing the real
compiler.

The above decisions depend on the target and context set for this instance
of the technique. In different contexts, other decisions may be more appro-
priate: for a VLIW architecture with a trace-based compiler, integrating a the
compiler in the source-level estimation technique could be the only viable
approach to ensure acceptable accuracy.

3.2.2.7 Machine code generation

During this phase, the assembly instructions generated in the previous step
are written in an encoded format, such that they can be fetched and executed
sequentially by the processor. This task is either carried out internally by the
compiler, or by invoking an external assembler. The task it involves encod-
ing the instructions as required by the machine specifications, including the
opcode and operand fields, calculating jump target locations, and updating
the offsets in those jump instructions which jump there.

This is a trivial operation in the abstract assembly language, and we do
not need to specify the details of the abstract machine code. The only signif-
icant detail in the model associated to machine instruction decoding is the
tuning of the space cost contribution for each abstract assembly instruction.

3.3. THE MODEL FLOW 77

3.3 The model flow

3.3.1 Analytical cost model
In this section I define the cost model on which the technique instance pre-
sented in this thesis relies.

Given a program execution run (the program and its input data), let Ce, Ct
and Cs be the energy consumed by that execution (µJ), the execution time
(clock cycles), and the memory space occupied by the binary code of the
program (bytes) respectively1.

Let N be the number of nodes in the AST of the given source code. In-
strumenting all the nodes is unnecessary and highly inefficient, since for each
group of nodes executed the same number of times, only one of them needs
be instrumented; see Section 3.3.2.2 (page 82) for details. Thus, a representa-
tive set of P nodes is chosen for instrumentation: the pivot nodes, or pivots.
R is the a (P × N) matrix, called the representation matrix and defined as:

R =

R1,1 R1,2 ... R1,N
R2,1 R2,2 ... R2,N
...

...
. . .

...
RP,1 RP,2 ... RP,N

The matrix indicates which nodes are represented by each pivot. An element
Ri,j is equal to 1 when the j-th node sj is represented by the i-th pivot, other-
wise Ri,j = 0. Each column contains exactly one element with value 1, since
each node has exactly one pivot.

Once the instrumented program is run, the profile for the pivots is avail-
able:

p = [p1 p2 ... pP].

The element pi is the execution count of the i-th pivot. The generic element
pi is the execution count of the i-th pivot. From p and R, it is possible to
calculate n, the vector of execution counts of all symbols as:

n = p · R = [n1 n2 ... nN]

where ni is the execution count of the i-th source symbol.
As anticipated, each node i has a single-execution cost ci, expressed as a

linear combination of atoms, as expressed below:

ci = Mi,1 ·Atom1 + Mi,2 ·Atom2 + ... =
A

∑
j=1

Mi,j ·Atomj

The association of costs to nodes in terms of atoms is described by the map-
ping matrix M defined as:

1The model presented here also allows to determine the executable object size, al-
though this feature is not discussed further in the rest of the thesis.

78 CHAPTER 3. AN INSTANCE OF THE TECHNIQUE

M =

M1,1 M1,2 ... M1,A
M2,1 M2,2 ... M2,A
...

...
. . .

...
MN,1 MN,2 ... MN,A

where A is the number of atoms. The mapping matrix is a (N × A) matrix
indicating how many occurrences of each kind of atom are associated to each
and every symbol.

The cost of each atom is, in turn, composed of the costs of the kernel
instructions that the atom translates to. K is the cardinality of the classes
of the kernel instruction set. Then we define the translation matrix T as the
following (A × K) matrix:

T =

T1,1 T1,2 ... T1,K
T2,1 T2,2 ... T2,K
...

...
. . .

...
TA,1 TA,2 ... TA,K

This matrix accounts for the behavior of a the modeled compiler. Each com-
piler leads to a different T.

To reduce the number of measurements which needs to be performed on
the target architecture, I partition the entire abstract instruction set in a small
set of classes, assuming that instructions in the same class have similar cost
in time, energy and space.

The i-th row defines the cost of the atom i-th atom in terms of classes of
abstract instructions.

Atomi =
K

∑
j=1

Ti,j · k j

Statistical measurements performed on the target architecture provide
energy, time and space costs for each of the classes of kernel instruction:

ke = [ke1 ke2 ... keK]
kt = [kt1 kt2 ... ktK]
ks = [ks1 ks2 ... ksK]

Based on the above definitions, it is possible to express the estimates of
energy, time and space costs of a given program execution in a very compact
way:

Ce = p · R · M · T · kT
e (3.1)

Ct = p · R · M · T · kT
t (3.2)

Cs = 1A · M · T · kT
s (3.3)

(where 1A is a vector of all ‘1‘ elements).
Since

Ci = ni · ci,

3.3. THE MODEL FLOW 79

Type Size Available after Comment

Ce scalar post-processing final output
Ct scalar post-processing final output
Cs scalar post-processing idem (instr./profiling not required)
N scalar parsing depends on source code
n vector 1× N parsing depends on source code
P scalar instrumenting idem and on pivot choice strategy
p vector 1× P profiling depends on source code, pivot

choice strategy and input data
A scalar method fixed in this technique instance
K scalar method fixed in this technique instance
ke vector 1× K modeling statistical model of the architecture
kt vector 1× K modeling statistical model of the architecture
ks vector 1× K modeling idem and of the compiler
R matrix P × N instrumenting describes the choice of pivot symbols
M matrix N × A method fixed in this technique instance
T matrix A × K tuning statistical model of the compiler

Table 3.1: Summary of the symbols introduced.

and the execution counts are contained in vector

n = p · R,

while single-execution costs are in vector

M · T · kT
v

(where v ∈ {e, t, s}), then the cost of each node in terms of energy, time and
space can be expressed as:

Ci,e = (p · R)i · (M · T · kT
e)i (3.4)

Ci,t = (p · R)i · (M · T · kT
t)i (3.5)

Ci,s = (M · T · kT
s)i (3.6)

The above equations, along with the definition given above of the matri-
ces involved, summarize the proposed technique.

Table 3.1 lists the symbols introduced in this section.

3.3.2 Model application
The technique I propose is composed of the following 6 steps, as depicted in
Figure 3.2:

1. Analyze:
in this step, the tool determines the AST of the input source code by
parsing it; then it annotates the AST with costs expressed as atoms. It
selects a minimal subset of the nodes (pivots) for profiling, such that the
execution counts of all the other nodes can be derived from the pivots’
execution counts.

80 CHAPTER 3. AN INSTANCE OF THE TECHNIQUE

source code

Step 1: Analyze

Step 2: Instrument

Step 3: Build

annotated syntax tree

instrumented source code

execution counts

Step 5: Collect

energy-annotated AST Key:

data
tool
library

cost model

profiling library

instrumented executable

Step 4: Run

input data

Step 6: Report

energy-annotated source code

Pseudo-compiler

Post-processing

Figure 3.2: The steps which compose the estimation flow I propose.

2. Instrument:
in this step the tool generates an instrumented version of the code,
inserting a profiling call per each pivot.

3. Build:
the tool employs a regular compiler (e.g. GNU GCC) to build the in-
strumented source code, also linking it against the profiling library,
which contains the implementation of the profiling function. The re-
sult is an executable program which is functionally equivalent to the
original, non-instrumented application, except that it dumps execu-
tion counts (profiles) at the end of its execution.

4. Run:
the tool runs the instrumented executable over real input data. After
the execution, the execution counts per each pivot are available.

3.3. THE MODEL FLOW 81

5. Collect:
the tool translates the single-execution costs from atoms, to abstract
assembly instructions, and then to physical quantities (time and en-
ergy). It determines the profiles of all the nodes starting from the pivot
profiles. Finally, it determines the total cost for each AST node;

6. Report:
the tool generates a report, in the form of a browsable, annotated ver-
sion of the original source code, indicating how much energy and time
are spent by each syntax element.

The next paragraphs discuss the theory and tools on which the above
steps are based.

3.3.2.1 Step 1: Analyze

The first task involved in Step 1 is parsing a generic source code written in
the C programming language. As I have motivated in Section 3.2.2.1 (page
69), the model flow needs a complete, ‘real world’ front-end for the C lan-
guage. The necessary concepts for the construction of a parser for an artificial
language belong to a well-consolidated portion of the theory of languages,
and a number of good books [76, 77, 78, 79] exist, which cover the topic ex-
haustively. This thesis offers no original contribution in this field.

As far as the choice of which specific ‘flavor’ of the programming lan-
guage to parse is concerned, for sake of compliance with the standards, I
choose to strictly adhere to the specifications of the C language, as published
in the standard named ISO/IEC 9899:1990 [80] and in the two subsequent
associated Technical Corrigenda. The standard is also available is an anno-
tated version [81] which covers a number of pitfalls and technicalities for
which the naked standard is not an appropriate learning aid.

To design the C parser I have employed the well known scanner genera-
tor ‘flex’ [145] and parser generator ‘bison’ [143, 144] from the Free Software
Foundation.

The actual bison specification of the syntax of the C language I employed
in the design of my parser is by Jeff Lee, republished by Jutta Degener [147].

A parser prepared according to the above grammar operates on the ba-
sis of its syntax rules, recognizing a complete concrete syntax tree. Concrete
syntax trees are impractical to handle (for reasons which we justify in Sec-
tion 4.1.2 (page 102)), and it is common practice to transform them into ab-
stract syntax trees. The transformation presents no conceptual difficulties
but its actual realization presents some degrees of freedom, therefore, if not
specified in detail, it is ambiguous. For this reason, I choose to specify it
completely in Section 4.1.2 (page 102).

Once the AST of the input source code is available, the technique asso-
ciates to each syntax entity (i.e. each node in the AST) its single-execution
cost, expressed as a linear combination of atoms (source-level, architecture-
independent cost contributions). This task relies on an original analysis of
the execution cost of source-level entities. This technique, and the theory
which provides its foundations are the subject of Chapter 4. The technique is

82 CHAPTER 3. AN INSTANCE OF THE TECHNIQUE

expressed in the form of an attribute grammar, whose final goal is the deter-
mination of attribute c for each of the node in the AST. Attribute c of a node
accounts for the consumption caused by a single execution of that node.

The last task involved in step is the selection of the pivot nodes, i.e., a
minimal set of nodes which will be subject to instrumentation via profiling
calls. The purpose of each profiling call is to determine the exact execution
count of the node to which it was attached. The set of pivot nodes must be
selected carefully, in such a way that it is minimal (to minimize the overhead
of the instrumentation code) but sufficient to derive the execution counts for
all the other nodes in the AST. The choice of an appropriate pivot selection
strategy is the topic of the next section.

3.3.2.2 Step 2: Instrument

In Step 2, the technique rewrites an instrumented version of the original
input source code, with instrumentation code added to the pivot nodes.
Though not being technically trivial, the inner workings of this tool show
little scientific novelty.

Profiling nodes via source instrumentation requires a sufficient set of
transparent probe-inserting transformations, able to reach any desired type
of node. The set of transformation chosen is illustrated in Table 3.2. Ex-
pressions are included in parenthesized comma expressions, statements are
wrapped in compound statements. The same happens to function bodies, with
additional code added at every return point in order to allow call stack sim-
ulation, and per-invocation cost calculation. I have called these transforma-
tions ‘transparent’ because they do not modify the input-output behavior of
the original program.

Instrumenting all the nodes is unnecessary, highly inefficient and, in
some cases, syntactically impossible. Instead, probes should be inserted in
the minimum number of points sufficient to determine the execution count
of every node in the program: therefore, an efficient instrumentation strategy
is required.

Given a set of nodes A = {a1, a2, ...}, I define an instrumentation I over A
as a partition of A where, for each subset Ai, one node pi is chosen as pivot.
More formally,

I = {(p1, A1), (p2, A2), . . . , (pn, An)}

such that {A1, A2, . . . , An} is a partition of A, and ∀i ∈ {1, 2, . . . , n} pi ∈ Ai.
An instrumentation is safe when all nodes inside a given Ai execute the same
number of times. The trivial instrumentation is the one in which every node
is pivot:

IT = {(a1, {a1}), (a2, {a2}), ..., (an, {an})}.

A convenient formal way to define a instrumentation strategy is as an equiv-
alence relation ∼ over elements of A. In fact, any equivalence relation over
A induces a partition A/∼= {A1, A2, . . .}. Then, any arbitrary choice of the
pivot for each Ai is irrelevant for correctness or for efficiency.

Therefore, determining a good instrumentation strategy is determining
a good node equivalence relation ∼. Very efficient ∼-relations induce large

3.3. THE MODEL FLOW 83

Syntax element Instrumentation technique

expression (profile_function(#node_id), expression)

statement { profile_function(#node_id); statement }

type function_name(args) type function_name(args)
{ { profile_function(#node_id1); {

body body
} } profile_function(#node_id2); }

Table 3.2: Instrumentation syntactic techniques

equivalence classes, but could be complex to evaluate. For example, in the
following excerpt:

/∗ code section 1 ∗/
a = 3;
if (a % 2) {

/∗ code section 2 ∗/
}
/∗ code section 3 ∗/

nodes in code section 1,2 and 3 should be all equivalent since the
if condition is always true2. However, the determination of cases like
above require a complex symbolic evaluation engine, which is beyond cost-
effectiveness in the context of this work.

A traditional solution is basic block instrumentation[71]: given nodes a
and b, it considers a ∼ b iff a, b belong to the same basic block. This is a
good starting point, but at source-level further optimizations are possible.
Figure 3.3 illustrates such a case: sections 1 and 4 are evidently always ex-
ecuted together, but assembly-level tools cannot recognize this and would
insert 4 probes, when only 3 are actually needed. The gain is evident in case
of ’if’ chains.

The technique I propose is called generalized basic block instrumentation. It
is based on the following definition of ∼ −relation:

Given two nodes a, b, I say that a is equivalent to b (or a ∼ b) iff a
and b belong to the same function, and it can be stated that a and b
are always executed the same number of times without examining any
conditional expressions.

Hence, a generalized basic block is a maximum set of nodes that are ex-
ecuted the same number of times, and it is not required to examine condi-
tional expressions to say that. The above definition can be proved to be safe;
additionally, it is simple to check at parse time, and still very efficient.

My implemented instrumentation engine finds optimal instrumentations
according to the above definition, and statistics over real code show that it
generates instrumentations with equivalence classes containing on the av-
erage 100 nodes. This means that on the average, only 1 probe is executed
every 100 nodes, resulting in run-times only 2 times slower than the original

2provided that a is non-volatile and no gotos involve sections 1–3.

84 CHAPTER 3. AN INSTANCE OF THE TECHNIQUE

Source-level generalized
basic block instrumentation

3 generalized basic blocks
3 profiling probes

/* code section 1 */

if (condition)

{

/* code section 2 */

}

else

{

/* code section 3 */

}

/* code section 4 */

Assembly-level basic
block instrumentation

4 basic blocks
4 profiling probes

L1:/* code section 1 */

/* condition */

JZ L3

/* code section 2 */

JMP L4

L3:/* code section 3 */

L4:/* code section 4 */

Figure 3.3: A sample section of code where generalized basic block instru-
mentation is more efficient than basic block instrumentation.

code and approximately 11,000 times faster than basic-block instrumenta-
tion.

3.3.2.3 Step 3: Build

In Steps 3 I employ a regular C compiler to compile the instrumented source
code. In the implementation I relied upon GNU GCC. This choice is com-
pletely uninfluential on the generality and applicability of the technique. The
use of the estimation flow with a different compiler would require no or mi-
nor modifications in the implementation details of the tools. I chose GCC
because of its availability on a large number of platforms and operating sys-
tems.

In the figure above, I depicted Steps 1–4 grouped together into a pseudo-
compiler box. This is to symbolize that the tasks involved in those steps are
carried out, in my implementation, by a a single script which externally be-
haves like a regular compiler. Therefore they are executed in a fully auto-
mated way, and they are transparent to the programmer. I discuss the re-
maining details on the topic in .

The flow intervenes in the regular task of linking the compiled objects,
in order to add a library which contains the run-time support for instrumen-
tation. This library provides the implementation for all the function calls
which the instrumentation engine may add, either in order to profile the
program syntax elements or upon user request.

3.3.2.4 Step 4: Run

In this step the user runs the instrumented executable. It is the user respon-
sibility to provide realistic input data to the instrumented program. The in-

3.3. THE MODEL FLOW 85

strumented program will behave in a functionally equivalent manner to the
original program, with the only difference of the overhead required to main-
tain profiles and other user-requested measurements. At program termina-
tion, profiles will be written to disk.

3.3.2.5 Step 5: Collect

During Step 5, a tool processes profiles and determines the desired statistics,
according to the formal cost presented.

3.3.2.6 Step 6: Report

During Step 6, a tool represents the statistics collected and calculated during
the previous phase, and it relates these cost data back to the original entities
in the program which caused them. The output is a browsable copy of the
original code, which each significant entity has been annotated with cost
statistics.

86 CHAPTER 3. AN INSTANCE OF THE TECHNIQUE

3.3.3 People and activities

The activities that a generic actor can undertake with respect to the tech-
nique are three: founding the technique, targeting the technique and using
the technique. The actors of these three activities are respectively its authors,
the target specialists and the users.

3.3.3.1 Founding the technique

This activity consists in the construction of the very technique: laying its the-
oretical foundations, deriving the cost association rules which are its core,
verifying its correctness, devising efficient profiling strategies, designing au-
tomated tools which allow the application of the technique, carrying out ex-
periments to measure its estimation accuracy. All the tasks involved in this
thesis were carried out by its authors. The outcome of the tasks is the tech-
nique itself. All these tasks need to be completed once for all: their results
are architecture- and compiler-independent.

There is a significant portion of the ideas and concepts conceived in this
activity, which the actors of the other activities need not to be aware of (e.g.,
the abstract assembly translation model described in Section 4.3 (page 117)).
These ideas and concepts serve as the foundations of the technique, but do
not appear in its outcome.

Activity creating the technique
Actor the author of this thesis
Input the C language standard
Outcome the map from source code to atoms,

the map from atoms to kernel instructions,
Reiteration just do once

1. define an abstract
architecture and

assembly language

2. define abstract C
translation model

Abstract
instruction

set

The C
language
standard

C
↓

abstract
instructions

3. define the atoms

C
↓

Atoms

Atoms
↓

abstract
instructions

Figure 3.4: Tasks and artifacts involved in activity 1: “founding the tech-
nique”.

3.3.3.2 Targeting the technique

This activity consists in preparing the architecture-dependent details of the
technique for use with a given target platform. This activity requires the

3.3. THE MODEL FLOW 87

target platform, either in the form of an instrumented board or of an energy-
accurate simulator. The expected actor of this activity is the target special-
ist, i.e., someone who has an extensive knowledge of the target platform.
The target specialist does not need to know how the high-level details of the
technique, i.e. the abstract translation model and how atoms are associated
to nodes. On the other hand, he needs to know how to model the specific
target architecture and its instruction set in terms of abstract instructions.

Activity preparing the technique for use with a given architecture
Actor the target specialist (e.g. silicon vendor)
Input the kernel instruction set,

the target platform
Outcome the cost of each kernel instruction,

the correction coefficients
Reiteration do once for each target platform

4. model
tuning

Abstract
instruction

set

Target
platform

Abstract
instructions

↓
cost

Correction
coeffs

Figure 3.5: Tasks and artifacts involved in activity 2: “targeting the tech-
nique”.

3.3.3.3 Using the technique

This activity consists in using the technique. The actor is the final user. The
final user does not need any knowledge on the target or on the methodology.

Activity using the technique
Actor the final user
Input the application source code

the input data
Outcome the estimated execution cost
Reiteration do once for each application and set of input data

88 CHAPTER 3. AN INSTANCE OF THE TECHNIQUE

5. model application

Abstract
instructions

↓
cost

Input
data

Cost

Application
source

code

C
↓

Atoms

Atoms
↓

abstract
instructions

correction
coeffs

Figure 3.6: Tasks and artifacts involved in activity 3: “using the technique”.

3.3. THE MODEL FLOW 89

3.3.4 Overall scheme

1. define an abstract
architecture and

assembly language

2. define abstract C
translation model

Abstract
instruction

set

The C
language
standard

C
↓

abstract
instructions

3. define the atoms

C
↓

Atoms

Atoms
↓

abstract
instructions

4. model
tuning

KIS

Target
platform

5. model
application

Abstract
instructions

↓
cost

Input
data

Cost

C
↓

Atoms

Atoms
↓

abstract
instructions

Abstract
instructions

↓
cost

Correction
coeffs

Input
data

Application
source

code

correction
coeffs

Activity 1: founding the methodology

Activity 2: targeting the methodology

Activity 3: using the methodology

Figure 3.7: The tasks and artifacts involved in all the activities related with
the technique.

90 CHAPTER 3. AN INSTANCE OF THE TECHNIQUE

3.4 The optimization flow
Once the source-level estimation flow has completed his execution, thus pro-
viding estimates for execution time and energy absorption of each syntax
element, the optimization phase can be initiated.

In this phase, the amount of source code to be considered in the next
tasks is reduced by selecting only the most critical portions. In this context, a
portion of code is either a whole function or a set of lines. To perform such a
selection I sort energy costs of functions and code lines in decreasing order,
and select the first N f functions and Nl lines such that their contribution
(calculated independently for functions and for code lines) accounts for a
user-defined fraction of the overall energy. It is clear, in fact, that optimizing
the most critical portions of the code will potentially result in the highest
benefit. A portion of code is uniquely identified by the triple:

〈 f ile, f unction, [ls, le]〉

where [ls, le] identifies a range of consecutive lines. I call such a triple a scope.
Scopes can be incomplete triples, i.e. one or more of their elements can be
replaced by the symbol ∗, having the meaning of a wild-card. For example,
the scope 〈 f ile, f unction, ∗〉 indicates a whole function, while A = 〈∗, ∗, ∗〉
indicates the whole source code of the application being considered.

The result of critical portions selection is represented by two lists of
scopes: the list of functions:

C f = {〈 f ile, f unction, ∗〉i} 0 ≤ i < N f

and the list of sections:

Cl = {〈 f ile, f unction, [ls, le]〉j} 0 ≤ j < Nl

The optimization engine is based on a set of basic fuzzy rules character-
ized by:

• an input scope;

• a fitness function, measuring a specific feature on the code and return-
ing a fitness value fk ∈ [0; 1];

• a threshold, indicating the minimum value of the fitness for which the
rule is triggered;

• a guideline, indicating the optimization to perform.

plus a number of compound rules obtained by combination of the above
basic rules. The final output of the optimization engine is the list of rules
that fired, the corresponding scopes and a score between 0 and 1 indicating
how much the suggested optimization is expected to be beneficial.

Now, I now describe in detail the steps composing the transformation
steering flow. Briefly said, the transformation steering flow adds two more
steps to Figure 3.2, Step 7 and Step 8. Step 7 selects the most critical sections

3.4. THE OPTIMIZATION FLOW 91

of code, and Steps 8 selects which transformations to apply on it. Step 7 is
a fairly simple task, which mainly groups statistics by their relevant syntax
nodes and sorts them by decreasing impact. Step 8 is the very transformation
steering operation, carried out by a network of fuzzy rules.

Steps 7 accepts as an input the statistics produced at Step 6. It detects and
sorts the critical sections by decreasing execution time, selecting the top ones
which cause collectively a user-selected portion (e.g. 90% or 95%) of the total
execution time or energy. The other sections are neglected. Sections of code
are denoted as scopes, as explained before.

At the end of Step 7, a lists of critical scopes is available. Step 8 will
generate the optimization directives, determining which transformations are
beneficial on these scopes. Step 8 is performed by a modified artificial neural
network that I call Network of Fuzzy Rules (NFR). NFRs are very similar to
traditional Artificial Neural Networks (ANN), except for several details ex-
plained below, which have been adapted for this application domain. An im-
portant difference is that, while in most ANNs weights and connections are
estimated during an error-minimization learning process (as in, e.g. back-
propagation), in NFRs connections and weights are individually and inten-
tionally designed to model precise concepts, e.g. to detect the suitability of
a scope to benefit from loop unrolling. Each NFR rule (the corresponding
concept of a neuron) is an object as depicted in Figure 3.8.

Rule

Input scopes

Input scores

Output
scope

Output
score

Source-level
information

Threshold

Figure 3.8: A NFR rule.

A NFR rule is a function (as complex as desired) taking as inputs one or
more scopes and their associated scores, and returning exactly one scope and
one score. A score is a value ∈ [0, 1] which express a fuzzy truth value, e.g.
how much a given feature is present in the given input scope or how much
a transformation is beneficial to the given input scope. Unlike neurons, each
NFR rule has an extended set of inputs, which includes the complete data of
the program under analysis: its syntax tree annotated with profiles and costs,
its symbol tables, etc.. Like neurons, NFR rules have an activation function.
I have employed the following simple activation function:

output = f (x) =
{

0 when x < threshold
x else

i.e., each rule has a given threshold, and when the output is below threshold,

92 CHAPTER 3. AN INSTANCE OF THE TECHNIQUE

C
ri

tic
al

 se
ct

io
ns

...

Complete information
on the analyzed program

(syntax, profiles, ...)

Input layer Output layer

O
ut

pu
t o

pt
im

iz
at

io
n

di
re

ct
iv

es
 to

 u
se

r

Scope data flow
Score data flow

C
ri

tic
al

 se
ct

io
ns

(s
co

pe
, s

co
re

s)

Key:

Source-level data flow
NFR rule

Figure 3.9: The structure of the Network of Fuzzy Rules (NFR) I employ for
transformation steering.

zero is returned. When the output score of a rule is above the threshold, I say
that the rule fires.

As ANNs are composed of multiple layers of neurons, NFRs can be com-
posed of multiple layers of NFR rules. In the following paragraphs, I will
employ the concepts of ‘input layer’, ‘output layer’, ‘hidden layer’, ‘input

3.4. THE OPTIMIZATION FLOW 93

rule’, ‘output rule’ by analogy with the corresponding concepts in ANNs. I
skip the corresponding formal definitions because they are lengthy and triv-
ial. In my experimental setup, I propose a NFR composed by two layers, an
input and an output layer (see Figure 3.9).

Rules in the input layer have a single scope input, taken from the list of
critical scope. They have also a single score input, which is the energy or
time cost of that scope, normalized over [0, 1]. With each input rule I model
a given feature of a section of code: e.g. “this section is a small bounded
for loop” or “this section is a floating-point intensive computational kernel”,
or “this sections allocates small constant-sized chunks of memory” and its
score represents the truth of this feature.

Each output rule corresponds to a given transformation. When an out-
put rule fires, the corresponding transformation is beneficial over the given
scope. The output score gives an empirical measure of how beneficial it
is. The collection of all the rules which fired, together with the input scope
which caused them to fire, are recorded to form the optimization directives
returned to the user.

The output scope of input rules is a subset or equal to their input scope.
The output scope of output rules is a set operation of the input scopes, de-
pending on the case (usually an intersection).

To summarize, Step 8 proceeds as follows:

• each of the critical scopes determined in Step 7 is presented as a scope
input to all the NFR rules in the input layers; and each of the associ-
ated energy/time weights of the above scopes (normalized to [0;1]) is
presented as score input to all the NFR rules;

• the outputs of all the other NFR rules is calculated according to con-
nections;

• if any of the output neuron has fired, it is added to the output opti-
mization directives, together with its associated scope.

3.4.1 Modularity of the algorithm
A relevant advantage of the proposed algorithm is its modularity. NFR rules
are objects with a well defined interface. They accept a set of scopes and as-
sociated scores as inputs, and they return one scope and its score. Plus, they
can access as an input the entire results of the analysis of Steps 1–6, includ-
ing syntax trees, atom- and abstract assembly characterizations, profiles and
symbol tables, which all have a well defined format.

As a consequence, the approach allows easily the augmentation of the
NFR with new rules, designed to apply new transformations. Each NFR rule
can be developed separately by different entities, in different programming
languages. In my implementation, NFR rules are separate programs, some
implemented in C and some implemented in scripting languages (mainly
Tcl and Python). As a consequence, NFR rules can be also shipped in binary
format without disclosing intellectual properties.

At this time, I have modeled NFR rules for the following transformations:

94 CHAPTER 3. AN INSTANCE OF THE TECHNIQUE

LU loop unrolling (well known);
FI function inlining (well known);

FM function replacement with a macro (well known);
SE common subexpression elimination (well known);
SR strength reduction (well known);
CE type conversion elimination:

this transformation avoids a frequent type conversion (either implicit
or explicit) by changing the declared type of one or more variables
involved in the operation, for example promoting an integer variable
to a floating point type;

SF standard library function call factorization:
this transformation is triggered by standard library function calls such
as ‘printf’ or ‘scanf’ inside critical loops; it is often possible to unroll
these loops n times and replace n calls with a single call. For exam-
ple, calls like printf ("%i ",array[i]); can be factored into a single call
printf ("%i %i ... %i", array[i], array[i +1], ...); ;

MF memory allocation factorization:
this transformation is triggered by memory-allocating function calls
inside critical loops; it is often possible to unroll these loops n times
and replace n calls with a single call, which allocates n times the mem-
ory of the original call;

AP argument passing via pointers;
this transformation is triggered when large object are passed as func-
tion arguments on the stack; after the transformation, the same objects
are passed by pointer;

FS function specialization;
this transformation is triggered by constant arguments in function
calls; the original function is replaced by a new version with less
arguments, and with an internal algorithm which is replaced with a
specialized version.

The above two-letter acronyms associated to each transformation will be
used to describe the experimental results in Table 5.2.

As shown above, it is not only possible to model the traditional loop
and function call transformations, but also novel transformations, at a higher
level of abstraction, for example the ones involving the semantics of operat-
ing system calls and library functions. This is possible because NFR rules
have complete access to the entire static and dynamic information available
on the program.

3.4.2 Scalability of the algorithm
Given the growing size of several embedded applications (e.g. video play-
ers), the performance scalability of the entire flow with respect to size is of
critical importance. I will show that this flow is composed by steps which
scale well with the size of the application under analysis.

3.4. THE OPTIMIZATION FLOW 95

There are two important dimensions of size: a static dimension (how
complex is the description of the program under analysis) and a dynamic
dimension (how complex is the runtime behavior of the program). A rough
estimator of the static dimension of a program is its size, measured in lines
of code, or better in abstract syntax tree nodes. A rough estimator of the
dynamic dimension of a program is its simulation time. A scalable technique
must exhibit a time complexity which is not worse than polynomial in both
dimensions.

I prove that all the steps comply with this requirement:

• Step 1 is based on a LALR(1) parser (polynomial over static size), with
semantic actions that may involve searching or sorting symbol table
(which are also polynomial over static size), and is therefore polyno-
mial over static size.

• Step 2 is linear with the static size of the program, and independent
from the dynamic size.

• Step 3 and 4 are performed by a regular compiler, whose complexity
analysis is beyond reach. Anyway, compilers are designed to exhibit
acceptable run times.

• The profiling operation between Steps 4 and 5 are linear with the dy-
namic size of the program, and independent from the static size.

• Steps 5 and 6 are linear with the static size of the program and inde-
pendent from its dynamic size.

• Step 7 is a list sort, which can be performed in O(n log n) time where
n indicates the static size of the program. It is independent from the
dynamic size.

• Step 8 deserves some discussion, because it involves modules (NFR
rules) which can be provided by third parties and whose complexity
is not known. Step 7 involves a linear scan of all the scopes. The step
is independent from the dynamic size, and has a complexity over the
static size equal to O(n · Q) where Q is the complexity of the most
complex NFR rule. Therefore, Step 8 is polynomial if all the NFR rules
are polynomial.

3.4.3 Current limitations
Employing a structure like the NFR network leads to the advantages in mod-
ularity and scalability which I have discussed above. Now, I discuss the lim-
itations of this approach.

I have been able to model successfully transformations which have local,
non-interacting effects. The method is well suited for sets of transformations
which have no (or, at least, non-degrading) effects on the applicability of one
another. Modeling the effects of global transformations (e.g. floating-point to
fixed-point arithmetic switch), or transformations which show dependences

96 CHAPTER 3. AN INSTANCE OF THE TECHNIQUE

(e.g. one is enabled by another, or two transformations are alternative) is
possible in this flow, but the NFR network is not designed to evaluate all the
possibilities in a single run.

In this case, it is the responsibility of the user to explore the tree of pos-
sible transformation choices, by employing my tools in multiple iterations.
The construction of a method to automate this loop is possible, and left to
future developments.

3.5. TOOL IMPLEMENTATION 97

3.5 Tool implementation
I have implemented the estimation and the optimization flows described in
this chapter.

The source-level software estimation flow acts externally as the GNU
GCC compiler, thus allowing current projects to be compiled with their own
unmodified makefiles. Steps 1–4 are performed by my pseudo-compiler tool,
which pre-processes, parses and instruments the input code, finally compil-
ing and linking it with the real GCC compiler. Step 1 is performed by a
parser, designed in bison and flex starting from a free ANSI C syntax [147].
It is the most complex tool of the suite: it builds a complete type system for
the input, it attributes atoms to nodes and selects pivots. Then, a pseudo-
linker stealthily adds a library containing the implementation of the probe
function. The resulting executable is equivalent to its non-instrumented ver-
sion, only it generates profiling information. That information is processed
by the post-processing tool, which actually performs the numerical calcu-
lation of estimates according to the model presented in Section 3.3.1 (page
77).

The transformation steering flow takes as an input the decorated parse
trees generated by the pseudo-compiler, together with execution counts and
consumption statistics. A critical section detector selects the regions where
the most energy and time is spent, and an inferential engine determines and
suggests to the user the optimizations which are likely to produce the highest
gains. The engine performs this task on the basis of library containing a
set of fuzzy-rules, able to detect specific features in the code; and a set of
rules, which determine how much each optimization technique is suitable
on a portion of code, on the basis of the degrees at which each of the above
features are present. These rules are encapsulated in a which implements
the interconnectivity and supervision of the NFR network, plus a separate
module for each NFR rule. The final output is a report where each entry
indicates an optimization to apply, the section where to apply it, and the
degree of confidence in its beneficiality.

All the documentation and manuals regarding the implemented tools is
available as separate documents. Due to volume and update reasons, it is
not meaningful to report the above documentation in this thesis.

98 CHAPTER 3. AN INSTANCE OF THE TECHNIQUE

Chapter 4
The cost of syntax elements

IN the overview of this thesis, I divided the estimation problem in two
subproblems: estimating the single-execution counts of nodes, and
profiling their execution counts. This chapter is entirely devoted to
the first subproblem.

The solution I propose is an attribute grammar, which determines the
single-execution costs of each node in the abstract syntax tree correspond-
ing to the input source code. The cost attribution rules of this attribute are
founded on an architecture-independent abstract translation model, which
can approximate the behavior of an arbitrary compiler.

I present the topic in the following steps:

1. first, I introduce the concepts which this chapter uses (grammars, syn-
tax trees, costs, atoms, abstract assembly instructions) and unambigu-
ous notations to denote each of them: Section 4.1 (page 100);

2. then, I give an overview of all the factors (at the language level) which
influence the cost of a syntax element: Section 4.2 (page 110);

3. then, I present an abstract model which describes how to translate C
code into abstract assembly instructions, taking into account all the
issues presented above: Section 4.3 (page 117);

4. finally, I present an attribute grammar which allows to determine the
single-execution cost of nodes; this grammar is founded on the above
translation model, and it allows cost determination without actually
performing the abstract translation: Section 4.4 (page 136);

For the convenience of the reader, Section 4.5 (page 231) presents a quick
reference summary the syntax rules used in the previous sections.

99

100 CHAPTER 4. COST OF SYNTAX ELEMENTS

4.1 Notation
The determination of single-execution costs relies on cost attribution rules
which are founded on an appropriate abstract translation model. In this
chapter I present such an abstract translation model, and derive the corre-
sponding cost attribution rules. In this sense, this chapter is fundamental
for the rest of the methodology presented in this thesis. These cost attribu-
tion rules allow to associate an architecture-independent cost to each syntax
entity in the original source code.

I achieve this goal via a multi-visit grammar attribute [13] based on the
syntax of the C language. This grammar defines, for each applicable symbol,
an attribute c which represents its single-execution cost. The actual calcula-
tion of the value of attribute c for all the symbols appearing in a given source
code relies on a number of other attributes, on which c depends, whose pur-
pose and features will be motivated in the next sections.

In this section I introduce the assumptions and the notation I will use to
describe syntax rules, semantic rules and abstract assembly translations.

4.1.1 Denoting syntax and semantic rules
Since I will define the cost determination process as a multi-visit attribute
grammar over an abstract syntax tree, a formal notation is needed to specify
grammar rules: both syntax rules and semantic rules. Syntax rules describe
how symbols derive more complex sentences; all the syntax rules together
define the language. Semantic rules describe how to calculate the symbol’s
attributes. In this section, I describe the notation used in this thesis to specify
grammar rules.

Syntax rules will be typeset in a usual style, as in the following example:
〈multiplicative_expression〉 ::= 〈cast_expression〉

| 〈multiplicative_expression〉 ‘*’ 〈cast_expression〉
| 〈multiplicative_expression〉 ‘/’ 〈cast_expression〉
| 〈multiplicative_expression〉 ‘%’ 〈cast_expression〉

Nonterminal symbols are enclosed in angular parentheses. Terminal sym-
bols are written in capitals (like ‘IDENTIFIER’) or single-quoted (such as ‘+’,
‘>’, ‘++’, ‘!=’, ‘sizeof’, ‘if’, ...).

I employ two meta-symbols:

• ‘::=’, which separates the left-hand side of each grammar rule from its
possible right-hand sides;

• ‘|’, which separate alternative right-hand sides corresponding to the
same left-hand side.

No meta-symbol is used to mark the end of a rule. No meta-symbol is used
to denote an empty string. The two conditions will be marked by vertical
and horizontal whitespace respectively. Meta-symbols are neither quoted
nor typeset in a special style. Confusion between one-character terminals
and meta-symbols is not possible, since the former ones are quoted whereas
the latter ones are not. Indentation and line-breaking are purely cosmetic
and bear no semantics.

4.1. NOTATION 101

Whenever the same non-terminal symbol appears multiple times in a
rule, its occurrences in the right-hand sides will be explicitly numbered to
avoid confusion: 〈statement-1〉, 〈statement-2〉, ... The left-hand side symbols
are never numbered (e.g., 〈statement〉). That bears no risk of ambiguity be-
cause in this thesis I will deal only with the grammar of the C language,
which is context-free, therefore there will always be exactly one non-terminal
symbol on the left-hand side.

Attributes are marked in a dotted notation; e.g., attribute cc of symbol
〈assignment_expression〉 is denoted as 〈assignment_expression〉.cc. Depending
on what is more convenient in each case, attribute evaluation will be ex-
pressed in one of the two following forms:

• in the form of a semantic rule, associated to exactly one syntax rule;

• in the form of (usually recursive) pseudo-program working on an ab-
stract syntax tree.

Note that the two forms operate on different models: the first on syntax
rules, which determine the Concrete Syntax Tree (CST), and the second on
the Abstract Syntax Tree (AST). Nevertheless, there is no possible ambiguity
or conflict, since for each CST there exists exactly one corresponding AST;
and all the nodes of a CST which correspond to the same AST node will
share the same attributes. Section 4.1.2 details these claims.

A notation is required for semantic rules (the first of the two forms listed
above). Semantic rules specify how to calculate a given symbol’s attribute,
possibly as a function of one or more attributes, either belonging to the same
symbols or other symbols in a given grammar rule. For this reason they
are always accompanied by an associated syntax rule. The two rules will be
marked as ‘Syntax:’ and ‘Semantics:’, as in the following example:

Syntax:
〈assignment_expression〉 ::= 〈unary_expression〉 ‘=’ 〈assignment_expression-1〉
Semantics:

〈assignment_expression〉.cc = CC(〈assignment_expression-1〉.t, 〈unary_expression〉.t);

(where CC(·, ·) is a function described separately).
I will often distinguish between statements and expressions. I will define

for statements a different set of attributes than expressions. All the non-
terminals to which a cost must be assigned fall into one of these categories.
These two categories cover approximately 70% of the symbols in the C gram-
mar. The remaining part is dedicated to declarations. Declarations are deter-
minant for the construction of symbol tables, on which the type resolution
mechanism relies, and types influence cost. But declarations, have no cost
per se and will not be discussed here.

However, an unambiguous definition of ‘statement’ and ‘expres-
sion’ is needed. With reference to the grammar of the C lan-
guage, of which an excerpt regarding statements and expressions
is reported in Section 4.5.2 (page 232), statement symbols are the
non-terminal symbols which belong to the transitive closure of the

102 CHAPTER 4. COST OF SYNTAX ELEMENTS

derivation from symbol 〈statement〉 with copy rules only, namely:
〈statement〉, 〈labeled_statement〉, 〈compound_statement〉, 〈expression_statement〉,
〈selection_statement〉, 〈iteration_statement〉, 〈jump_statement〉.

On the other hand, expression symbols are all the non-terminal
symbols which belong to the transitive closure of the derivation from
symbol 〈expression〉, according to the grammar (see Section 4.5.1),
for example 〈expression〉, 〈assignment_expression〉, 〈logical_or_expression〉,
〈logical_and_expression〉, 〈inclusive_or_expression〉, 〈exclusive_or_expression〉,
〈and_expression〉, and others.

4.1.2 Concrete and abstract syntax trees

The cost determination algorithm proposed in this thesis operates on Ab-
stract Syntax Trees (ASTs), instead of Concrete Syntax Trees (CSTs) because
ASTs are much simpler to handle than CSTs. Therefore, a transformation is
needed to obtain the AST of a source code from its CST. This section moti-
vates the above claims and describes such a transformation.

Concrete syntax trees are the parse trees as obtained from parsing the in-
put source code according to the grammar of the C language; determining
the CST of an input is indeed the essence of parsing. CST are poorly suitable
for semantic reasoning, because they are overly complex, and impractical to
handle. In fact, a large portion of the information they contain is relevant
during parsing but not for semantic analysis. Due to their complexity, writ-
ing semantic actions which navigate concrete syntax trees is an awkward
task.

«The goal of an abstract syntax is to describe the structural
essence of a language. Syntax trees are operators – describing
the important concepts in a language, applied to typed operands
– describing the important components associated with the con-
cept. Each operand is named with the role it plays in the concept.
Trees are classified in a tree of types known as phyla – describ-
ing inheritance relationships between concepts. Abstract syntax
trees terminate in a pre-specified set of primitive types, such as
identifier and integer.

For example, an if-then-else tree will have a structure that con-
tains three slots, one for each of the predicate, the then branch
and the else branch. Labeled trees may be used to model ab-
stract syntax trees; the various slots of the trees will correspond
positionally to sequence elements. It will not matter which posi-
tions correspond, but merely that the correspondence be consis-
tent throughout the tree. » [15].

A CST can be much larger than an AST, even for simple expressions.
Consider the following expression:

a = (b + c) ∗ d

4.1. NOTATION 103

=

*a

d+

b

a = (b + c) * d

c

Figure 4.1: The Abstract Syntax Tree (AST) for a simple expression.

its AST, which is represented in Figure 4.1, comprises 7 nodes. On the other
hand, its CST (in Figure 4.2) comprises 57 nodes.

While ASTs describe only the hierarchical relation between the symbols
of a program (e.g. a function definition contains given statements, and they
may be compound statements and contain, in turn, other statements), CSTs
describe the complete derivation tree from the grammar’s axiom down to the
terminals, and this information is irrelevant during semantic analysis. There
are two major causes of the semantically irrelevant information: delimiters
and copy rules.

Delimiters are terminal symbols (e.g., the comma ‘,’, the semicolon ‘;’,
and the various parentheses, brackets and braces, in the C language) which
denote the beginning and the end of sequences, and separate elements. De-
limiters are useful for human readability, and parsing relies on them; but
once parsing is complete, there is no need to keep them in the syntax tree.

The second source of semantically-irrelevant information is the way in
which C grammars model the precedence among operators. They use a
large number of copy rule alternatives (copy rules are those whose right-
hand side is composed of just one nonterminal symbol), which generate long
linear chains of derivation. These chains have no meaning during semantic
analysis, and they unduly complicate the code which traverses the tree for
attribute calculation.

Now, an algorithm is needed to obtain the AST of a C source code, start-
ing from its CST. Defining such algorithm involves no conceptual difficulties,
nevertheless I prefer to describe it fully, to avoid ambiguities.

104 CHAPTER 4. COST OF SYNTAX ELEMENTS

assignment_operator

'='

expression

assignment_expression

assignment_expression

conditional_expression

logical_or_expression

inclusive_or_expression

exclusive_or_expression

and_expression

equality_expression

relational_expression

shift_expression

additive_expression

multiplicative_expression

multiplicative_expression '*' cast_expression

unary_expression

postfix_expression

identifier 'd'

primary_expression

cast_expression

unary_expression

postfix_expression

primary_expression

expression'(' ')'

assignment_expression

conditional_expression

logical_or_expression

inclusive_or_expression

exclusive_or_expression

and_expression

equality_expression

relational_expression

shift_expression

additive_expression

additive_expression multiplicative_expression'+'

cast_expression

unary_expression

postfix_expression

identifier 'c'

primary_expression

cast_expression

unary_expression

postfix_expression

identifier 'b'

primary_expression

unary_expression

postfix_expression

identifier 'a'

primary_expression

multiplicative_expression

a = (b + c) * d

Figure 4.2: The Concrete Syntax Tree (CST) for the same expression.

4.1. NOTATION 105

The algorithm I propose comprises the following steps:

1. Remove all the nodes containing the following terminals: ‘(’, ‘)’, ‘[’, ‘]’,
‘’, ‘’, ‘:’, ‘,’, ‘;’; with the following exceptions:

• “comma expressions”: nodes ‘,’ when they appear in rule
〈expression〉 ::= 〈expression〉 ‘,’ 〈assignment_expression〉

• “null statements” : nodes ‘;’ when they appear in rule
〈expression_statement〉 ::= ‘;’

2. when a node has one single, non-terminal child (i.e. it corresponds to
the recognition of a copy rule, merge the two nodes together; repeat this
operation until the fixed point is reached;

3. “promote” any operator terminal node, untouched by the previous
rules, by moving its contents into its immediate father node.

Figures 4.3, 4.4, 4.5 illustrate how the above algorithm works: they rep-
resent how the CST of the expression from the previous example is trans-
formed respectively after Step 1, 2 and 3 of the algorithm above.

The practical task of obtaining an AST by specifying appropriate seman-
tic actions in a parser generator such as yacc [144, 143], SableCC [148] or
ANTLR [149] is simple. These tools generate bottom-up parsers, and each
semantic action is also executed bottom-up, immediately after the associated
syntax rule is recognized. A common approach is to associate a synthesized
attribute s to each nonterminal 〈A〉, which contains the abstract syntax sub-
tree rooted at the node corresponding to that nonterminal. Then, for each
syntax rule 〈A〉 ::= 〈B〉, provide a corresponding semantic rule which deter-
mines 〈A〉.s, usually by connecting subtrees 〈B〉.s, 〈C〉.s, This technique is
thoroughly explained in Section 2.2.5.9 of [77]. The above semantic rules are
designed to discard and merge nodes as prescribed by the Steps 1, 2 and 3
above. For example, all copy rules such as 〈A〉 ::= 〈B〉 have semantic actions
which set 〈A〉.s = 〈B〉.s, which realizes Step 2.

4.1.3 Describing semantic attribute evaluation

As anticipated in Section 4.1.1 (page 100), I adopt two different styles to indi-
cate how to derive attributes, for economy of formulation and convenience.
In this section, I informally motivate why these styles are equivalent and
compatible.

For synthesized attributes, I preferably specify their evaluation in the
form of semantic rules, as the previous example:

〈assignment_expression〉.cc = CC(〈assignment_expression-1〉.t, 〈unary_expression〉.t);

Each of these semantic rules is associated to exactly one syntax rule, and it
defines some attribute of the left-hand side non-terminal symbol in terms of
attributes of the right-hand sides symbols. Therefore, these rules operate on
the CST.

106 CHAPTER 4. COST OF SYNTAX ELEMENTS

assignment_operator

'='

expression

assignment_expression

assignment_expression

conditional_expression

logical_or_expression

inclusive_or_expression

exclusive_or_expression

and_expression

equality_expression

relational_expression

shift_expression

additive_expression

multiplicative_expression

multiplicative_expression '*' cast_expression

unary_expression

postfix_expression

identifier 'd'

primary_expression

cast_expression

unary_expression

postfix_expression

primary_expression

expression

assignment_expression

conditional_expression

logical_or_expression

inclusive_or_expression

exclusive_or_expression

and_expression

equality_expression

relational_expression

shift_expression

additive_expression

additive_expression multiplicative_expression'+'

cast_expression

unary_expression

postfix_expression

identifier 'c'

primary_expression

cast_expression

unary_expression

postfix_expression

identifier 'b'

primary_expression

unary_expression

postfix_expression

identifier 'a'

primary_expression

multiplicative_expression

a = (b + c) * d

Figure 4.3: Example of transformation from CST to AST. The figure shows
how the CST presented before is transformed after Step 1.

I will also describe the evaluation of some of the inherited attributes via
the same semantic rules. Alas, for some of them this approach is too cumber-
some. It is more convenient to specify their evaluation by means of an im-

4.1. NOTATION 107

assignment_operator
'='

expression
assignment_expression

assignment_expression
conditional_expression
logical_or_expression
inclusive_or_expression
exclusive_or_expression

and_expression
equality_expression
relational_expression

shift_expression
additive_expression

multiplicative_expression

multiplicative_expression
cast_expression
unary_expression

postfix_expression
primary_expression

expression
assignment_expression
conditional_expression
logical_or_expression

inclusive_or_expression
exclusive_or_expression

and_expression
equality_expression

relational_expression
shift_expression

additive_expression

'*' cast_expression
unary_expression
postfix_expression
primary_expression
identifier 'd'

additive_expression
multiplicative_expression

cast_expression
unary_expression
postfix_expression
primary_expression
identifier 'b'

'+'

unary_expression
postfix_expression
primary_expression
identifier 'a'

multiplicative_expression
cast_expression
unary_expression
postfix_expression
primary_expression
identifier 'c'

a = (b + c) * d

Figure 4.4: Example of transformation from CST to AST. The figure shows
how the CST presented before is transformed after Step 2.

perative algorithm which operates on the attributes of the AST nodes. AST
nodes, not symbols. I will specify these algorithms in the form of recursive,
pseudo-C functions. For an actual example of such an algorithm, see Section
4.4.4 (page 176).

Since the two description styles operate on the CST and on the AST re-
spectively, the issue could be raised whether they are equivalent and consis-
tent. Equivalence means that all the attribute calculation algorithms which
can be expressed in one manner can be expressed also in the other and vice
versa. Consistency means that the same attribute must have the same value
in all the CST nodes which correspond to the same AST node.

It is easy to prove that the two forms are equivalent; changing form may
require the introduction of additional attributes to store the results of inter-
mediate evaluation steps.

Consistency is, on the other hand, responsibility of the semantic algo-
rithm designer. For the grammars introduced in this thesis, an informal proof
that consistency is guaranteed is given by the fact that whenever node col-
lapsing happens between non-terminal nodes, the two non-terminals belong
to the same category (where category is “expression” or “statement”).

108 CHAPTER 4. COST OF SYNTAX ELEMENTS

expression
assignment_expression

assignment_operator
'='

assignment_expression
conditional_expression
logical_or_expression
inclusive_or_expression
exclusive_or_expression

and_expression
equality_expression
relational_expression

shift_expression
additive_expression

multiplicative_expression

'*'

multiplicative_expression
cast_expression
unary_expression

postfix_expression
primary_expression

expression
assignment_expression
conditional_expression
logical_or_expression

inclusive_or_expression
exclusive_or_expression

and_expression
equality_expression

relational_expression
shift_expression

additive_expression

'+'

cast_expression
unary_expression
postfix_expression
primary_expression
identifier 'd'

additive_expression
multiplicative_expression

cast_expression
unary_expression
postfix_expression
primary_expression
identifier 'b'

unary_expression
postfix_expression
primary_expression
identifier 'a'

multiplicative_expression
cast_expression
unary_expression
postfix_expression
primary_expression
identifier 'c'

a = (b + c) * d

Figure 4.5: Example of transformation from CST to AST. The figure shows
how the CST presented before is transformed after Step 3.

4.1.4 Denoting assembly translations
In Sections 4.3 and 4.4 I will have to describe the translation of syntax ele-
ments. The way I choose to do so is an architecture-independent abstract
assembly language. For my convenience, I include in this language specific
traits which greatly simplify the description of the abstract translation pro-
cess. In this section I present and motivate the details of this language.

The single-execution cost of a syntax node is the cost which the executor
undertakes when executing its translation. Determining this cost without
performing the actual translation requires a model of the translation process,
such as the one described in Section 4.3 (page 117).

This translation model defines, for each symbol in the grammar, one or
more attributes containing translations of that symbol. Therefore, this model
requires a way to express this translations in an abstract and convenient way.
The solution I propose is an assembly language whose instruction set is com-
posed by the abstract instructions introduced in Section 3.2.1 (page 67).

Additionally, for my convenience, I now extend this language to allow
nested blocks. A block is a section of assembly code surrounded by braces
(‘{’ and ‘}’, as in C). Blocks can nest. Labels declared in a given block are

4.1. NOTATION 109

visible in the block in which they appear, and in all the blocks included in it.
Labels in blocks are subject to the same scoping rules of the C program-

ming language: a ‘jump else’ instruction causes the control to be transferred
to a given instruction with label ‘else:’. That instruction might either be lo-
cated in the same block where the jump instruction appears, or in an outer
block. There could be multiple instances of the same label: the targeted one
is the first which is found by starting the search in the current block and
proceeding up the hierarchy of nested blocks.

The following section of assembly code illustrates an example usage of
labels in nested blocks:

1 {
2 add a, b, #−1
3 {
4 cmp a, #0
5 jeq end
6 add a, b, #1
7 j else
8 end:
9 }

10 add b, b, #1
11 else : call f1
12 end:
13 }

The jump instruction in line 5 targets the label ‘end’ which appears in line
8, and not the one in line 12. The jump instruction in line 7 targets the ‘else’
label on line 11.

Blocks provide a convenient mechanism to abstract the label patching
phase, a task that a real compiler must undertake in some way (e.g. see Sec-
tion 11.5 and 7.2 of [78]), whereas I just need to model it. Under my chosen
assumptions, this phase only causes changes in the offset field of encoded
instructions. It does not affect in any way the number, quality or length of
instructions; therefore it has no effect on the cost of the translation. As a
consequence, I can safely derive cost rules on the basis of assembly trans-
lations with block nesting, and hold the guarantee of their validity on its
corresponding flat (nesting-free) assembly rewriting, and the corresponding
machine encoding.

The reason why I introduce block nesting in my abstract assembly is that
label scoping (as just described) greatly simplifies the task of describing the
abstract translation model. For example, it makes it possible to specify a
jump in the translation of a children node, which targets a label in the trans-
lation of one of its ancestor, whose translation will be calculated later. Also
thanks to this feature, my abstract translation model can be described as a
simple attribute grammar, made of synthesized attributes only, possible to
evaluate in a single bottom-up visit.

110 CHAPTER 4. COST OF SYNTAX ELEMENTS

4.2 Which factors affect the cost of syntax ele-
ments

It is evident that the same syntax element can have different translations,
depending on the circumstances in which it appears. For example an assign-
ment operator ‘=’ is translated differently, depending on the type and size
of the operands, and other factors. Different translations have different cost.
This section gives an overview of all these factors which influence the trans-
lation –and therefore the cost, of syntax elements. These considerations are
at the basis of the attribute grammar which I will present in Section 4.4 (page
136).

I distinguish the following three categories of cost:

• inherent cost,

• conversion cost,

• flow control cost.

Statement nodes only have flow control costs. Expression nodes may have
all the categories of costs. Declarations have no cost. Each category of cost is
influenced by different factors.

The inherent cost of a syntax node is the cost of executing the data trans-
fer or manipulation associated to the node. Examples of inherent costs are
the cost of performing a floating point addition, of accessing the contents of
an array, or of assigning the value of a variable to another.

The conversion cost of a syntax node is the cost of converting the data
between different representations (e.g., from integer to floating-point or vice
versa). Conversions may be triggered by many circumstances, just to name
a few: a binary operation or an assignment between different types (one of
the two operand is promoted), an explicit casting, a function call.

The flow control cost is the cost of transferring the execution flow to
another portion of the program. In case of conditional code, this cost also
includes determining whether the jump must be taken or not. Obviously
control-flow statements such as ‘if’, ‘for’ and ‘switch’ have non-zero flow
control cost, but also some of the expression may have, due to their condi-
tional behavior or to the short-circuit evaluation mechanism.

In the following paragraphs, I examine which circumstances influence
the above costs.

4.2.1 The valueness affects the inherent cost
The inherent cost of an expression depends in general on whether its R-value
or L-value is used. I will refine later this claim into a formal and unambigu-
ous form. In the meanwhile I will clarify this idea by example. The reader
please indulge me with my need for informality.

Given the following assumptions on the type of variables ‘a’ and ‘b’,

int a;
int ∗ b;

4.2. WHICH FACTORS AFFECT THE COST OF SYNTAX ELEMENTS 111

I consider the following statement:

a = ∗b;

The statement copies the contents of the memory word whose address is
contained in the register associated with variable ‘b’ into the register associ-
ated with variable ‘a’. The abstract assembly rendition of this expression is
1 mvld instruction. This suggests the preliminary idea that, in general, the
cost of a ’*’ operator is 1 mvld.

This belief is disproved by the following example:

∗b = a;

The statement requests the copy of the word contained in variable ‘a’ into a
memory word whose address is contained in variable ‘b’. Its abstract assem-
bly translation is composed of 1 mvst instruction.

Therefore, the cost of a unary ‘∗’ operator is not unique, and it depends
on the context in which it appears. This difference is due to the fact that in
the first example the R-value of expression ‘∗b’ is used, whereas in the second
one, the L-value of the same expression is used.

Traditionally, the L-value of a variable is the storage area bound to a
variable during execution whereas the R-value of a variable is the encoded
value stored in the location associated with the variable (i.e., its L-value)
[17]. The names R-value and L-value derive from the right and left position
of operands with respect to the assignment operator ‘=’, whose R-value and
L-value are used respectively.

I call valueness the property of a given expression of its R- or L- value
being used in a given source code. I say that the valueness of an expression
whose R-value is taken is R; and the valueness of an expression whose L-
value is used is L. The cost of a ‘∗’ operator is affected by the valueness of the
expression which it forms.

The definitions from [17] reported above suggest the idea that valueness
is defined only for identifier-type terminal symbols. This is false. Expres-
sions such as ‘∗(A[4]−>p + 2)’, which are significantly more complex than just
a terminal, may represent a variable and their cost is influenced by their val-
ueness.

An expression may have R and L valueness at the same time. This hap-
pens to the first operand of a compound assignment operator (e.g., ‘+=’, ‘-=’,
‘*=’, ...). It has first its R-value and then its the L-value used. I say that the
valueness of such an expression, whose R-value and L-value are used, is RL.

Multiple choices could be done in order to attribute costs depending on
valueness. To avoid ambiguities, I define what I mean by “using” an R-value
or an L-value, and I introduce the additional concept of “taking” an L-value:

• using the R-value of an expression means executing the assembly
code which is required to bring the encoded value of the result of
the given expression into a register or a bank of contiguous registers
whose name or names are known (whether the value fits a single word
or multiple words. If the expression consists of a simple variable iden-
tifier, using its R-value has zero cost, because the compiler will allocate
that variable in a register or register bank whose name is known, and

112 CHAPTER 4. COST OF SYNTAX ELEMENTS

no data need to be transferred. Always mind the perfect overlapping
of memory and register space, and the distinction between “known
by name” or “known by address”. If the expression is more complex,
e.g. it comprises an array subscript operators, such as ‘a[i]’, using its
R-value means executing the instructions required to copy into a reg-
ister or register bank the contents of the ‘i-th’ cell of array ‘a’, which
includes at least one address calculation instruction, and at least one
mvld instruction;

• using the L-value of an expression means executing the assembly
code which is required to transfer into the memory locations associ-
ated to the given expression an encoded value, present at this time into
a register or register banks, whose name or names are known. Again,
if the expression is a simple variable identifier, using its L-value has
no cost, since –due to the way the abstract assembly is designed– the
results of expressions are always left in registers, and no data need to
be transferred. Using the R-value of a more complex expression, such
as the one in example ‘a[i]’ described above, means executing the in-
structions required to copy the contents of a register or register bank
into the ‘i-th’ cell of array ‘a’, whose address or addresses need to be
calculated;

• taking the L-value of an expression is something conceptually dif-
ferent from using it. This is a case I have not mentioned before; the
emphasis is on the difference between using and taking. The L-value
of an expression is the set of memory locations where that expression
is allocated, and using that L-value, according to my definition, means
storing data at that address. Using an L-value may mean to execute
instructions to calculate addresses, and instructions to transfer one or
more words to those addresses, as just said. Taking an L-value of an
expression means determining the address of the first location where
an expression is allocated. In the C programming language, to take
the L-value of an expression one must use the ‘&’ operator. C has no
implicit address-taking mechanisms, such as parameter passing by ref-
erence (such as VAR arguments in Pascal) or reference semantics (such
as in C++). By convention, when the L-value of an expression is taken,
I say that it has zero valueness, or Z-valueness for short, or “its Z-value
is used”.

The above considerations motivate the need to introduce in my grammar
an attribute “valueness”, for symbols of the category “expressions”. Section
4.4.4 (page 176) presents an algorithm to determine the valueness of a given
expression in a given source code.

4.2.2 The operand type affects the inherent costs

The type of operands affects the inherent cost of the operators which manip-
ulate them.

4.2. WHICH FACTORS AFFECT THE COST OF SYNTAX ELEMENTS 113

Firstly, the cost of arithmetic operators is evidently dependent on the
operand types. For example, the cost of integer arithmetics is different from
floating-point arithmetics, and the cost of single-precision arithmetics is dif-
ferent from double precision or long double precision.

Secondly, the cost of an operator which involves the access to data is
affected by the size of that data, which is a function of its type. For example,
the assignment between an array cell and a variable, such as:

a = b[i];

is rendered as 1 mvld instruction if the type of a (which is the base type of
array b) has a representation which fits in a single word, depending on the
architecture; this is usually true for the types char, int, long int, float and for
all pointer types on 32-bit target platforms. Other types, such as long long int,
double, long double, and large structs do not fit in a word. Access to variables
and expressions occupying multiple words require multiple data transfer in-
structions, and possibly address resolution instructions between each trans-
fer and the next one. If t is the type of an expression (in some appropriate
representation, for example the one described in Section 4.4.1 (page 140)), I
define W(〈e〉) as the function which returns the number of words occupied
by 〈e〉, formally:

W(〈e〉) =
⌈
sizeof(〈e〉)

wordsize

⌉
,

where wordsize is the size of each register expressed in bytes, supposed equal
to the size of the memory word.

Thirdly, the alignability of a type affects the cost of array access and
pointer arithmetic operators which involve it. In fact, accessing the i-th ele-
ment of an array requires calculating its offset, by multiplying the array base
type size and the index. This multiplication can be avoided when the base
type has size equal to 1 byte, and it can be optimized to a bitwise left shift
operation when the base type has a size which is a power of 2. Given a type
t, I say that its alignability A(t) is:

• Byte, if W(t) = 1;
the calculation of the offset needs no multiplications;

• Aligned, if W(t) = 2i for some positive integer i;
the offset of objects having a size which is a power of two requires a
multiplication by a power of 2, which is translated as a right shift;

• Misaligned, otherwise;
the offset of objects having a size which is not a power of two requires
a true integer multiplication.

Section 4.4.8 (page 216) discusses the choice of a good representation for
type, and the associated evaluation rules, and additional issues which it is
not convenient to report here.

114 CHAPTER 4. COST OF SYNTAX ELEMENTS

4.2.3 The operand type affects the conversion costs
The C language has a complex type system, which causes a large number
of type conversions to take place stealthily when user code is translated and
executed.

Arithmetics between operands of different types requires one of the two
to be promoted. Function calls require the actual arguments to be converted,
one by one, into the respective formal argument types. Return statements
require the operand expression to be converted to the current function’s de-
clared return type. These are just examples; the compound assignment op-
erators and the function call operator exhibit more exotic behaviors.

I discuss exhaustively the determination of the conversion costs in Sec-
tion 4.4.8 (page 216).

4.2.4 The constancy affects all the costs
If an expressions has a constant result, the result can be determined statically.
If that operation has no other effects than determining its result, it can be
eliminated by the compiler.

Therefore, the translation of constant expressions which do not have side
effects does not appear in the assembly translation of the source code, or in
the corresponding binary executable. Consequently, they have no cost.

On the other hand, operations on constant operands which do produce
side effects (e.g., function calls and assignments) cannot be eliminated by the
compiler, so they have a non-empty translation and a corresponding non-
zero cost.

Nevertheless, the larger expression in which they appear may be
constant-value, and therefore the operator which manipulates them has no
translation and zero cost.

The following examples illustrate these cases for inherent costs:

• in the following expression:

offset = sizeof(struct pnode) ∗ 2 + 57;

the ‘∗’ and ‘+’ have no cost, because their operands are recursively con-
stant expressions, and they have no side effects; on the other hand, the
‘=’ operator has non-zero cost, because it has a side effect even though
his operands are constant;

• in the following expression:

padding = sizeof(struct pnode) ∗ 2 − (offset = sizeof(struct pnode) ∗ 2 + 57) − 1;

which includes the previous one in parentheses, all the ‘∗’ and ‘−’ op-
erators have no cost, because all their operands are constant, including
the one in the parentheses. On the other hand, the two ‘=’ operators
have non-zero cost.

The same applies to type conversion: if a conversion prescribed by the
language involves a constant operand, it can be performed at static time. It
needs no translation and causes no cost.

4.2. WHICH FACTORS AFFECT THE COST OF SYNTAX ELEMENTS 115

Finally, the same applies to flow control costs also. For example, if the
condition expression of a selection statement is known statically, the selec-
tion statement can be suppressed, and only one of the two branches kept.

Due to short-circuit evaluation and conditional expressions, the con-
stancy of an expression may actually depend on the value of its subexpres-
sions. This is why, in order to determine constancy, also the value of its
constant subexpressions must be considered at static time. Additionally, due
the presence of the ‘sizeof’ operator, this constant value depends in turn on
type.

Section 4.4.3 (page 169) propose an evaluation scheme for constancy,
which is in turn used to determine cost attributes consistently with the is-
sues just described.

4.2.5 The translation flavor affects the control-flow and
inherent costs

In the C language, the same expression may translate to different versions
depending on the context where it appears. The abstract translation model
I will propose derives the translation of a node by composing chosen ver-
sions of the translation of children nodes, possibly with additional code. It
is important to determine which version actually appears in the translation
of the source code, since different versions have different costs. This section
motivates and clarifies this need.

In the C language, the same expression may translate to different ver-
sions, which I call flavors, depending on whether its result value is needed in
a numerical or logical sense. For example:

• when an expression ‘E’ appears in a larger arithmetic expression, such
as ‘a + E’, its numerical value is needed;

• when it appears as a condition in a conditional statement, such as in
‘if (E) ... ’ or ‘while (E) ... ’ statements, or in logical expressions such as
‘a && E’, then its logical value is needed.

In the first case, a single-entry, single-exit translation of ‘E’ is used; in the
second case, one of the possible single-entry, double-exit translations of ‘E’
is used. In my model, each translation is either single-entry, single-exit or
single-entry, double-exit. For short, I just call them single-exit and double-
exit translations, respectively.

A single-exit translation has a single entry point and a single exit point.
Whenever a single-exit translation is executed, the execution flow starts at its
beginning and finishes at its end. Single-exit translations are not, in general,
basic blocks. A basic block may not contain any labels or jump instructions;
on the other hand a single-exit translation may contain arbitrary jumps and
labels, provided that all the jump instructions jump to internal labels, and no
internal label is the target of a jump instruction which is outside the transla-
tion. In my translation model, the translation of an expression which is used
as an operand of an assignment, arithmetic or bitwise operator is single-exit.
I call a single-exit translation a T-flavor translation.

116 CHAPTER 4. COST OF SYNTAX ELEMENTS

A double-exit translation has a single entry point and two exit points. One
exit point is just after the last instruction of the translation, the other is a
jump to an external label. As I show in Section 4.3 (page 117), it is possible
to build an entire translation scheme for all the control flow structures and
expressions of the C language with just two types of double-exit translation:
a TT-flavor and a TF-flavor translation. I postpone any further explanation
about translation flavors to Section 4.3.

Since different flavors of the same expression have different costs and
features, a set of rules is needed to determine what flavor is actually selected
to appear in the final translation of a given node. This requires a complete
(though simplified) translation model for the grammar of the part of the C
syntax describing statements and expressions. Then, cost attribution rules
must be based on that model. Describing this model is the purpose of Section
4.3 (page 117).

4.2.6 The register boundedness affects the inherent cost
The translation of assignment expressions (and therefore their cost), depends
on whether the result of the right operand is bound to a register or not. This
section motivates and details these claims.

The single-exit translation flavor of a given expression (as just explained)
leaves its result in a register or bank of registers, depending on its size. The
name of these registers may appear in the translation as specified in one of
the following ways:

• names of a physical registers in the architecture: R1, R2, ...;

• conventional names such as ‘a’, ‘b’, ... (where ‘a’, ‘b’, ... are identifiers
in the C source code associated to the translation) which are, in fact,
a shorthand notation to express “the physical register where variable
‘a’ was allocated”, “the physical register where variable ‘b’ was allo-
cated”, ...

• the conventional name ‘free’, which means “some arbitrarily chosen
register such that it does not conflict with the other register allocations
of variables”.

In all the cases but the last one, the translation is said to be bound to a
register, or register-bound.

The cost of an assignment operator depends on the register-boundedness
of its operand expressions. In detail, the assignment of an expression which
has a register-unbound single-exit translation has no cost, because it can
be realized by replacing ‘free’ in its translation with the target register in
the assignment. On the other hand, the assignment of an expression which
has a register-bound translation requires executing instructions to physically
move data from the registers where the translation leaves its results to the as-
signment target registers. The topic will be covered exhaustively in Section
4.4.7.14 (page 212).

4.3. AN ABSTRACT TRANSLATION MODEL 117

4.3 An abstract translation model

In this section I present an abstract translation model on which the cost mod-
eling decisions will be founded. From this model I will directly derive the
evaluation rules for flavor and register-boundedness. Moreover, this model
indirectly helps the definition of the other attributes by removing ambigu-
ities and unnecessary degrees of freedom. It is in the form of an attribute
grammar. The model is simple: it just comprises 4 synthesized attributes,
which can be evaluated in a single bottom-up pass. The section introduces
first some assumptions which allow a simpler, easier to understand model;
then its details; finally some examples.

Avoid confusion between this attribute grammar and the one presented
in Section 4.4 (page 136). The former is mainly designed to support rea-
soning on translation flavors and register boundedness, while the latter is
designed for the broader task of determining node single-execution costs.
The relevance of the former is limited to this section only, whereas the lat-
ter is discussed throughout the entire chapter. The two grammars share the
same syntax –expression and statements of the C language, as in Section 4.5
(page 231), but they are distinct, and the former is, in the end, not part of our
cost-estimation methodology.

4.3.1 I privilege understandability

Ideally, the translation model I present should be complete, correct and easy
to understand. Clearly these objectives cannot be achieved at the same time.
Here, I assume that the reader is interested in getting a broad idea of the
topic, therefore I privilege understandability at the expenses of correctness
and completeness. Readers interested in a complete, correct, and free-from-
ambiguity version of this model should refer to the source code of the tools
which implement this thesis. Definitely, that description is not suitable to be
presented here.

Precisely, I avoid now to deal with all those factors which can be treated
separately, and I also neglect a number of constructs.

It is safe to ignore here all the issues related to type, size, valueness and
constancy, because these factors cause effects on the assembly translation
which are independent and additive with respect to effects of caused by fla-
vors and boundedness. Therefore, without any loss of generality, I assume
that all the involved types have single-word size, integer type, and are not
constant.

Consistently, I also postpone any considerations on aggregate, pointer
and array access operators, and on compound assignment operators, condi-
tional operators and others.

4.3.2 Attributes

As anticipated, a given symbol may have multiple translations, which are
either single-exit or double-exit.

118 CHAPTER 4. COST OF SYNTAX ELEMENTS

Statements have exactly one translation, and it is a single-exit (a.k.a. a
T-flavor) translation. In the attribute grammar which composes the abstract
translation model, I associate to each statement symbol an attribute T, which
contains the monolithic translation of that symbol.

Expressions have one single-exit translation and two double-exit transla-
tions:

• their single-exit translation is relevant when the numerical value of the
expression is required in the context where it appears. As just done
for statements, I associate to each expression symbol an attribute T,
which contains its T-flavor translation. Expressions have a result, and
their single-exit translations leave it in a register. It the translation is
register-bound, the name of this register is indicated in attribute R.
Otherwise R assumes the value ‘free’.

• the double-exit translations of an expression are relevant when the
logical value of the expression is required in the context where it ap-
pears. In double-exit translations, the logical value of the expression is
checked and, depending on the outcome, a conditional jump is taken
or not. Therefore, the control flow can leave the translation either by
reaching the end of the translation, or by jumping to an external label.
Double-exit translations are available in two flavors:

– the TT flavor, which jumps to an external ‘then’ label when the
condition is true, and

– the TF translation, which jumps to an external ‘else’ label when
the condition is false.

For each expression, I define a couple of attributes TF and TT which
respectively contain the TT and the TF translation flavors.

The composition of TT and TF flavors allows to model accurately and
easily the short-circuit evaluation mechanism. The TT translation is required
for all but the last operands of a logical ‘or’ expression: this way, the first
sub-expression which evaluates to true determines the truth of the entire ex-
pression, and causes a jump to the ‘then’ branch, with no need to evaluate
the remaining sub-expressions. The TF translation is required for all but the
last operands of a logical ‘and’ expression: this way, the first sub-expression
which evaluates to false determines the falsity of the entire expression, and
causes a jump to the ‘else’ branch, with no need to evaluate the remaining
sub-expressions. The last operand expressions of a logical ‘or’ or ‘and’ oper-
ator can be translated indifferently in a jump-if-true or jump-if-false fashion.

I summarize the attributes just introduced for statements and expressions
in Table 4.1.

4.3.3 Some useful functions
I introduce a simple function called replace(·, ·, ·). Given an abstract trans-
lation t, and two symbols a and b (which can be assembly mnemonics or

4.3. AN ABSTRACT TRANSLATION MODEL 119

Symbol class Attributes Description

statements T single-exit assembly translation

expressions T single-exit assembly translation
R register where the result is left

by the single-exit translation
TT double-exit assembly translation,

jump-if-true flavor
TF double-exit assembly translation,

jump-if-false flavor

Table 4.1: The attributes in the grammar attribute which constitutes my ab-
stract translation model.

register names), replace(t, a, b) returns the translation obtained by replacing
all the occurrences of a with b in the most external block of t. I emphasize:
without modifying any nested blocks in t.

Given a register-unbound translation t, a new translation bound to reg-
ister r is given by: replace(t, free, r).

I also introduce the binding operator, which I denote with an exclama-
tion mark (‘!’). It denotes the register-bound rewriting of a register-unbound
translation.

Given an expression N such that N.T is defined, and N.R =free, I define
N.T! and N.R! as follows: N.T! = replace(N.T, f ree, Ru); N.R! = Ru, with
Ru which is some unique register name. A unique register name, for our
purposes, is the name of a register such that it is never used by any other
variable or temporary. Since in my abstract architecture there are infinite
registers, it is always possible to allocate a new register without spilling.

I define invertjump(·) as a function which replaces the top outermost
jump instruction in its argument with another jump instruction, having the
opposite conditions. It replaces ‘jne’ with ’jeq’ and vice versa; it replaces ‘jgt’
with ‘jle’ and vice versa; it replaces ‘jlt’ with ‘jge’ and vice versa.

4.3.4 The attribute grammar which is the model
The details of the attribute grammar which realize the proposed abstract as-
sembly translation of an arbitrary C program follow.

1. ‘if (...) ... ’ statement:
Syntax:
〈selection_statement〉 ::= ‘if’ ‘(’ 〈expression〉 ‘)’ 〈statement-1〉
Semantics:
〈selection_statement〉.T =

{

120 CHAPTER 4. COST OF SYNTAX ELEMENTS

〈 expression 〉 .TF
〈statement−1〉.T

else :
}

2. ‘if (...) ... else ... ’ statement:
Syntax:
〈selection_statement〉 ::= ‘if’ ‘(’ 〈expression〉 ‘)’ 〈statement-1〉 ‘else’ 〈statement-2〉
Semantics:
〈selection_statement〉.T = one of the following:

{
〈 expression 〉 .TF
〈statement−1〉.T
j end

else : 〈statement−2〉.T
end:

}

{
〈 expression 〉 .TT
〈statement−2〉.T
j end

then: 〈statement−1〉.T
end:

}

3. ‘while’ statement:
Syntax:
〈iteration_statement〉 ::= ‘while’ ’(’ 〈expression〉 ’)’ 〈statement〉
Semantics:
〈iteration_statement〉.T =

{
loop:

〈 expression 〉 .TF
〈statement〉 .T
j loop

else :
}

4. ‘do ... while’ statement:
Syntax:
〈iteration_statement〉 ::= ‘do’ 〈statement〉 ‘while’ ‘(’ 〈expression〉 ‘)’ ‘;’
Semantics:
〈iteration_statement〉.T =

{
then:

〈statement〉 .T
〈 expression 〉 .TT

}

5. ‘for’ statement:
Syntax:
〈iteration_statement〉 ::= ‘for’ ‘(’ 〈optional_expression-1〉 ‘;’ 〈optional_expression-2〉
‘;’ 〈optional_expression-3〉 ‘)’ 〈statement〉
Semantics:
〈iteration_statement〉.T =

{
〈optional_expression−1〉 .T

loop: 〈optional_expression−2〉 .TF
〈statement〉 .T

4.3. AN ABSTRACT TRANSLATION MODEL 121

〈optional_expression−3〉 .T
j loop

else :
}

6. logical ‘and’ operator:
Syntax:
〈logical_and_expression〉 ::= 〈logical_and_expression-1〉 ‘&&’ 〈inclusive_or_expression〉
Semantics:
〈logical_and_expression〉.TF = 〈logical_and_expression〉.TT =

〈 logical_and_expression−1〉 .TF
〈 inclusive_or_expression 〉 .TF

{
〈 logical_and_expression−1〉 .TF
〈 inclusive_or_expression 〉 .TT

else :
}

〈logical_and_expression〉.R = free;
〈logical_and_expression〉.T = one of the following:

{
〈 logical_and_expression 〉 .TF
mov free , #1
j end

else : mov free , #0
end:

}

{
〈 logical_and_expression 〉 .TT
mov free , #0
j end

then: mov free , #1
end:

}

7. logical ‘or’ operator:
Syntax:
〈logical_or_expression〉 ::= 〈logical_or_expression-1〉 ‘||’ 〈logical_and_expression〉
Semantics:
〈logical_or_expression〉.TT = 〈logical_or_expression〉.TF =

〈 logical_or_expression−1 〉 .TT
〈 logical_and_expression 〉 .TT

{
〈 logical_or_expression−1 〉 .TT
〈 logical_and_expression 〉 .TF

then:
}

〈logical_or_expression〉.R = free;
〈logical_or_expression〉.T = one of the following:

{
〈 logical_or_expression 〉 .TF
mov free , #1
j end

else : mov free , #0
end:

}

{
〈 logical_or_expression 〉 .TT
mov free , #0
j end

then: mov free , #1
end:

}

8. logical ‘not’ operator:

122 CHAPTER 4. COST OF SYNTAX ELEMENTS

Syntax:
〈unary_expression〉 ::= ‘!’ 〈cast_expression〉
Semantics:
〈unary_expression〉.TT = invertjump(〈cast_expression〉.TT);
〈unary_expression〉.TF = invertjump(〈cast_expression〉.TF);
〈logical_or_expression〉.R = free;
〈unary_expression〉.T = one of the following:

{
〈 cast_expression 〉 .TF
mov free , #0
j end

else : mov free , #1
end:

}

{
〈 logical_or_expression 〉 .TT
mov free , #1
j end

then: mov free , #0
end:

}

9. relational operators;
Syntax:
〈re_expression〉 ::= 〈re_expression-1〉 〈re_op〉 〈re_expression-2〉

where 〈re_op〉 ::= ‘==’ | ‘!=’ | ‘>’ | ‘<’ | ‘>=’ | ‘<=’ ;
(this is a generalized syntax, see observations below)
Semantics:
〈re_expression〉.TT = 〈re_expression〉.TF =

〈re_expression−1〉 .T!
〈re_expression−2〉 .T!
cmp 〈re_expression−1〉 .R!,

〈re_expression−2〉 .R!
j?? then

〈re_expression−1〉 .T!
〈re_expression−2〉 .T!
cmp 〈re_expression−1〉 .R!,

〈re_expression−2〉 .R!
j?? else

where ‘ j ??’ is a placeholder for a jump instruction chosen in the following table:

‘==’ ‘!=’ ‘>’ ‘<’ ‘>=’ ‘<=’

TT jeq jne jgt jlt jge jle
TF jne jeq jle jge jlt jgt

〈re_expression〉.R = free;
〈re_expression〉.T = one of the following:

{
〈 re_expression 〉 .TF
mov free , #1
j end

else : mov free , #0
end:

}

{
〈 re_expression 〉 .TT
mov free , #0
j end

then: mov free , #1
end:

}

10. comma expression:
〈expression〉 ::= 〈expression-1〉 ’,’ 〈assignment_expression〉
Semantics:
〈expression〉.R = 〈assignment_expression〉.R
〈expression〉.T =

4.3. AN ABSTRACT TRANSLATION MODEL 123

〈expression−1〉.T
〈assignment_expression〉 .T

〈expression〉.TT = 〈expression〉.TF =

〈expression−1〉.T
〈assignment_expression〉 .TT

〈expression−1〉.T
〈assignment_expression〉 .TF

11. assignment:
〈assignment_expression〉 ::= 〈unary_expression〉 ‘=’ 〈assignment_expression-1〉
Semantics:
〈assignment_expression〉.R = 〈unary_expression〉.R
〈assignment_expression〉.T =

• if 〈assignment_expression-1〉.R = free;

〈unary_expression〉 .T
replace(〈assignment_expression−1〉.T, free , 〈unary_expression〉 .R)

• else:

〈unary_expression〉 .T
〈assignment_expression−1〉.T
mov 〈unary_expression〉 .R, 〈assignment_expression−1〉.R

〈assignment_expression〉.TT = 〈assignment_expression〉.TF =

〈assignment_expression〉 .T
jne then

〈assignment_expression〉 .T
jeq else

(Note that I have defined the TT and TF attributes in terms of T for brevity, which
is perfectly legitimate.)

12. arithmetic expressions:
〈m_expression〉 ::= 〈m_expression-1〉 〈m_op〉 〈m_expression-2〉
where 〈m_op〉 ::= ‘&’ | ‘|’ | ‘«’ | ‘»’ | ‘+’ | ‘-’ | ... ;
(this is generalized syntax, see observations below)
Semantics:
〈m_expression〉.R = f ree;
〈m_expression〉.T =

• if 〈m_expression-1〉.R 6= free ∧〈m_expression-2〉.R 6= free:

〈m_expression−1〉.T!
〈m_expression−2〉.T!
? free , 〈m_expression−1〉.R!, 〈m_expression−2〉.R!

〈m_expression〉.TT = 〈m_expression〉.TF =

〈m_expression〉 .T
jeq then

〈m_expression〉 .T
jne else

where ‘?’ is a placeholder for an instruction chosen in the following table:

‘&’ ‘|’ ‘<<’ ‘>>’ ‘+’ ‘−’ ‘∗’ ...

and or shl shr add sub mul ...

124 CHAPTER 4. COST OF SYNTAX ELEMENTS

13. identifiers:
Semantics:
IDENTIFIER.T = (empty);
IDENTIFIER.R = IDENTIFIER;

IDENTIFIER.TF = IDENTIFIER.TT =

cmp IDENTIFIER, #0
jeq else

cmp IDENTIFIER, #0
jne then

14. expression statements;
〈expression_statement〉 ::= 〈expression〉 ’;’
Semantics:
〈expression_statement〉.T = the least expensive among 〈expression〉.T,
〈expression〉.TF and 〈expression〉.TT.

15. copy rules:
Syntax:
any copy rule in Section 4.5 (page 231);
Semantics:
attributes of the left-hand side non-terminal assume the same values as in the
right-hand side non-terminal.

4.3.5 Observations
As far as the logical ‘not’ operator is concerned, note how its double-exit
translations have no added cost with respect to the double-exit translations
of its operand. The following example illustrates the case:

if (a) ... : if (! a) ... :

{
cmp a, #0 ; IDENTIFIER.TF
jeq else ;
〈statement〉 .T

else :
}

{
cmp a, #0 ; IDENTIFIER.TF
jne else ;
〈statement〉 .T

else :
}

Because of short-circuit evaluation, all the translations of logical and op-
erator ‘&&’ employ the TF translation of their first operand. Similarly, all the
translations of logical or operator ‘||’ employ the TT translation of their first
operand. Depending on the translation flavor of the logical expression, the
TT or the TF flavor of the second operand is used. The above considerations
are illustrated in all the examples which follow.

In certain cases, more alternatives are possible for the same translation
flavor. This is indicated by sentences like “... = one of the following: ...”.
In those cases, the compiler can equivalently translate the node in multiple

4.3. AN ABSTRACT TRANSLATION MODEL 125

ways. Without other knowledge available, the two ways are equivalent, and
which is chosen is indeterminate. The flavor attribute evaluation rules will
take this indetermination into account. The example in Figure 4.6 (page 125)
shows how the two TF and TT flavors of a logical ‘or’ expression contribute
to creating two possible alternative for the T flavor of an ‘if’ statement. With-
out profiles or jump probability estimates, both alternatives are meaningful
and could be selected. The cost model I propose will have to be aware of this
indetermination.

||

&&a

if (a || b && c) f1(); else f2();

b c

if

() ()

f1 f2

TF TT TF TT

TF TTTF TT

TF TT

T T

Figure 4.6: Multiple alternatives could be possible for the same translation
flavor.

4.3.6 Examples
The first example shows how complex logical expressions are translated. The
example considers the following C statement:

if ((a&&b || c || d&&e) && f) f1() else f2();

Its abstract syntax tree is reported in Figure 4.7. In this AST, each node is
accompanied with a label which indicates which translation flavor appears
in the final translation, consistently with the above observations. Figure 4.8
reports graphically how each AST node maps to its respective translation in
the abstract assembly translation of the entire statement.

126 CHAPTER 4. COST OF SYNTAX ELEMENTS

&&

|| f

if ((a && b || c || d && e) && f) f1(); else f2();

|| &&

if

() ()

f1 f2

TF TT

T T

d e&&

a b

c

TF TT

TF TTTF

TTTT

TT TT

TF

TF TF

Figure 4.7: The parse tree for an ‘if’ statement involving a complex logical
expression. For each node, the flavor which actually appears in the transla-
tion is shown. Two T’s are annotated next to the ‘if’ node to indicate that two
distinct translations are possible.

4.3. AN ABSTRACT TRANSLATION MODEL 127

{

 else:
}

{

 else:

end:
}

{

 then:
}

&&

||

f

if ((a && b || c || d && e) && f) f1(); else f2();

||

&&

if
()

()

f1

f2

TF

e

&&

a

b

c

TF

TT

TF

TF

TT

TT

TT

TF
TF

TF

cmp a, #0
je else

cmp b, #0
jne then

cmp c, #0
jne then

cmp d, #0
je else

cmp e, #0
je else

cmp f, #0
je else

call f1

call f2

d

Figure 4.8: Example illustrating the application of the abstract translation
scheme to a sample statement.

128 CHAPTER 4. COST OF SYNTAX ELEMENTS

The following example shows how the translation scheme works on a
more complex statement. In addition to the above issues, the example also
illustrates relational expressions and assignments, both with register-bound
and register-unbound translations. The example considers the following C
statement:

if ((a && (b < c+d) || e || g&&(h || i)) && j)
d = (a == b+c);

else
g = e = f << 2;

Figure 4.9 reports the AST of the statement, where nodes have been num-
bered from N1 to N32 in a post-order visit for clarification purposes. The
corresponding translation for each of the same nodes, in the same order, fol-
lows below. When multiple translations for a given symbol were possible, I
made an arbitrary choice and reported just one of them.

• N1.TF =

cmp a, #0
jeq else

• N2.T = (empty);
N2.R = b;

• N3.T = (empty);
N3.R = c;

• N4.T = (empty);
N4.R = d;

• N5.T =

N3.T!
N4.T!
? free , N3.R!, N4.R!

= add free, c , d

N5.R = free;

• N6.TT =

N2.T!
N5.T!
cmp N2.R!, N5.R!
j?? then

=
add R5, c , d
cmp b, R5
jlt then

4.3. AN ABSTRACT TRANSLATION MODEL 129

&&

|| j

if ((a && (b < c+d) || e || g && (h||i)) && j)
d = (a == b+c);

else
g = e = f << 2;

|| &&

if

g ||&&

a <

e

=

d ==

a +

b c

=

g =

e <<

f 2

h i

b +

c d

N
32

N
17

N
24

N
31

N
15

N
16

N
18

N
23

N
25

N
30

N
9

N
14

N
19

N
22

N
26

N
29

N
20

N
21

N
27

N
28

N
7

N
8

N
10

N
13

N
11

N
12

N
1

N
6

N
2

N
5

N
3

N
4

Figure 4.9: Abstract syntax tree of a more complex example statement, used
to illustrate the abstract translation scheme.

• N7.TT =

{
N1.TF
N6.TT

else :
}

=

{
cmp a, #0
jeq else
add R5, c , d
cmp b, R5
jlt then

else :
}

130 CHAPTER 4. COST OF SYNTAX ELEMENTS

• N8.TT =

cmp e, #0
jne then

• N9.TT =

N7.TT
N8.TT

=

{
cmp a, #0
jeq else
add R5, c , d
cmp b, R5
jlt then

else :
}
cmp e, #0
jne then

• N10.TF =

cmp g, #0
jeq else

• N11.TT =

cmp h, #0
jne then

• N12.TF =

cmp i , #0
jeq else

• N13.TF =

{
N11.TT
N12.TF

then:
}

=

{
cmp h, #0
jne then
cmp i , #0
jeq else

then:
}

• N14.TF =

N10.TF
N13.TF

=

cmp g, #0
jeq else
{

cmp h, #0
jne then
cmp i , #0
jeq else

then:
}

4.3. AN ABSTRACT TRANSLATION MODEL 131

• N15.TF =

{
N9.TT
N14.TF

then:
}

=

{
{

cmp a, #0
jeq else
add R5, c , d
cmp b, R5
jlt then

else :
}
cmp e, #0
jne then
cmp g, #0
jeq else
{

cmp h, #0
jne then
cmp i , #0
jeq else

then:
}

then:
}

• N16.TF =

cmp j , #0
jeq else

132 CHAPTER 4. COST OF SYNTAX ELEMENTS

• N17.TF
(chosen
arbitrar-
ily)

=

N15.TF
N16.TF

=

{
{

cmp a, #0
jeq else
add R5, c , d
cmp b, R5
jlt then

else :
}
cmp e, #0
jne then
cmp g, #0
jeq else
{

cmp h, #0
jne then
cmp i , #0
jeq else

then:
}

then:
}
cmp j , #0
jeq else

• N18.T = (empty);
N18.R = d;

• N19.T = (empty);
N19.R = a;

• N20.T = (empty);
N20.R = b;

• N21.T = (empty);
N21.R = c;

• N22.T =

N20.T!
N21.T!
? free , N20.R!, N21.R!

=

add free, b, c

N22.R = free;

4.3. AN ABSTRACT TRANSLATION MODEL 133

• N23.T = (chosen arbitrarily T including
N23.TF)

{
N19.T!
N22.T!
cmp N19.R!,N22.R!
j?? else
mov free , #1
j end

else : mov free , #0
end:

}

=

{
add R22, b, c
cmp a, R22
jne else
mov free , #1
j end

else : mov free , #0
end:

}

N23.R = free;

• N24.T =

N18.T
replace(N23.T, free , N18.R)

=

{
add R22, b, c
cmp a, R22
jne else
mov d, #1
j end

else : mov d, #0
end:

}

• N25.T = (empty);
N25.R = g;

• N26.T = (empty);
N26.R = e;

• N27.T = (empty);
N27.R = f;

• N28.T = (empty);
N28.R = #2;

• N29.T =

N27.T!
N28.T!
? free , N27.R!, N28.R!

= shl free , f , #2

N29.R = free;

• N30.T =

N26.T
replace(N29.T, free , N26.R)

= shl e, f , #2

N30.R = e;

• N31.T =

N25.T
N30.T
mov N25.R,N30.R

=

shl e, f , #2
mov g, e

134 CHAPTER 4. COST OF SYNTAX ELEMENTS

• N32.T = (chosen arbitrarily)

{
N17.TF
N24.T
j end

else : N31.T
end:

}

=

{
{

{
cmp a, #0
jeq else
add R5, c , d
cmp b, R5
jlt then

else :
}
cmp e, #0
jne then
cmp g, #0
jeq else
{

cmp h, #0
jne then
cmp i , #0
jeq else

then:
}

then:
}
cmp j , #0
jeq else
{

add R22, b, c
cmp a, R22
jne else
mov d, #1
j end

else : mov d, #0
end:

}
j end

else :
shl e, f , #2
mov g, e

end:
}

4.3. AN ABSTRACT TRANSLATION MODEL 135

The following fragment illustrates the same code as above, rendered in
‘flat’ assembly language, i.e. without nested block. The task of translating
assembly code with block nesting into flat assembly is rather straightforward
and just requires a simple label renaming mechanism which I will not discuss
here.

cmp a, #0
jeq else1
add R5, c , d
cmp b, R5
jlt then2

else1 :
cmp e, #0
jne then2
cmp g, #0
jeq else3
cmp h, #0
jne then1
cmp i , #0
jeq else3

then1:
then2:

cmp j , #0
jeq else3
add R22, b, c
cmp a, R22
jne else2
mov d, #1
j end1

else2 : mov d, #0
end1:

j end2
else3 :

shl e, f , #2
mov g, e

end2:

136 CHAPTER 4. COST OF SYNTAX ELEMENTS

4.4 An attribute grammar to determine the cost
of syntax elements

This section describes an algorithm to attribute a single-execution cost to
each syntax element of a C program (i.e., each nodes in its abstract syntax
tree). The algorithm is consistent with the abstract translation model of the
previous section, and takes into account all the factors which impact on cost,
presented in Section 4.2 (page 110).

I describe this algorithm in the form of a multi-visit attribute grammar,
operating on the abstract syntax tree, with the following 11 attributes:

• attribute t, ‘real result type’:
this attribute represents the type of an expression. It is a synthesized
attribute. It can assume values whose meaning is “pointer to integer”
or “array of functions returning double”, expressed in an appropri-
ate representation. It affects the conversion cost. For a node N, N.t
depends on t of its child nodes. I will discuss an appropriate represen-
tation for types, and all the rules to calculate t in Section 4.4.1 (page
140);

• attribute r, ‘restricted type’:
this attribute represents the type of the data which are actually in-
volved in the computation or a transfer. The value of r can be different
from t when the dot operator is involved. It affects the inherent cost. It
can assume the same set of values as t can. It is an inherited attribute
and it depends on t: for a node N, N.r depends on N.t. I will discuss
the reasons why this attribute is needed and how to derive it in Section
4.4.2 (page 158);

• attribute e, ‘constant value’:
when an expression has a constant value, I define attribute e to hold
that value. e is a synthesized attribute and can assume any integer or
floating-point value. For terminal symbols, e depends on their lexical
value (e.g. the value of literal constant ‘4’ is 4). Because of the ‘sizeof’
operator, e may depend on t. I will discuss e in Section 4.4.3 (page 169);

• attribute k, ‘constancy’:
this is a boolean attribute, which tells whether the expression assumes
a constant value or not. It is a synthesized attribute. It affects all the
costs. Because of conditional and logical expressions, k may depends
on e. For a given node, k depends on k and e of its child nodes. I will
discuss k in Section 4.4.3 (page 169);

• attribute v, ‘valueness:
this attribute is also defined for expressions only; it and assumes the
values R, L, RL and Z as introduced in the previous section. It is an
inherited attribute. It affects inherent costs. Attribute v of a node de-
pends entirely on v of its father node. It does not depend on any other
attributes. I discuss its evaluation in Section 4.4.4 (page 176);

4.4. THE ATTRIBUTE GRAMMAR 137

• attribute b, ‘register-boundedness’:
this is a boolean attribute, which tells whether the expression is bound
to a register or not. It is a synthesized attribute. It affects the inherent
cost, in detail of assignment operators. For a given node, b depends on
the values of b of its child nodes. I will discuss b in Section 4.4.5 (page
178);

• attribute f , ‘translation flavor’:
this attribute is defined for expressions and statements. It can assume
the value T, TF, TT, or indeterminate. It is an inherited attribute, and
f of a node depends on f of its father. f has already been introduced
in Section 4.2.5 (page 115). I will summarize its evaluation rules in
Section 4.4.6 (page 180);

• attribute ci, ‘inherent cost’:
this attribute expresses the single-execution cost of carrying out the
data manipulation and data-transfer operations expressed by the se-
mantics of a node. It is defined for expressions and statements. It is
a synthesized attribute, and depends on a number of attributes in the
same node. It also depends on k, e of the children, to model certain
strength reduction optimization. Like any other cost, I express ci as a
summation of atoms. I will summarize its evaluation rules in Section
4.4.7 (page 183);

• attribute cc, ‘conversion cost’:
this attribute expresses the single-execution cost of carrying out the
implicit or explicit data conversion operations prescribed by the C lan-
guage for a given node, depending on where it appears. It is defined
for expressions only. I express this cost as a summation of atoms. It is
an synthesized attribute; N.cc depends in general on t of its children. I
will summarize its evaluation rules in Section 4.4.8 (page 216);

• attribute c f , ‘control flow cost’:
this attribute expresses the single-execution cost of determining
whether to transfer the control flow to another point in the program,
and possibly transferring it when needed. It is defined for statements.
It is an inherited attribute; N.c f depends in general on N. f and on the
syntax of its father. I will summarize its evaluation rules in Section
4.4.9 (page 225);

• attribute c, ‘cost’:
this attribute is the single-execution cost which is the final goal of this
entire chapter. It is the summation of all the costs which affect a node.
It is a synthesized attribute. N.c is evaluated by summing together
whichever of the N.ci, N.cc and N.c f are defined. I will define its eval-
uation rules in Section 4.4.10 (page 230);

The table below summarizes the attributes just introduced:

138 CHAPTER 4. COST OF SYNTAX ELEMENTS

Attribute Name Defined for

t synthesized result type expressions
r inherited restricted result type expressions
e synthesized constant result value expressions
k synthesized constancy expressions
v inherited valueness expressions
b synthesized register-boundedness expressions
f inherited translation flavor expressions and statements
ci synthesized inherent cost expressions and statements
cc synthesized conversion cost expressions
c f inherited flow control cost statements
c synthesized total cost expressions and statements

Finally, I introduce an attribute n (’name’) which is defined for terminal
symbols only. Its value is the lexical value of the symbol itself.

k v fr ci cf cb ccet

k v fr ci cf cb ccet

k v fr ci cf cb ccet

Father

Current node

Children nodes

Syntax

Syntax

Syntax

Figure 4.10: Dependences between attributes.

A complete representation of the dependences between attributes is
given in Figure 4.10. All the edges start from a node x, representing some
attribute x of the current symbol, and end in a node y, representing an at-
tribute which may belong to the same symbol, to the father of the current
symbol, or to one of its children. An edge going from attribute N.x to M.y

4.4. THE ATTRIBUTE GRAMMAR 139

implies that attribute M.y must be evaluated before N.x.
The attributes can be evaluated in any order that respects their mutual

dependences. As far as the actual implementation of an evaluation algorithm
for this grammar is concerned, the order in which attributes are evaluated
and the number of visits of the AST required to evaluate them are important,
especially for realistic-size inputs. Any further discussion on the topic is
beyond the scope of this document. The readers interested to learn more on
this are invited to refer to the source code of the project which implements
this thesis.

140 CHAPTER 4. COST OF SYNTAX ELEMENTS

4.4.1 Attribute ‘t’, result type
Simply said, attribute t of an expression is the type of that expression, ac-
cording to the rules of the C language. The type of an expression can be
determined unambiguously on the basis of variable declarations in the cur-
rent scope, operator semantics, and type assumption and conversion rules
of the C language. All these are described unambiguously in the C standard
[81]. The purpose of this section is to provide a set of non-ambiguous rules
which allow to determine the type of any AST node according to those rules.

Note: the reader should avoid confusion between the result type (attribute
t) and the restricted result type (attribute r) which is introduced in Section 4.4.2
(page 158).

Intuitively, the needed type evaluation rules are those who evaluate the
type of a.m to int if a was declared as struct { ...; int m; ...} a;, the type of ∗p
as char if p was declared as char ∗ p; or as char p[N], and the type of sin(a) as
double if sin was declared as double sin(double a), and so on.

The reason why t is a synthesized attribute depending on the value of
t in the child nodes of the current one is that the standard defines the type
of an expression in terms of the types of its subexpressions. Therefore, all
the evaluation rules of this section express N.t as a function of t of the child
nodes of N.

In order to express this rules easily, I need an appropriate representation
for t. The very C declarations as they appear in the code are not a good
candidate for this purpose, because they are difficult to manipulate, and the
following example shows why. Imagine that you want to determine the type
of expression ‘∗strchr(s ,c)’, where t of subexpression ‘strchr’ is represented as
the following string:

char ∗strchr(const char ∗s, int c);

First you need to express a general rule such that the evaluated result type
of the ‘ () ’ sub expression is the string:

char ∗

then, that operator ‘∗’ over this last type yields the string:

char

Describing the above evaluation in generic terms with this representation
is cumbersome for the trivial example above. Things get much worse when
real-life declarations are considered. The type system of the C language is
rich and complex. Approximately one third of the entire grammar of the C
language (i.e. approximately 70 syntax rules out of 213) is devoted the struc-
ture of declarations. The syntax of several C declaration is rather complex
and counterintuitive, an even experienced programmers find it troublesome
(see [83], Chapter 3). Qualifiers (const and volatile) may appear in different
orders, type specifiers like long or unsigned may modify another type speci-
fier or come alone (then int is implied). Declarations of pointers to functions
are poorly readable. And much more. A real-life example of a non-trivial
declaration is:

void (∗signal(int sig , void (∗func)(int))) (int);

4.4. THE ATTRIBUTE GRAMMAR 141

Definitely, manipulating the above type representation is impractical.
I propose an alternative, stack-based representation, such that the type of

strchr would look like:
[function][pointer][char]
This way, the type of a ‘ () ’ operator expression is simply the type of its first
operand without the initial ‘[function]’, i.e.:
[pointer][char]
and the type of a unary ‘∗’ operator expression is the type of its operand
deprived from its initial ‘[pointer]’, i.e.:
[char].
The remainder of this chapter is devoted to detail these simple ideas.

In the context of this thesis, a type is a normalized stack of type-
definition records. The next paragraphs explain what type-definition
records are and what normalization is.

I assume that notion of stack is intuitive and given. I represent each ele-
ment of a stack in square bracket, such as ‘[a]’, and I denote the contents of a
stack by listing its element from the top of the stack down to the bottom. For
example, the expression ‘[a][b][c]’ denotes a stack containing three elements
‘a’,‘b’ and ‘c’, such that ‘a’ is the top of the stack and ‘c’ is the bottom. Given a
stack s and an element e, I define the usual stack operations in the following
way:

• top(s)
returns element e if e is the top of stack s;

• pop(s)
returns a stack where the top element from s was removed;

• push(e, s)
returns a new stack t such that top(t) = e and pop(t) = s.

For a non-empty stack s, the following property holds:
push(top(s), pop(s)) = s. The definitions given for top, pop and push
are isomorphic to ‘first’, ‘rest’ and ‘cons’ primitives in the Common Lisp
programming language. I will use often stack operators when defining the
evaluation rules for t.

I will not explain in detail how to design semantic actions which imple-
ment the declaration semantics of the C language. This detail level is be-
yond the scope of this document. I assume that a set of semantic actions is
available, associated to the syntax rules which govern declarations in the C
language. This rules will set attribute t of identifiers, constants, string liter-
als and 〈type_name〉 in compliance with the above explanations, by stacking
type-definition records.

The type-definition records (type records, for short) are the following:
[char], [long], [int], [short], [double], [signed], [unsigned], [float], [const],
[volatile], [array], [function], [enum], [struct], [union], [pointer], [void],
[symbol], [user type]. Type records may have attributes like: the number
of elements for an array, qualifiers, specifiers like long or signed, a symbol

142 CHAPTER 4. COST OF SYNTAX ELEMENTS

table representing the members for unions and structs, a symbol table rep-
resenting the arguments for functions. Attributes are denoted as subscripts,
e.g. [intu] denotes an integer without sign, and [pointerc] a constant pointer.

The above type stacks are not normalized. Normalization is an operation
in which:

• records corresponding to qualifiers (const and volatile) are removed
from the stack and applied to their associated type record, e.g. a
[int][const] becomes a [intc];

• records which modify other records are merged with the records they
modify, e.g. a [int][unsigned] becomes [intu];

• the same records as above, when used alone, are merged with an im-
plied int, e.g. a [long] becomes [intl] and a [const] becomes an [intc];

• user types are expanded with their definitions.

Normalization is required to allow proper type comparison, which is needed
in this context to determine conversion costs.

The following example illustrate C declarations and their associated non-
normalized and normalized type stack. For the help of the reader, I also
report their natural language description.

• long int quot;
[int] [long]
[intl]
“quot is a long integer”

• const char ∗ format;
[pointer] [const] [char]
[pointer] [charc]
“format is a pointer to a constant character”

• FILE ∗ file ;
[pointer] [user type FILE]
[pointer] [struct _IO_FILE]
“file is a pointer to an object of user type FILE”

• void const ∗ s ;
[pointer] [const] [void]
[pointer] [voidc]
“s is a pointer to a constant, untyped memory location”

• unsigned short int a[3];
[array[3]] [int] [short] [unsigned]
[array[3]] [intus]
“a is an array of three short unsigned integers”

• const char ∗const sys_errlist [];
[array[]] [const] [pointer] [const] [char]
[array[]] [pointerc] [charc]
“sys_err_list is an unsized array of constant pointers to constant characters”

4.4. THE ATTRIBUTE GRAMMAR 143

• int (∗__compar_fn_t) (const void ∗, const void ∗);
[pointer] [function @0x8177 f 04] [int]
[pointer] [function @0x8177 f 04] [int]
“__compar_fn_t is a pointer to a function returning an integer; the arguments are
stored in a separate symbol table, located at @0x8177f04”

• unsigned short int ∗seed48 (unsigned short int seed16v[3]);
[function @0x815ca94] [pointer] [intus]
“seed48 is function returning a pointer to a short unsigned integer”

• (where seed16v in symbol table 0x815ca94 is:)
[array[3]] [int] [short] [unsigned]
[array[3]] [intus]
“the function takes as a parameter an array of short unsigned integers”

As far as the calculation of attribute t for each possible expression is con-
cerned, the operators of the C language fall in a number of classes, such that
all the operators in the same class share the semantic rules to calculate t.

I summarize these classes in Table 4.2, and discuss them individually
below. The table presents an enumerated row for each class: each row indi-
cates the arity of the operators which are part of that class, then a name for
the class, the complete list of operators which belong to it, and a short de-
scription of how the operators behave as far as the result type is concerned,
expressed in natural language.

144 CHAPTER 4. COST OF SYNTAX ELEMENTS

Class Arity Informal description, members and behavior

1 1 The ‘sizeof’ operator
‘sizeof’
Behavior: return type is an unsigned integral type.

2 1 Integer-type unary operators
‘!’
Behavior: return type is [int].

3 1 Operand-type unary operators
prefix or postfix ‘++’, prefix or postfix ‘−−’
Behavior: return type is the same as the operand.

4 1 Integral promotion operators
‘+’, ‘−’, ‘~’
Behavior: return type is the integer promotion of the type of the
operand.

5 1 The referencing operator
‘&’
Behavior: return type is pointer to the type of the operand.

6 1 The dereferencing operator
‘∗’
Behavior: return type same of the operand except for the initial
[pointer] or [array] element

7 2 The cast operator
‘(type)’
Behavior: return type is the first operand.

8 2 Integer-type binary operators
‘==’, ‘!=’, ‘<’, ‘>’, ‘<=’, ‘>=’, ‘&&’, ‘||’
Behavior: return type is [int].

9 2 First-operand type binary operators
‘=’, ‘<<’, ‘>>’, ‘+=’, ‘−=’, ‘∗=’, ‘/=’, ‘%=’, ‘&=’, ‘|=’, ‘^=’, ‘<<=’,
‘>>=’
Behavior: return type is the same as first operand.

10 2 Second-operand type binary operators
‘ , ’
Behavior: return type is the same as second operand.

11 2 The arithmetic binary operators
‘+’, ‘−’, ‘∗’, ‘/’, ‘%’, ‘&’, ‘|’, ‘^’
Behavior: return type determined via usual arithmetic conversions
and pointer arithmetic, as in the C standard.

12 2 Access operators
‘ . ’, ‘−>’, ‘ [] ’
Behavior: return type is as declared.

13 3 Conditional operator
‘?: ’
Behavior: return type is the same as the type of value of at most 2
of the 3 child expressions.

14 1..n Function call
function call ‘ ...(...) ’
Behavior: result type is as declared.

Table 4.2: The operators of the C language, classified on the basis of how
their result type (attribute t) is determined.

4.4. THE ATTRIBUTE GRAMMAR 145

4.4.1.1 The ‘sizeof’ operator

The ‘sizeof’ operator returns the number of bytes occupied by its operand,
which may be an expression or a parenthesized name of a type. According to
the C standard [81], Section 6.3.3.4, the result value of the ‘sizeof’ operator «is
implementation-defined, and its type (an unsigned integral type) is ‘size_t’
defined in the ‘<stddef.h>’ header». It is therefore legitimate to associate to a
‘sizeof’ expression a type [intu].

Syntax:
〈unary_expression〉 ::= ‘sizeof’ 〈unary_expression-1〉

| ‘sizeof’ ’(’ 〈type_name〉 ’)’

Semantics:
〈unary_expression〉.t = [intu] ;

4.4.1.2 Integer-type unary operators

Despite the plural, this class contains only the ‘!’ operator. According to the
standard, this operator returns an integer value.

Syntax:
〈unary_expression〉 ::= ‘!’ 〈cast_expression〉
Semantics:

〈unary_expression〉.t = [int] ;

4.4.1.3 Operand-type unary operators

As specified in Sections 6.3.2.4 and 6.3.3.1 of the C standard, operators in this
class return the same type as their operand, and operands must be scalar (i.e.
integral or floating-point).

Syntax:
〈unary_expression〉 ::= ‘++’ 〈unary_expression-1〉

| ‘--’ 〈unary_expression-1〉

〈postfix_expression〉 ::= 〈postfix_expression-1〉 ‘++’
| 〈postfix_expression-1〉 ‘--’

Generalized syntax:
〈father_expression〉 ::= 〈child_expression〉 〈auto_op〉

| 〈auto_op〉 〈child_expression〉

〈auto_op〉 ::= ‘++’ | ‘--’

Semantics:
〈father_expression〉.t = 〈child_expression〉.t

146 CHAPTER 4. COST OF SYNTAX ELEMENTS

Note: expression ‘++i’ is not equivalent to ‘i= i + 1’. In fact, the unary operator
‘++’ does not perform integer type promotion, whereas binary operator ‘+’ does. I report
further details on this technicality in Section 4.4.1.11 (page 149).

4.4.1.4 Integral promotion operators

Operators in this class yield the same type as their operand, except they per-
form integral promotion when required. According to the standard, «A char, a
short int or an int bit-field, or their signed and unsigned varieties, or an enu-
meration type, may be used in an expression wherever an int or unsigned int
may be used. If an int can represent all the values of the original type, the
value is converted to an int; otherwise it is converted to an unsigned int. These
are called the integral promotions. All other arithmetic types are unchanged
by the integral promotions».

If t is a type, I denote with I(t) its integral promotion. The above con-
straints are strict enough to indicate a unique I(·), provided that the size and
representation of each basic type is chosen. The following examples should
be enough for the user to understand how types are integer-promoted:

I([char]) = [int];
I([ints]) = [int];
I([int]) = [int];
I([intl]) = [intl];
I([float]) = [float];
I([double]) = [double].

The cost of integer promotion, under my architectural assumptions is
null except for the integer promotion of [char] to [int], whose cost is one
IntToInt atom.

Syntax:
〈unary_expression〉 ::= ‘+’ 〈cast_expression〉

| ‘-’ 〈cast_expression〉
| ‘~’ 〈cast_expression〉

Semantics:
〈unary_expression〉.t = I(F(〈cast_expression〉.t))

4.4.1.5 The referencing operator

According to the standard, «the result of the unary ‘&’ operator is a pointer
to the object or function designated by its operand. If the operand has type
“type”, the result has type “pointer to type”» ([81], Section 6.3.3.2). In my
type representation, this means that the type of ‘& expr’ is obtained by push-
ing [pointer] onto the type of ‘expr’.

The above sentence describes completely the behavior of the ‘&’ oper-
ator, also in the case where the argument is a function designator. In fact,
other operators perform the function designator conversion on the type of
their operands, thus implicitly converting “function returning type” types to

4.4. THE ATTRIBUTE GRAMMAR 147

“pointer to function returning type”, i.e. taking the address of the function.
There is no need to do that here, since the address of the function is taken
explicitly.

Syntax:

〈unary_expression〉 ::= ‘&’ 〈cast_expression〉
Semantics:

〈unary_expression〉.t = push([pointer], 〈cast_expression〉.t)

Please note that this semantic action depends directly on attribute t of
the children node, unlike the actions of most other operators, which depend
on F(t). This is due to the peculiarity of the ‘sizeof’ and ‘&’ operators, which
prevents function designator conversions. For a complete discussion on the
topic, see Section 4.4.1.14 (page 153).

4.4.1.6 The dereferencing operator

As the dereferencing operator is concerned: «if the operand points to a func-
tion, the result is a function designator; if it points to an object, the result is
an lvalue designating the object. If the operand has type “pointer to type”,
the result has type “type”».

In my representation, the unary star pops the first type-definition record
from the type stack of the operand, when this operator is either [pointer] or
[array] (in fact, array names used without subscripting must be considered
as pointers).

Please note that, in case the operand is a function designator, the au-
tomatic conversion from type “function returning type” to type “pointer to
function returning type” is performed via function F(·), according to the be-
havior described in Section 4.4.1.14 (page 153). Therefore if attribute t of
〈cast_expression〉 (according to the syntax rule below) is in the form “[func-
tion]...”, then F(t) is in the form “[pointer][function]...”. The final result type
is pop(F(t)), therefore “[function]...” again.

Syntax:

〈unary_expression〉 ::= ‘*’ 〈cast_expression〉 ;

Semantics:
〈unary_expression〉.t = pop(F(〈cast_expression〉.t))

Please note that the following condition must hold:
top(F(〈cast_expression〉.t)) ∈ {[pointer], [array]}. If it does not, then
the source code contains type errors.

4.4.1.7 The cast operator

Syntax:

〈cast_expression〉 ::= ‘(’ 〈type_name〉 ‘)’ 〈cast_expression-1〉

148 CHAPTER 4. COST OF SYNTAX ELEMENTS

Semantics:
〈cast_expression〉.t = value of 〈type_name〉;

Note that 〈type_name〉 is neither an expression nor a statement symbol.
Its value must be a type stack representing the corresponding type. Dis-
cussing how to determine this type stack while parsing is beyond the scope
of this document.

4.4.1.8 Integer-type binary operators

This class comprises the relational and the logical operators. According to
the C standard, all the operators in this class return an integer value. Inter-
ested readers should refer to the source code of the tools which implement
this thesis.

Syntax:

〈equality_expression〉 ::= 〈equality_expression〉 ‘==’ 〈relational_expression〉
| 〈equality_expression〉 ‘!=’ 〈relational_expression〉

〈relational_expression〉 ::= 〈relational_expression〉 ‘<’ 〈shift_expression〉
| 〈relational_expression〉 ‘>’ 〈shift_expression〉
| 〈relational_expression〉 ‘<=’ 〈shift_expression〉
| 〈relational_expression〉 ‘>=’ 〈shift_expression〉

〈logical_or_expression〉 ::= 〈logical_or_expression〉 ‘||’ 〈logical_and_expression〉

〈logical_and_expression〉 ::= 〈logical_and_expression〉 ‘&&’ 〈inclusive_or_expression〉
Generalized syntax:

〈father_expression〉 ::= 〈child_expression-1〉 〈operator〉 〈child_expression-2〉
Semantics:

〈father_expression〉.t = [int] ;

4.4.1.9 First-operand type binary operators

Operators in this class return the same type as their first operand.

Syntax:

〈assignment_expression〉 ::= 〈unary_expression〉 ‘=’ 〈assignment_expression-1〉
| 〈unary_expression〉 ‘*=’ 〈assignment_expression-1〉
| 〈unary_expression〉 ‘/=’ 〈assignment_expression-1〉
| 〈unary_expression〉 ‘%=’ 〈assignment_expression-1〉
| 〈unary_expression〉 ‘+=’ 〈assignment_expression-1〉
| 〈unary_expression〉 ‘-=’ 〈assignment_expression-1〉
| 〈unary_expression〉 ‘«=’ 〈assignment_expression-1〉
| 〈unary_expression〉 ‘»=’ 〈assignment_expression-1〉
| 〈unary_expression〉 ‘&=’ 〈assignment_expression-1〉
| 〈unary_expression〉 ‘|=’ 〈assignment_expression-1〉
| 〈unary_expression〉 ‘^=’ 〈assignment_expression-1〉

4.4. THE ATTRIBUTE GRAMMAR 149

〈shift_expression〉 ::= 〈additive_expression〉
| 〈shift_expression〉 ‘«’ 〈additive_expression〉
| 〈shift_expression〉 ‘»’ 〈additive_expression〉

Generalized syntax:

〈father_expression〉 ::= 〈child_expression-1〉 〈operator〉 〈child_expression-2〉 ;

Semantics:
〈father_expression〉.t = 〈child_expression-1〉.t;

4.4.1.10 Second-operand type binary operators

Operators in this class return the same type as their second operand.

Syntax:

〈expression〉 ::= 〈expression〉 ‘,’ 〈assignment_expression〉
Generalized syntax (for uniformity with the previous case):

〈father_expression〉 ::= 〈child_expression-1〉 operator 〈child_expression-2〉
Semantics:

〈father_expression〉.t = 〈child_expression-2〉.t;

4.4.1.11 The arithmetic binary operators

For these operators, when only arithmetic-type operands are involved, the
result type is determined according to the usual arithmetic conversions [ipsis-
simis verbis], a set of rules which, despite the informal name, is specified
rigorously in the C standard, in Section 6.2.1.5.

When arithmetic and pointer types are involved, the result type is deter-
mined according pointer arithmetics, specified in Section 6.3.6 of the standard.

For sake of simplicity, I define function U(t1, t2) that returns the type of
the result of the operation between a first operand which has type t1 and a
second operand which has type t2. Function U(·, ·) is also aware of the func-
tion designator conversion rule described in Section 6.2.2.1 of the standard
and in Section 4.4.1.14 (page 153) of this document.

Function U(t1, t2) determines the type of the result of an expression com-
posed by a first operand of type t1, a binary operator, and a second operand
of class t2, when the operator belongs to the class of “arithmetic binary oper-
ators”.

Function U(·, ·) applies, if required, the function designator conversion, re-
placing t1 and t2 with F(t1) and F(t2), then one of the following conversion
rules:

1. if t1 and t2 are both arithmetic, the usual arithmetic conversions standard
pattern, described below is applied;

150 CHAPTER 4. COST OF SYNTAX ELEMENTS

2. if at least one of t1 and t2 is a pointer, the pointer arithmetic rules are
applied.

From the standard, «This pattern is called the usual arithmetic conversions:
First, if either operand has type long double, the other operand is con-

verted to long double.
Otherwise, if either operand has type double, the other operand is con-

verted to double.
Otherwise, if either operand has type float , the other operand is con-

verted to type float .
Otherwise, the integral promotions are first applied to both operands and

then the following rules are applied.
If either operand has type unsigned long int, the other operand is con-

verted to unsigned long int.
Otherwise, if one operand has type long int and the other has type

unsigned int, if a long int can represent all values of an unsigned int, the
operand of type unsigned int is converted to long int; if a long int cannot
represent all the values of an unsigned int, both operands are converted to
unsigned long int.

Otherwise, if either operand has type long int, the other operand is con-
verted to long int.

Otherwise, if either operand has type unsigned int, the other operand is
converted to unsigned int.

Otherwise, both operands have type int. »

Syntax:

〈additive_expression〉 ::= 〈additive_expression-1〉 ‘+’ 〈multiplicative_expression〉
| 〈additive_expression-1〉 ‘-’ 〈multiplicative_expression〉

〈multiplicative_expression〉 ::= 〈multiplicative_expression-1〉 ‘*’ 〈cast_expression〉
| 〈multiplicative_expression-1〉 ‘/’ 〈cast_expression〉
| 〈multiplicative_expression-1〉 ‘%’ 〈cast_expression〉

〈inclusive_or_expression〉 ::= 〈inclusive_or_expression-1〉 ‘|’ 〈exclusive_or_expression〉

〈exclusive_or_expression〉 ::= 〈exclusive_or_expression-1〉 ‘^’ 〈and_expression〉

〈and_expression〉 ::= 〈and_expression-1〉 ‘&’ 〈equality_expression〉
Generalized syntax:

〈father_expression〉 ::= 〈child_expression-1〉 operator 〈child_expression-2〉
Semantics:

〈father_expression〉.t = U(〈child_expression-1〉.t, 〈child_expression-2〉.t);

Technical digression: in Section 4.4.1.3 (page 145), I anticipated that expression ‘++i’
is not equivalent to ‘i = i + 1’ as far as types are concerned, because arithmetic binary
operators perform integral type promotion, while unary ‘++’ and ‘−−’ operators don’t.
An example which clearly displays this unexpected behavior follows: if ‘i’ is declared as
char, then type of expression ‘++i’ is char. On the other hand, the type of expression ‘i+1’
is the integral promotion of type char, which is int. This can be practically verified, for

4.4. THE ATTRIBUTE GRAMMAR 151

example, by measuring the size occupied by the value of expressions ‘++i’ and ‘i + 1’
respectively, with the ‘sizeof’ operator and on any 32 bit architecture. The following
fragment:

char i ;
printf ("%i %i %i\n", sizeof i, sizeof(++i), sizeof(i ++));

outputs 1 1 1, proving that if ‘i’ is char, then ‘++i’ and ‘i++’ are still chars. On the other
hand, the following fragment:

char i ;
printf ("%i %i %i", sizeof i, sizeof(i +1), sizeof(1+i));

outputs 1 4 4, proving that ‘1+i’ and ‘i+1’ are promoted to ‘int’s. Note that sizeof(char)
must be 1 by standard, whereas sizeof(int)==4 is an architecture-dependent detail.

4.4.1.12 The access operators

For the subscript operator, most of the considerations already made for the
dereferencing operator ‘∗’ apply.

Syntax:
〈postfix_expression〉 ::= 〈postfix_expression-1〉 ‘[’ 〈expression-1〉 ‘]’
Semantics:

〈postfix_expression〉.t = pop(F(〈postfix_expression-1〉.t))

For the ‘ . ’ and ‘−>’ operators, I assume that the ‘[struct]’ and ‘[union]’
type-definition records have an attribute which contains the full symbol table
associated with the struct/union as declared. For brevity, I do not denote this
attribute in the typesetting.

Additionally, I define a function lookup(·, ·) which determines the type
of a members of a struct or union. Given an type-definition record r and a
name n, lookup(t, n) yields a type stack corresponding to the type of name n
as declared in the symbol table associated with the type-definition record.

Any further discussion regarding lookup is out of the scope of this docu-
ment. The readers interested to learn more on this topic are invited to refer
to the source code of the project which implements this thesis.

Syntax:
〈postfix_expression〉 ::= 〈postfix_expression-1〉 ‘.’ IDENTIFIER
Semantics:

〈postfix_expression〉.t = lookup(top(〈postfix_expression-1〉.t), IDENTIFIER.n)

Syntax:
〈postfix_expression〉 ::= lookup〈postfix_expression-1〉 ‘->’ IDENTIFIER
Semantics:

〈postfix_expression〉.t = lookup(top(pop(〈postfix_expression-1〉.t)), IDENTIFIER.n)

152 CHAPTER 4. COST OF SYNTAX ELEMENTS

4.4.1.13 The conditional operator

The result type of a conditional operator is the calculated according to the
usual arithmetic conversions, applied on the second and third operand.

Syntax:
〈conditional_expression〉 ::= 〈logical_or_expression〉 ’?’ 〈expression〉 ’:’

〈conditional_expression-1〉
Semantics:

〈conditional_expression〉.t = U(〈expression〉.t, 〈conditional_expression-1〉.t);

4.4.1.14 The function call operator

A function call is «a postfix expression followed by parentheses containing
a possibly empty, comma-separated list of expressions», as from the C stan-
dard, Section 6.3.2.2. I consider the function call to have arity 1 + n if the ar-
gument list contains n elements. The first child of the operator is always an
expression denoting which function is called (symbol 〈postfix_expression-1〉 in
the syntax rules below). The remaining children are the nodes respectively
corresponding to the arguments, if any.

The result type of a function call node is the declared return type of the
function. Moreover «the expression that denotes the called function shall
have type pointer to function returning void or returning an object type other
than an array type». In my notation:

〈postfix_expression-1〉.t = [pointer][function]u

with top(u) 6=[array]. Clearly the result type for the function call expression
(u) is obtained by popping t twice.

The above rule is straightforward when its first operator is of type
“pointer to function”, but it makes no exception when the left operand is
a function designator. If 〈postfix_expression-1〉 denotes a function returning
type u, then attribute 〈postfix_expression-1〉.t=[function]u. According to type
conversion rules for function designators, it is automatically converted to
“pointer to function” type (i.e. to [pointer][function]u). Also in this case the
above “pop twice” rule correctly obtains the type of the function call result
value (i.e. u). This is perfectly compliant with the type mangling convention
I choose to apply for function designators, as described below.

Consider the following example fragment of C code:

int ∗ myfunction(char a, char b) {
return ...;

}

int main() {
char a, b;
int ∗ q;

...

4.4. THE ATTRIBUTE GRAMMAR 153

q = myfunction(a,b);
...

}

As the determination of the type of expression ‘myfunction(a,b)’ is con-
cerned, the following steps occur:

1. 〈postfix_expression-1〉.t = [function][pointer][int];
(as determined by symbol table lookup)

2. then, the function designator promotion is calculated:
F(〈postfix_expression-1〉.t) = [pointer][function][pointer][int];
(according to the function designator conversion rule, explained
below);

3. finally, 〈postfix_expression〉.t = [pointer][int];
therefore 〈postfix_expression〉.t = pop(pop(〈postfix_expression-1〉.t′));

The two type-mangling behaviors just described translate formally into
the semantic actions below.

Syntax:

〈postfix_expression〉 ::= 〈postfix_expression-1〉 ’(’ ’)’
| 〈postfix_expression-1〉 ’(’ 〈argument_expression_list〉 ’)’

Semantics:

〈postfix_expression〉.t = pop(pop(F(〈postfix_expression-1〉.t)));

Please note that, according to the rules, it must hold that:
〈postfix_expression-1〉.t = [pointer][function]u for some u.

Function designators are subject to conversions which may be counter-
intuitive, and which introduce additional complexity in the type evaluation
mechanism presented here. Now I detail and motivate these claims.

According to the C standard, «a function designator is an expression that
has function type.» ([81], Section 6.2.2.1). Functions designators are subject
to the following conversions (ibidem): «Except when it is the operand of the
sizeof operator or the unary &, a function designator with type “function re-
turning type” is converted to an expression that has type “pointer to function
returning type”».

As a consequence of the above requirement, if ‘myfunction’ is the name of
a function, then expressions ‘myfunction’ and ‘& myfunction’ denote the same
object. Moreover, they are both of type “pointer to function”, and they are
pointers which point to the same function. I illustrate this claim in the fol-
lowing example: if function ‘myfunction’ is declared as follows:

int myfunction() {
...

}

then the following expression is always true:

154 CHAPTER 4. COST OF SYNTAX ELEMENTS

myfunction == &myfunction

i.e., ‘myfunction’ and ‘& myfunction’ point to the same object. Additionally,
if ‘myfunction’ is automatically converted to a function to pointer, it can be
dereferenced with the star operator, and expression ‘∗myfunction’ is an ex-
pression of type “function” which is, in turn subject to automatic conversion
to pointer to function. Therefore it is always true that:

myfunction == &myfunction == ∗myfunction

Moreover, the above three expression have the same type:

• expression ‘myfunction’ is automatically converted to type “pointer to
function”;

• expression ‘&myfunction’ takes the address of a function and is therefore
a pointer to a function;

• expression ‘∗myfunction’ dereferences a function name which is con-
verted to pointer to function, thus obtaining a function, which is again
promoted to pointer to a function;

as it is illustrated in the annotated ASTs reported in Figures 4.11, 4.12 and
4.13.

myfunction

t = [function][pointer][int]myfunction

F(t) = [pointer][function][pointer][int]

Figure 4.11: Example of function designator conversion, when the expression
is a simple function name.

&

&myfunction

t = [function][pointer][int]myfunction

t = [pointer][function][pointer][int]

F(t) = [pointer][function][pointer][int]

F(t) = [pointer][function][pointer][int]

Figure 4.12: Example of function designator conversion, when a function
designator is the operand of a referencing ‘&’ operator.

4.4. THE ATTRIBUTE GRAMMAR 155

*

*myfunction

t = [function][pointer][int]myfunction

t = [function][pointer][int]

F(t) = [pointer][function][pointer][int]

F(t) = [pointer][function][pointer][int]

Figure 4.13: Example of function designator conversion, when a function
designator is the operand of a dereferencing ‘∗’ operator.

According to its definition, operator ‘()’, the function call operator, ex-
pects on its left an expression of type “pointer to function”. The three ex-
pressions below, which are respectively the usual and two less-usual ways
to call a function whose name is given, satisfy this requirement:

i = myfunction(); /∗ type conversion done once ∗/
i = (&myfunction)(); /∗ type conversion never done ∗/
i = (∗myfunction)(); /∗ type conversion done twice ∗/

in the first statement, the expression at the left of the parentheses is automat-
ically converted to “pointer to function”. In the second statement, a pointer
to the function is explicitly taken via the ‘&’ operator. In the third statement,
subexpression ‘myfunction’ is converted to pointer to function, and then deref-
erenced. Then,‘∗myfunction’ is again a function designator and is converted
again to pointer to function.

Finally, if I declare a variable ‘funcptr’ which is of type “pointer to
function returning int” (precisely [pointer][function][int]), then ‘funcptr’ is
assignment-compatible with both ‘myfunction’ and ‘& myfunction’, therefore
the assignments below are all type-correct:

int (∗funcptr)(); // funcptr is a pointer to a function returning int

funcptr = myfunction;
funcptr = & myfunction;
funcptr = ∗ myfunction;

funcptr = ∗funcptr;

Then, once this semantics of interchangeability between functions and
pointer to functions was chosen by the language designers, it became neces-
sary to prevent the automatic conversion of function designators to “pointer
to function” when they are operands of ‘&’, otherwise this semantics would
not be enforced.

I define function F(·) such that it performs the required conversion if the
argument is a function designator type, otherwise it leaves it unchanged. If
t is a function designator type, F(t) is the converted type, according to the
function designator conversion just described.

156 CHAPTER 4. COST OF SYNTAX ELEMENTS

This function performs the function designator conversion as required
by the standard. This consists in converting a “function returning type” to a
“pointer to function returning type”.

F(t) =
{

push([pointer],t) when top(t)=[function]
t else

A technical digression follows on the choice of an appropriate represen-
tation technique for t in presence of function designator conversion.

In designing this attribute grammar, I had a choice whether to set attribute t of a node
to its real type or to its possibly converted type according to the above rules. Provided
that a given semantic action is rendered in the following way:

〈expr〉.t = f unction(〈sub_expr-1〉.t, 〈sub_expr-2〉.t, ...);

for some f unction which depends on the individual syntax rule, then:

1. the first solution would require to change the above rule as follows:

〈expr〉.t = f unction(F(〈sub_expr-1〉.t), F(〈sub_expr-2〉.t, ...)

which converts the children’s types immediately before considering them in their
father. Attribute t is stored unconverted. The above amendment should be applied
to all the operators except for ‘sizeof’ and ‘&’, as required by the standard.

2. the second solution would require to change the rule as follows:

〈expr〉.t = F(f unction(〈sub_expr-1〉.t, 〈sub_expr-2〉.t, ...));

which assumes the children’s type to be already converted, it calculates the result
type and it converts the father’s type before saving it into t. If this solution is
chosen, appropriate actions must be taken in the semantic actions of ‘sizeof’ and
‘&’ to reverse the effects of the conversion which was undue.

Only the first solution is viable, because reversing the effects of the F() conversion
is not, in general, a type-correct task. I prove this claim by assuming that all the seman-
tic actions store the type-converted t, as in rule (2) above, then amending the semantic
actions associated to the ‘&’ operator, and finally showing that those actions are incorrect.

Under these assumptions, the semantic actions for the type determination of the ref-
erencing operator (in Section 4.4.1.5 (page 146)) should be modified as follows:

Semantic rules (hypothetical):

• 〈unary_expression〉.t = 〈cast_expression〉.t;
if 〈cast_expression〉.t = [pointer][function]u, for some u;

• 〈unary_expression〉.t = push([pointer], 〈cast_expression〉.t);
otherwise;

In the above semantic rules, the second rule applies to “usual” types, while the first one
applies when the operand has type “pointer to function”. The rule assumes that the type
is the result of a function designator conversion, and avoids adding another [pointer]
type-definition operator on top of its type. Ill, the above rule incorrectly resolves types in
the following program:

int myfunction();
int (∗funcptr)();
int (∗∗funcptrptr)();

4.4. THE ATTRIBUTE GRAMMAR 157

int main()
{

...
funcptrptr = & funcptr;
...

}

In the above program, variable funcptr is of type [pointer][function][int]. It is therefore
perfectly legal to take its address, which is of type [pointer][pointer][function][int]
and to store it in variable funcptrptr, which is exactly declared as type
[pointer][pointer][function][int]. Unfortunately, the above semantic rules incor-
rectly calculates the type of expression & funcptr as [pointer][function][int], which is
wrong.

Therefore, I choose to adopt the first solution, i.e. associate to each symbol its type
before as it is before the function designator conversion.

158 CHAPTER 4. COST OF SYNTAX ELEMENTS

4.4.2 Attribute ‘r’, restricted result type
Attribute r is required to evaluate correctly the inherent cost of expressions
involving the dot operator. In this section I explain how.

The restricted result type of an expression is the type of the value which is
actually transferred for use in the super-expression of the current expression,
as opposed to the result type already defined in Section 4.4.1 (page 140) as
attribute t. The restricted result type assumes, almost everywhere, the same
value as the result type. That is, in the vast majority of cases, 〈expr〉.r =
〈expr〉.t. Differences emerge in nodes which are children of a dot operator
expression.

The dot operator allows to access members of a structure or of a union.
It is defined by the following syntax rule:

〈postfix_expression〉 ::= 〈postfix_expression-1〉 ‘.’ IDENTIFIER

I consider it a binary operator, where the first operand type is structure or
union, and second operand is an identifier among the ones declared in the
symbol table associated with the structure or union.

The dot operator demands a peculiar analysis, because it exhibits anoma-
lies which are unique among all the operators of the C language. These
anomalies reside in the semantics of its evaluation order, in the way it af-
fects the valueness of the nodes in its left operand subtree, and in the way it
affects the restricted type of the nodes in its left operand subtree. In the end,
these anomalies require special care in the design of the algorithm for the
determination of attribute v, and also require the introduction of attribute r.

I illustrate these claims with the following example. Assume that vari-
ables ‘a’ and ‘b’ are declared as follows:

struct tag {
...

type m;
...

} ∗ a;
type b;

where ‘type’ can be any type allowed by the C language, whose size in words
is given by W(type) = w. Then, consider the following statement:

(∗a). m = b;

I now determine the AST of the assignment expression above, and the value-
ness of each AST node. For the moment, I do not take special care of the dot
operator node. I just apply the usual rule “the valueness of the immediate
left child node of a simple assignment operator node must is L”. This leads
to the AST in Figure 4.14.

According to the above tree, the following claims can be expressed:

1. Claim 1: first ‘a’ is dereferenced to obtain the structure pointed by it,
then its member ‘m’ is resolved, i.e., the operations take place in the
following order: first the dereference, then the member address reso-
lution;

4.4. THE ATTRIBUTE GRAMMAR 159

=

b.

m*

a

(*a).m = b;

v = R
t = [pointer][struct tag]

v = R
t = [struct tag]

v = L
t = [type]

v = R
t = [type]

n = m

Figure 4.14: A partially decorated AST for the example expression, deter-
mined without special care for dot operators.

2. Claim 2: the valueness of expression ‘(∗a)’ is R;

3. Claim 3: the type of the information transferred by the ‘∗’ operator is
“struct tag”.

I will prove that, with respect to the assembly translation of the expression,
all the above claims are false. First I explain the reasons why, then I provide
an amended version of the above annotated AST, finally I devise appropri-
ate rules are to be associated with the ‘ . ’ operator in order to obtain correct
attribute and cost determination.

4.4.2.1 Anomaly affecting the precedence

From a purely conceptual point of view, Claim 1 is correct: the order of exe-
cution of operators ‘∗’ and ‘ . ’ is the one induced by a bottom-up visit of the
AST, as with any other operator: first the unary dereferencing operator ‘*’ is
applied on ‘a’, which is of type “pointer to struct”, obtaining an expression
of type “struct”; then the member access operator ‘ . ’ is applied on this last
expression, obtaining the member m, whose L-value is used in such a way
that it receives the value currently assigned to ‘b’. Briefly, from a conceptual
point of view, first ‘∗’ is evaluated, then ‘ . ’. But the assembly translation of
the above code, which is as follows:

add t_0 , a, 〈offset of m〉 ; calculates the address of the first word

mvst t_0 , b ; transfers the first word

add t_1 , t_0 , #4 ; calculates the address of the second word
mvst t_1 , b+1 ; transfers the second word
... ; ...

160 CHAPTER 4. COST OF SYNTAX ELEMENTS

=

b.

m*

a

(*a).m = b;

v = R
t = [pointer][struct tag]

vv = L= L
t = [struct tag]

v = L
t = [type]

v = R
t = [type]

n = m

Figure 4.15: The same expression as in the previous example, reworked with
amended valueness determination rules. The valueness of node ‘∗’ has been
now determined as ‘L’.

add t_w−1, t_w−2, #4 ; calculates the address of the last word
mvst t_w−1, b+w−1 ; transfers the last word

contains a block of mvst and add instructions (which are a pointer derefer-
encing, the translation of the unary ‘∗’, atom LValueStar) appearing after an
add instruction (used to calculate the address of member ‘m’, temporarily
stored in register ‘t_0’). Therefore, from the point of view of the assembly
translation, operator ‘.’ is evaluated before operator ‘∗’ operator. This is the
reverse of the order one implied by the AST.

Since this anomaly affects only the order in which operations take place
but not their quantity or nature, it has no consequences on the cost of the
expressions. I report it just for sake of completeness.

4.4.2.2 Anomaly affecting valueness

As far as Claim 2 is concerned, by looking at the above abstract translation of
statement ‘(∗a). m = b;’, notice that its transfers comprise ‘mvst’ instructions in
place of the ‘mvld’ instructions I expect to find in the translation of an expres-
sion with R valueness. The above assembly code is, in fact, the translation of
an L-value expression. Therefore, the ‘∗’ node should be definitely marked
with L valueness even though it is not an immediately left child of a simple
assignment node. The correct valueness values are illustrated in Figure 4.15.

Extending the analysis of the translation of sub-expressions rooted at a
dot nodes with all the possible valuenesses, I derive the following general
rule: a dot node propagates its valueness to his immediate left child node.
This rule corresponds to following lines of pseudo-code:

4.4. THE ATTRIBUTE GRAMMAR 161

if (p−>operator_code == code("."))
children[0]−>valueness = p−>valueness;

which are part of the valueness evaluation algorithm I will present com-
pletely in Section 4.4.4 (page 176).

The reader is invited to notice that, thanks to the recursive nature of the
algorithm, the valueness is correctly attributed via valueness propagation
also in cases which involve nested dot expressions. To help the reader in
better understanding this case, I illustrate the following example. Assume
that variables ‘a’ and ‘b’ are declared as follows:

struct tag_outer {
...
struct tag_inner {

...
type m;
...

} s ;
...

} ∗ a;
type b;

and consider the following statement:

(∗a). s .m = b;

The AST for the above statement is reported in Figure 4.16 (page 162), with
the correct valuenesses, as determined by the algorithm described.

4.4.2.3 Anomaly affecting the transferred size

As far as Claim 3 is concerned, I prove its incorrectness by considering again
the previous example concerning the C statement ‘(∗a). m = b;’, with the an-
notated AST in Figure 4.17 (where nodes have been numbered N1, N2, ..., N6
for ease of reference).

162 CHAPTER 4. COST OF SYNTAX ELEMENTS

=

a

(*a).s.m = b;

v = R
t = [pointer][struct tag_outer]

b. v = L
t = [int]

v = R
t = [int]

m n = m. v = L
t = [struct tag_inner]

* v = L
t = [struct tag_outer] s n = s

Figure 4.16: Example of application of the amended valueness determination
rules on an expression including nested instances of the ‘ . ’ operator.

=

b.

m*

a

(*a).m = b;

v = R
t = [pointer][struct tag]

v = L
t = [struct tag]

v = L
t = [type]

v = R
t = [type]

n = m

N
1

N
2

N
3

N
4

N
5

N
6

Figure 4.17: Example expression.

So far, I have correctly determined that the valueness of the expression

4.4. THE ATTRIBUTE GRAMMAR 163

associated to operator ‘∗’ is L, that is, N4.v =L, which means that operator
‘∗’ writes register contents to the memory. The actual cost of that operator
clearly depends on how many words have to be written, and I expect that
number to be equal to W(N4.t). This is false. In fact, the number of trans-
ferred words is less than that figure. W(N4.t) yields the number of words
occupied by the entire ‘struct tag’, since N4.t =[struct tag]. Instead, the as-
sembly code translation, shown above, proves that the number of transferred
words is less than the word size of the structure, and equal to the word size
of just member ‘m’. That number is W(N2.t). If I used W(N4.t) as a measure
of the words to transfer in place of W(N2.t) I would overestimate the actual
cost of the star operator. In this case, attribute N4.c depends on N2.t. There-
fore, the assumption “the cost of a node is function of the word size of the
return type of the same node”, which was always verified so far is false for
node N4.

In this case, for n = N4, the transferred words are given W(f ather(n).t).
Anyway, this rule is not general. In fact, in the second example above (state-
ment ‘(∗a). s .m = b;’), with two nested dot operators, the number of trans-
ferred words for node ‘∗’ is given by W(f ather(f ather(n)).t).

In order to rectify the above state of things, in such a way that n.c de-
pends only on attributes of a node with a fixed relationship with respect to
n, possibly n itself, I introduce attribute r. I call r the restricted type to express
the idea that the dot operator restricts the scope of its left subtree operator in
such a way that it operates not on the full structure or union, but only on a
member.

In the following examples I illustrate how the dot operator affects the
restricted type of the star ‘∗’, array subscript ‘ [] ’, and arrow ‘−>’ operators.

Assume the following type declarations for variables ‘a’, ‘b’ and ‘s’.

struct tag {
...

type m;
...

} s , ∗ a;
type b;

Consider the following statements:

∗a = s ;
(∗a). m = b;

The first statement is an assignment which transfers an entire struct from the
bank of registers pointed by the value stored in register ‘a’ to the bank of reg-
isters associated to ‘s’. The type t for node ‘∗’ is [struct tag], and it coincides
with r, the type of the actual transferred data, that is, the entire struct. In
the second statement, the dot operator restricts the effects of the dereference
operator in such a way that only member ‘m’ is transferred. Therefore, the
restricted type r of the same subexpression considered before, the ‘∗’ node, is
not anymore equal to [struct tag], instead it is [type], even though the consid-
ered subtree is identical as in the previous statement. The decorated subtree
in Figure 4.18 illustrates what I have just said.

The next example shows how the dot operator affects the restricted type

164 CHAPTER 4. COST OF SYNTAX ELEMENTS

=

b.

m*

a

(*a).m = b;

=

s
*

a

*a = s;

v = L
t = [struct tag]
r = [struct tag]

v= L
t = [struct tag]
r = [type] v = R

t = [pointer][struct tag]
r = [pointer][struct tag]

v = R
t = [struct tag]
r = [struct tag]

v = L
t = [type]
r = [type]

v = R
t = [pointer][struct tag]
r = [pointer][struct tag]

v = R
t = [type]
r = [type]

n = m

Figure 4.18: Attribute r models appropriately how ‘ . ’ operators restrict the
type of information transferred by ‘∗’ operators.

of array subscript operators. Assume variables ‘a’, ‘i’, ‘s’ and ‘m’ as declared
below:

struct tag {
...

type m;
...

} s , a[N];
type b;
int i ;

(where ‘N’ is an appropriate integer constant value expression). Consider
the following statements:

a[i] = s ;
a[i]. m = b;

The first statement is an assignment which transfers an entire struct from the
bank of registers pointed by the value stored in a cell of array ‘a’ to the bank
of registers associated to ‘s’. The type t for node ‘ [] ’ is [struct tag], and it
coincides with r, the type of the actual transferred data, that is, the entire
struct. In the second statement, the dot operator restricts the effects of the
array subscript operator in such a way that only member ‘m’ is transferred.
Again, the restricted type r of the same subexpression considered before,
the ‘ [] ’ node, is not anymore equal to [struct tag], instead it is [type], even
though the considered subtree is identical as in the previous statement. The
decorated subtree in Figure 4.19 (page 165) illustrates what just said.

4.4. THE ATTRIBUTE GRAMMAR 165

=

b.

m

a[i].m = b;

=

s

[]

a

a[i] = s;

v = R
t = [array][struct tag]
r = [array][struct tag]

v = L
t = [type]
r = [type]

i
[]

a i

v = R
t = [int]
r = [int]

v = L
t = [struct tag]
r = [struct tag]

v = R
t = [struct tag]
r = [struct tag]

v = R
t = [array][struct tag]
r = [array][struct tag]

v = R
t = [int]
r = [int]

v = L
t = [struct tag]
r = [type]

v = R
t = [type]
r = [type]

n = m

Figure 4.19: Attribute r models appropriately how ‘ . ’ operators restrict the
type of information transferred by ‘ [] ’ operators.

In the last example I show how the dot operator affects the restricted
type of arrow operators. Assume the variables ‘a’, ‘n’, ‘s’ and ‘m’ as declared
below:

struct tag2 {
...

type m;
...

} s ;

struct tag1 {
...
struct tag2 n;
...

} a;

type b;

Consider the following statements:

a−>n = s;
a−>n.m = b;

The first statement is an assignment which transfers an entire struct from the
bank of registers associated to member ‘n’ of a struct pointed by ‘a’ to the
bank of registers associated to ‘s’. The type t for node ‘−>’ is [struct tag2],
and it coincides with r, the type of the actual transferred data, that is, the
entire struct tag2. In the second statement, the dot operator restricts the ef-

166 CHAPTER 4. COST OF SYNTAX ELEMENTS

fects of the array subscript operator in such a way that only member ‘m’ is
transferred. Again, the restricted type r of the same subexpression consid-
ered before, the ‘−>’ node, is not anymore equal to [struct tag2], instead it
is [type], even though the considered subtree is identical as in the previous
statement. The decorated subtree in Figure 4.20 (page 166) illustrates what I
have just said.

=

b.

m

a->n.m = b;

=

s
->

a

a->n = s;

v = L
t = [type]
r = [type]

n
->

a n

v = R
t = [struct tag1]
r = [struct tag1]

n = n

v = L
t = [struct tag2]
r = [struct tag2]

v = R
t = [struct tag2]
r = [struct tag2]

v = R
t = [struct tag1]
r = [struct tag1]

v = R
t = [type]
r = [type]

v = L
t = [struct tag2]
r = [type]

n = n

n = m

Figure 4.20: Attribute r models appropriately how ‘ . ’ operators restrict the
type of information transferred by ‘−>’ operators.

On the basis of the above three examples, I could tentatively derive the
following principle which describes the influence exerted by the dot operator
onto operators ‘∗’, ‘ [] ’ and ‘−>’: «if the left immediate children of the current
dot node is a dereference, subscript or arrow operator node, its restricted
type is set equal to the type of the current node». This tentative rule behaves
correctly in all the above cases, but not with nested dot operator nodes. I
justify this claim with the following example, where variables ‘a’, ‘n’, ‘s’ and
‘m’ as declared below:

struct tag_outer {
...
struct tag_inner {

...
type m;
...

} n;
...

} ∗ a;

type b;

4.4. THE ATTRIBUTE GRAMMAR 167

Consider the following statement:

(∗a). n.m = b;

The correct value of attribute t of subexpression ‘(∗a)’ is [type], as depicted
in the annotated AST in Figure 4.21.

=

a

(*a).n.m = b;

v = R
t = [pointer][struct tag_outer]
r = [pointer][struct tag_outer]

b.
v = L
t = [type]
r = [type]

v = R
t = [type]
r = [type]

m n = m.
v = L
t = [struct tag_inner]
r = [type]

* v = L
t = [struct tag_outer]
r = [type]

n n = n

Figure 4.21: Attribute r models appropriately the type of information trans-
ferred (e.g. by ‘∗’ operators) even in presence of nested ‘ . ’ operators.

The analysis of cases involving chains of nested dot operators show that
the restricted type of the left child of bottommost dot operator node in the
chain must be set equal to the (simply said) type of the topmost dot operator
node.

Although all the cases considered so far involved structs and not unions,
the above principle describes completely the correct determination criterion
for attribute t, irrespectively of whether the dots resolve union or struct mem-
bers.

4.4.2.4 Attribute ‘r’ calculation rules

In this section, I describe the general algorithm for the determination of at-
tribute r. Attribute r is inherited, and its value for a given node depends,
in general on the value of t in the same node and on the value of t of nodes
which are ancestors of the current node.

I choose not to describe the evaluation of attribute r with individual se-
mantic rules associated with one syntax rules each, as I usually do for syn-

168 CHAPTER 4. COST OF SYNTAX ELEMENTS

thesized attributes. The reason is that attribute r of a node may depend not
only on the father but also on farther ancestor nodes. Therefore, decisions on
r may span multiple derivation steps, and involve numerous syntax rules.
Writing these rules would entail great effort and produce complex networks
of semantic actions which are difficult to understand, explain and verify, and
which require additional attributes.

Instead, without less of formality, I describe the evaluation of attribute r
in the form of a recursive algorithm, written as a C function.

The algorithm assumes that all the parse nodes have their r attribute ini-
tially set to the same value as t. Then the algorithm changes the restricted
type to the right value in all the nodes where it is required.

The following pseudo-C code indicates how to determine attribute r:

1 struct parse_node {
2 enum {expression, statement, terminal} symbol;
3 int operator_code;
4 struct parse_node ∗∗ children;
5 int children_count;
6 enum {R, L, RL, Z} v;
7 type_representation t ;
8 type_representation r ;
9 };

10

11 void evaluate_r(struct parse_node ∗ p)
12 {
13 struct parse_node ∗ pN = p;
14 int i ;
15

16 if (p−>symbol==expression && p−>operator_code == code("."))
17 {
18 while(pN−>symbol==expression && pN−>operator_code==code("."))
19 {
20 pN = pN−>children[0];
21 pN−>r = p−>t;
22 }
23 p = pN;
24 }
25

26 for (i=0; i<p−>children_count; i++)
27 evaluate_r(p−>children[i]);
28 }

In the above algorithm, ‘struct parse_node’ contains the data associated
to an AST node. If ‘p’ points to a node, ‘p−>v’ denotes its attribute
〈expression〉.v, ‘p−>children_count’ indicates how many children it has (its ar-
ity), and expressions ‘p−>children[0]’, ‘p−>children[1]’, ..., ‘p−>children[n−1]’ de-
note the first, second, ..., last child.

4.4. THE ATTRIBUTE GRAMMAR 169

4.4.3 Attribute ‘k’ and ‘e’: constancy and constant value
The attribute k of an expression is a boolean value, which indicates whether
the value of the current expression is constant or not. If attribute k for a given
expression assumes the value true (the expression has a constant value), then
attribute e is defined and it contains the value of the expression.

Attributes k and e are synthesized. Attribute k is, in general, function of
attributes k and e of the children nodes. Attribute e is, in general, function
of attributes k, e and t of the children nodes. Whenever it can be inferred
from the value of k and e (constancy and result, respectively) of the children
nodes that the current node is constant, k assumes the value true, otherwise it
assumes the value false. In the first case, e assumes the value of the operation
applied on the values of the children, otherwise e is undefined.

For many expressions composed by a binary operator (e.g. ‘+’), k is true
if both the children have k true: the sum is constant only if both operands are
constant.

Two simple examples, which illustrate the calculation of attributes k and
e for an 〈additive_expression〉 node are reported below:

+

a1

1 + a

k = true
e = 1

k = false
e = undefined

k = true ∧ false = false
e = undefined +

21

1 + 2

k = true
e = 1

k = true
e = 2

k = true ∧ true = true
e = 1 + 2 = 3

Figure 4.22: Trivial example illustrating the evaluation of attributes k and e.

As far as the evaluation of k and e is concerned, the operators of the C
language fall in the nine distinct classes described in Table 4.3.

170 CHAPTER 4. COST OF SYNTAX ELEMENTS

Class Arity Informal description, members and behavior

1 1 Sizeof operator
‘sizeof’
Behavior: constancy is always true.

2 1 Simple unary operators
‘+’, ‘−’, ‘~’, ‘ ! ’, postfix ‘++’, postfix ‘−−’
Behavior: constancy is same as child node.

3 1 Other unary operators
‘∗’, ‘&’, prefix ‘++’, prefix ‘−−’
Behavior: constancy is always false.

4 2 Simple binary operators
‘+’, ‘−’, ‘∗’, ‘/’, ‘%’, ‘&’, ‘|’, ‘^’ ‘<<’, ‘>>’,
‘==’, ‘!=’, ‘<’, ‘>’ ‘<=’, ‘>=’
Behavior: constancy depends on constancy and value of both children.

5 2 Logical binary operators
‘&&’, ‘||’
Behavior: constancy and value may depend on constancy and value of one
or both children, according to properties of logic and and or operations.

6 2 Access operators and Compound assignment operators
‘ . ’, ‘−>’, ‘ [] ’, ‘+=’, ‘−=’, ‘∗=’, ‘/=’, ‘%=’,
‘&=’, ‘|=’, ‘^=’, ‘<<=’, ‘>>=’
Behavior: constancy is always false.

7 2 Assignment and comma
‘=’, ‘ , ’, the cast operator ‘ (...) ’
Behavior: constancy and value are the same as the second child node.

8 3 Conditional operator
‘?: ’
Behavior: constancy and value depends on constancy and value of at most
2 of the 3 child expressions.

9 1..n Function call
function call ‘ ... (...) ’
Behavior: constancy is always false.

Table 4.3: The operators of the C language classified on the basis of their
behavior with respect to the determination of their constancy and constant
value (attributes k, e).

4.4. THE ATTRIBUTE GRAMMAR 171

4.4.3.1 The ‘sizeof’ operator

The ‘sizeof’ operator always returns a constant value, therefore the constancy
of a ‘sizeof’ expression is always true. The result value of the expression
is given by applying function S(t) on the type (attribute t) of the operand.
Given a type attribute t associated to an expression n, S(t) is the function
which determines the result of the expression ‘sizeof n’, that is, the number
of bytes occupied by type t. The C standard [81] specifies in Section 6.3.3.4
a number of constraints on how the types should be allocated, and therefore
on function S(·).

Syntax rules:

〈unary_expression〉 ::= ‘sizeof’ 〈unary_expression-1〉
| ‘sizeof’ ’(’ 〈type_name〉 ’)’

Semantics:

• 〈unary_expression〉.k = true;

• 〈unary_expression〉.e = S(〈child_node〉.t);

where 〈child_node〉 indicates the only child node (either on the con-
crete or abstract syntax tree, without ambiguity), which is either symbol
〈unary_expression〉 or 〈type_name〉. Note that attribute t is defined for the
child node.

Note: attribute 〈unary_expression〉.e is calculated as S(〈child_node〉.t) and
not as S(F(〈child_node〉.t)). Thus, function designator conversion is not per-
formed, as requested by the standard and motivated in Section 4.4.1.14 (page
153).

4.4.3.2 Simple unary operators

The unary operators in this class preserve the constancy of their operands.
Their constant value, if defined, results from changing the operand value
according to the operator’s semantics.

Syntax rules:

〈unary_expression〉 ::= operator 〈cast_expression〉
where operator is one of ‘+’, ‘−’, ‘~’, ‘ ! ’; or

〈postfix_expression〉 ::= 〈postfix_expression〉 operator

where operator is one of ‘++’, postfix ‘−−’.
Generic rule:

〈father_expression〉 ::= 〈child_expression〉 operator
| operator 〈child_expression〉

Semantics:

• k of 〈father_expression〉 = k of 〈child_expression〉;
• e of 〈father_expression〉 = (operator applied on e of 〈child_expression〉);

where ‘operator applied on e’ indicates respectively e, −e, e, ¬e, e, e
depending on what the operator is, respectively ‘+’, ‘−’, ‘~’, ‘ !’, postfix ‘++’,

172 CHAPTER 4. COST OF SYNTAX ELEMENTS

postfix ‘−−’. Operators ‘+’, postfix ‘++’, postfix ‘−−’ do not change the value
of the operand.

Note: the operators postfix ‘++’ and postfix ‘−−’ could be indifferently
categorized in class 2 or 3, since they can be applied only to lvalues, and
lvalues are never constant expressions. Nevertheless the above syntax rules
are correct, and I choose to put them in this class since, from a conceptual
point of view, the return value of the expression is the same, unchanged
value of the operand.

4.4.3.3 Other unary operators

This class comprises all the unary operators which never constitute a con-
stant expression. Therefore, their attribute k is always false, and attribute e is
always undefined.

Syntax rules:

〈unary_expression〉 ::= ‘++’ 〈unary_expression〉
| ‘--’ 〈unary_expression〉
| ‘*’ 〈cast_expression〉
| ‘&’ 〈cast_expression〉

Semantics:

• 〈unary_expression〉.k = false;

• 〈unary_expression〉.e = undefined;

4.4.3.4 Simple binary operators

The expressions formed by the binary operators in this class are constant if
both their operands are constant.

Generalized syntax:

〈expression〉 ::= 〈child_expression-1〉 〈class_3_operator〉 〈child_expression-2〉
Semantics:

• 〈expression〉.k = 〈child_expression-1〉.k ∧ 〈child_expression-2〉.k;

• 〈expression〉.e = 〈child_expression-1〉.e 〈class_3_operator〉.n 〈child_expression-2〉.e;

4.4.3.5 Logical binary operators

For the logical operators ‘&&’ and ‘||’, the properties of the logic operations
allow to state that an expression is constant (and to determine its value) even
in certain cases in which one of the two operands is undefined.

Syntax:

〈logical_and_expression〉 ::= 〈logical_and_expression-1〉 ‘&&’ 〈inclusive_or_expression〉
Semantics:

4.4. THE ATTRIBUTE GRAMMAR 173

• 〈logical_and_expression〉.k =
〈logical_and_expression-1〉.k ∧ 〈inclusive_or_expression〉.k ∨
〈logical_and_expression-1〉.k ∧ 〈logical_and_expression-1〉.e = 0 ∨
〈inclusive_or_expression〉.k ∧ 〈inclusive_or_expression〉.e = 0

• 〈logical_and_expression〉.e =
〈logical_and_expression-1〉.e ∧ 〈inclusive_or_expression〉.e

when 〈logical_and_expression-1〉.k ∧ 〈inclusive_or_expression〉.k
0 when 〈logical_and_expression-1〉.k ∧ 〈logical_and_expression-1〉.e = 0
0 when 〈inclusive_or_expression〉.k ∧ 〈inclusive_or_expression〉.e = 0
undefined else

Similar semantic rules apply for the logical or operator.

Syntax:

〈logical_or_expression〉 ::= 〈logical_or_expression-1〉 ‘||’ 〈logical_and_expression〉
Semantics:

• 〈logical_or_expression〉.k =
〈logical_or_expression-1〉.k ∧ 〈logical_and_expression〉.k ∨
〈logical_or_expression-1〉.k ∧ 〈logical_or_expression-1〉.e 6= 0 ∨
〈logical_and_expression〉.k ∧ 〈logical_and_expression〉.e 6= 0

• 〈logical_or_expression〉.e =

〈logical_or_expression-1〉.e ∨ 〈logical_and_expression〉.e
when 〈logical_or_expression-1〉.k ∧〈logical_and_expression〉.k

1 when 〈logical_or_expression-1〉.k ∧〈logical_or_expression-1〉.e 6= 0
1 when 〈logical_and_expression〉.k ∧〈logical_and_expression〉.e 6= 0
undefined

else

4.4.3.6 Access and compound assignment operators

All this operators return non-constant expressions.

Syntax rules:

〈assignment_expression〉 ::= 〈unary_expression〉 operator 〈assignment_expression〉
(where ‘operator’ is one of ‘+=’, ‘−=’, ‘∗=’, ‘/=’, ‘%=’, ‘&=’, ‘|=’, ‘^=’, ‘<<=’, ‘>>=’)

or

〈postfix_expression〉 ::= 〈postfix_expression〉 ’[’ 〈expression〉 ’]’
| 〈postfix_expression〉 ’.’ IDENTIFIER
| 〈postfix_expression〉 ’->’ IDENTIFIER

Generalized Syntax:

〈father_expression〉 ::= 〈...〉
Semantics:

• 〈father_expression〉.k = false;

• 〈father_expression〉.e = undefined;

174 CHAPTER 4. COST OF SYNTAX ELEMENTS

4.4.3.7 Simple assignment, comma and cast operators

These operators have the property to preserve the same constancy and value
as their second operand.

Syntax:
〈assignment_expression〉 ::= 〈unary_expression〉 ’=’ 〈assignment_expression-1〉

〈expression〉 ::= 〈expression-1〉 ’,’ 〈assignment_expression〉

〈cast_expression〉 ::= ’(’ 〈type_name〉 ’)’ 〈cast_expression-1〉
Generalized syntax:
〈father_expression〉 ::= 〈op1〉 〈child_expression-1〉 〈op2〉 〈child_expression-2〉
Semantics:

• 〈father_expression〉.k = 〈child_expression-2〉.k;

• 〈father_expression〉.e = 〈child_expression-2〉.e;

4.4.3.8 The conditional operator

The conditional operator is the only ternary operator of the C language. If
the first child expression of the conditional expression is not constant, then
the constancy of the entire expression is false, and its value is undefined.
Otherwise, depending on whether attribute e of the first child node is non-
zero or zero, the constancy and value of the entire expression are the same as
the second or third child node respectively.

Syntax:
〈conditional_expression〉 ::= 〈logical_or_expression〉 ‘?’ 〈expression〉 ‘:’

〈conditional_expression-1〉
Semantics:

• (〈conditional_expression〉.k, 〈conditional_expression〉.e) of =

(f alse, undefined)
when 〈logical_or_expression〉.k = false

(〈expression〉.k, 〈expression〉.e)
when 〈logical_or_expression〉.e 6= 0

(〈conditional_expression-1〉.k, 〈conditional_expression-1〉.e)
when 〈logical_or_expression〉.e = 0

4.4.3.9 The function call operator

An expression involving a function call is never constant, and its value can
never be determined at run time.

Syntax:
〈postfix_expression〉 ::= 〈postfix_expression-1〉 ’(’ ’)’

| 〈postfix_expression-1〉 ’(’ 〈argument_expression_list〉 ’)’

Semantics:

4.4. THE ATTRIBUTE GRAMMAR 175

• 〈postfix_expression〉.k = false;

• 〈postfix_expression〉.e = undefined;

176 CHAPTER 4. COST OF SYNTAX ELEMENTS

4.4.4 Attribute ‘v’, valueness

Attribute v of a node is the valueness of that node, according to the defini-
tions already given in Section 4.2.1 (page 110). It is defined for expressions
only, and it may assume one of the following values: Z, R, L, RL. This at-
tribute does not depend on any other attributes; it depends only on the syn-
tax. Attribute v is inherited.

For attribute v, the same considerations as for r apply: providing a deter-
mination algorithm in the form of semantic rules would be impractical and
counterintuitive, and would require much more effort than describing the
same criterion in the form of an imperative program. Therefore, I choose the
latter form.

The algorithm assumes that each expression node has attribute v initially
set to R. The algorithm follows.

1 struct parse_node {
2 enum {expression, statement /∗ ... ∗/ } symbol;
3 int operator_code;
4 struct parse_node ∗∗ children;
5 int children_count;
6 enum {R, L, RL, Z} v;
7 };
8

9 void evaluate_v(struct parse_node ∗ p)
10 {
11 int i ;
12

13 if (p−>symbol==expression)
14 {
15 /∗ unary ‘&’ operators cause Z−valueness ∗/
16 if (p−>operator_code == code("&") && p−>children_count==1)
17 p−>children[0]−>v = Z;
18

19 /∗ assignments cause L−valueness ∗/
20 if (p−>operator_code == code("="))
21 p−>children[0]−>v = L;
22

23 /∗ compound assignments cause RL−valueness ∗/
24 if (p−>operator_code == code("+=") ||
25 p−>operator_code == code("−=") ||
26 p−>operator_code == code("∗=") ||
27 p−>operator_code == code("/=") ||
28 p−>operator_code == code("&=") ||
29 ...)
30 p−>children[0]−>v = RL;
31

32 /∗ ‘.’ operators propagate their valueness to left child ;
33 this will be explained later ∗/
34 if (p−>operator_code == code("."))
35 p−>children[0]−>v = p−>v;
36 }
37

38 for (i=0; i<p−>children_count; i++)
39 evaluate_v(p−>children[i]);
40 }

4.4. THE ATTRIBUTE GRAMMAR 177

In the above algorithm, variables have the same meaning as in the algo-
rithm to determine attribute r described in Section 4.4.2.4 (page 167).

Before the algorithm is started, all the parse nodes have valueness set to
R. The algorithm changes the valueness to Z, L, or LR in all the nodes where
it is required. More precisely:

• it changes the valueness to Z in all the nodes which are the immediate
child of a referencing unary ‘&’ operator (code fragment lines 16–17);

• it changes the valueness to L in all the nodes which appear as the im-
mediate left child (the first child, which is pointed by ‘children[0]’) of a
simple assignment operator ‘=’ (code fragment lines 20–21);

• it changes the valueness to RL in all the nodes which appear as the
immediate left child of a compound assignment operator, i.e., +=, −=,
∗=, ... (code fragment lines 24–30);

• it recursively propagates the valueness of the current node to the left
child (whatever value it assumes) if the operator associated to the cur-
rent node is a dot ‘.’. This behavior is chosen to properly model an
anomaly in the dot operator, which was already completely discussed
in Section 4.4.2.2 (page 160).

178 CHAPTER 4. COST OF SYNTAX ELEMENTS

4.4.5 Attribute ‘b’, register boundedness
Attribute b indicates whether a node has its translation register-bound or
not, according to the definition already given in Section 4.2.6 (page 116).

Attribute b is synthesized and depends only on the value of b of its chil-
dren. Therefore, I could describe how to determine it in the form of semantic
rules, as already done for t. For sake of brevity, I prefer to describe this task in
natural language, in Table 4.4. In this table, all the operators who can assume
different arities are intended as binary, except when otherwise explicitly in-
dicated. All the cases listed above are possible when examining nodes in the
right operand of the the assignment, while part or them is meaningless or not
standard-compliant when the left operand of the assignment is concerned.

Node Register bound?

identifier, ‘sizeof’, yes
literal constant

unary ‘∗’, ‘ [] ’, ‘−>’ no
‘==’, ‘!=’, ‘<’, ‘>’,
‘<=’, ‘>=’, ‘&&’, ‘||’,
‘+’, ‘−’, ‘∗’, ‘/’, ‘%’,
‘&’, ‘|’, ‘^’

unary ‘−’, unary ‘~’, no
unary ‘!’

unary ‘+’, unary ‘++’, same as operand
unary ‘−−’

‘ . ’ same as first operand

cast, comma same as second operand

‘=’ recurse on first and second operands,
‘+=’, ‘−=’, yes, it at least one of them is
‘∗=’, ‘/=’ ‘%=’,
‘&=’, ‘|=’, ‘^=’,
‘<<=’, ‘>>=’

‘?: ’ recurse on second and third operands,
yes, it at least one of them is

Table 4.4: Summary of the rules for the determination of the register-
boundedness of a given AST node.

The above scheme models correctly the expected behavior of a compiler
even in presence of nested assignments like in the following example. As-
sume the following variable declarations:

int a;
int ∗ b;
int ∗ c;

Consider the following statement:

a = ∗b = ∗c;

4.4. THE ATTRIBUTE GRAMMAR 179

In this a case, the inherent cost of both assignment operators is zero. In fact,
expressions ‘∗b’ and ‘∗c’ are register-unbound, and so is expression ‘∗b = ∗c’.
Therefore its translation can be bound to the register bank where ‘a’ is allo-
cated, with zero cost. Also the assignment between structures or structured
data are correctly modeled.

180 CHAPTER 4. COST OF SYNTAX ELEMENTS

4.4.6 Attribute ‘f’, translation flavor
In Section 4.3 (page 117) I presented an abstract assembly translation model
for the statements and expressions of the C language. That model selects spe-
cific translation flavors for each expression, depending on the context where
it appears. It is now time to model the effects of this behavior in my at-
tribute grammar. In order to do this, I define attribute f for each expression
symbol, which indicates which translation flavor is used for that expression.
Attribute f in inherited. In a given node, attribute f depends only on the
syntax, on f in the father node, and k in the same node.

Note that statements always have a single, single-exit translation (T).
Attribute f may assume one of the following values:

• N : none
the current expression is constant; its value is determined at compile
time, and its translation is empty;

• T: single-exit flavor;
the single-entry, single-exit translation is used for the current expres-
sion;

• TF: double-exit, jump-if-false flavor;
the jump-if-false translation is used for the current expression;

• TT: double-exit, jump-if-true flavor;
the jump-if-true translation is used for the current expression;

• TI: indeterminate flavor;
in this case, both the jump-if-true and the jump-if-false could be used.
Since it is not possible to forecast the behavior of the compiler in this
case, nothing better can be done than assuming an average of the two
cases.

The attribute is evaluated according to the following rules.

1. for all the cases below:
for each expression child node 〈expression-i〉 of the current node:
〈expression-i〉. f = N; when 〈expression-i〉.k = true;

2. ‘if (...) ... ’ statement:
Syntax:
〈selection_statement〉 ::= ‘if’ ‘(’ 〈expression〉 ‘)’ 〈statement〉
Semantics:
〈expression〉. f = TF;
〈statement〉. f = T;

3. ‘if (...) ... else ... ’ statement:
Syntax:
〈selection_statement〉 ::= ‘if’ ‘(’ 〈expression〉 ‘)’ 〈statement-1〉 ‘else’ 〈statement-2〉
Semantics:

4.4. THE ATTRIBUTE GRAMMAR 181

〈expression〉. f = TI;
〈statement-1〉. f = T;
〈statement-2〉. f = T;

4. ‘while’ statement:
Syntax:
〈iteration_statement〉 ::= ’while’ ’(’ 〈expression〉 ’)’ 〈statement〉
Semantics:
〈expression〉. f = TF;
〈statement〉. f = T;

5. ‘do ... while’ statement:
Syntax:
〈iteration_statement〉 ::= ‘do’ 〈statement〉 ‘while’ ‘(’ 〈expression〉 ‘)’ ‘;’
Semantics:
〈statement〉. f = T;
〈expression〉. f = TT;

6. ‘for’ statement:
Syntax:
〈iteration_statement〉 ::= ‘for’ ‘(’ 〈optional_expression-1〉 ‘;’ 〈optional_expression-2〉
‘;’ 〈optional_expression-3〉 ‘)’ 〈statement〉
Semantics:
〈optional_expression-1〉. f = T;
〈optional_expression-2〉. f = TF;
〈optional_expression-3〉. f = T;
〈statement〉. f = T;

7. ‘switch’ statement:
Syntax:
〈selection_statement〉 ::= ‘switch’ ’(’ 〈expression〉 ’)’ 〈statement〉
Semantics:
〈expression〉. f = T;
〈statement〉. f = T;

8. comma expression:
Syntax:
〈expression〉 ::= 〈expression-1〉 ’,’ 〈assignment_expression〉
Semantics:
〈expression-1〉. f = T;
〈assignment_expression〉. f = 〈expression〉. f ;

9. assignment:
Syntax:
〈assignment_expression〉 ::= 〈unary_expression〉 ‘=’ 〈assignment_expression-1〉
Semantics:
〈unary_expression〉. f = T;
〈assignment_expression-1〉. f = T;

10. logical ‘and’ operator:
Syntax:
〈logical_and_expression〉 ::= 〈logical_and_expression-1〉 ‘&&’ 〈inclusive_or_expression〉
Semantics:
〈logical_and_expression-1〉. f = TF;

182 CHAPTER 4. COST OF SYNTAX ELEMENTS

〈inclusive_or_expression〉. f ={
TI when 〈logical_and_expression〉. f = T;
〈logical_and_expression〉. f else

11. logical ‘or’ operator:
Syntax:
〈logical_or_expression〉 ::= 〈logical_or_expression-1〉 ‘||’ 〈logical_and_expression〉
Semantics:
〈logical_or_expression-1〉. f = TT;
〈logical_and_expression〉. f ={

TI when 〈logical_or_expression〉. f = T;
〈logical_or_expression〉. f else

12. logical ‘not operator:
Syntax:
〈unary_expression〉 ::= ‘!’ 〈cast_expression〉
Semantics:
〈cast_expression〉. f = TF when 〈unary_expression〉. f = TT;

TT when 〈unary_expression〉. f = TF;
TI when 〈unary_expression〉. f = T;

13. relational operators:
Syntax:
〈re_expression〉 ::= 〈re_expression-1〉 〈re_op〉 〈re_expression-2〉
where 〈re_op〉 ::= ‘==’ | ‘!=’ | ‘>’ | ‘<’ | ‘>=’ | ‘<=’ ;
(generalized syntax).
Semantics:
〈re_expression-1〉. f = T;
〈re_expression-2〉. f = T;

14. arithmetic expressions:
Syntax:
〈m_expression〉 ::= 〈m_expression-1〉 〈m_op〉 〈m_expression-2〉
where 〈m_op〉 ::= ‘&’ | ‘|’ | ‘«’ | ‘»’ | ‘+’ | ‘-’ | ... ;
(generalized syntax).
Semantics:
〈m_expression-1〉. f = T;
〈m_expression-2〉. f = T;

15. expression statements;
Syntax:
〈expression_statement〉 ::= 〈expression〉 ’;’
Semantics:
〈expression〉. f = the least expensive among T, TF, TT.

16. copy rules for expressions:
Syntax:
any copy rule in Section 4.5.1 (page 231), generalized as:
〈r_expression〉 ::= 〈l_expression〉
Semantics:
〈l_expression〉. f = 〈r_expression〉. f ;

4.4. THE ATTRIBUTE GRAMMAR 183

4.4.7 Attribute ‘ci’, inherent cost
The attribute ci of a given expression represents the cost of the abstract as-
sembly instructions in the translation of the given expression or statement,
which are strictly required to produce the result. They include data manipu-
lation and data transfer. They do not include any type conversion or execu-
tion flow control task.

Attribute ci is synthesized, and it is function of attributes t, v, r, k and f
in the same node. Attribute ci is zero for a vast majority of the statement
symbols, and non-zero for a vast majority of the expression symbols.

4.4.7.1 The ‘sizeof’ operator

The value of an expression composed by a ‘sizeof’ operator is always deter-
mined at compile time. Therefore its runtime cost is zero.

Syntax:

〈unary_expression〉 ::= ’sizeof’ 〈unary_expression-1〉
| ’sizeof’ ’(’ 〈type_name〉 ’)’

Semantics:
〈unary_expression〉.ci = 0;

4.4.7.2 Comma operator

The comma operator has two operand expressions. The left operand is eval-
uated as a void expression (i.e., its result is discarded), then the right operand
is evaluated, and its return value is used as return value for the comma ex-
pression.

The assembly translation of a comma expression is therefore the mere
sequential concatenation of the translations of its left and right operands re-
spectively, without any other code added. Therefore the inherent (and also
flow) cost of the comma operator itself is zero.

Syntax:

〈expression〉 ::= 〈expression-1〉 ’,’ 〈assignment_expression〉
Semantics:

〈expression〉.ci = 0;

4.4.7.3 The cast operator

The cast operator explicitly requests a type conversion. If this conversion has
any cost, it is accounted for in attribute cc according to the rules is Section
4.4.8.4 (page 220).

Syntax:

184 CHAPTER 4. COST OF SYNTAX ELEMENTS

〈cast_expression〉 ::= ’(’ 〈type_name〉 ’)’ 〈cast_expression〉
Semantics:

〈cast_expression〉.ci = 0;

4.4.7.4 The logical ‘and’ and ‘or’ operators

Syntax:

〈logical_and_expression〉 ::= 〈logical_and_expression-1〉 ‘&&’ 〈inclusive_or_expression〉

〈logical_or_expression〉 ::= 〈logical_or_expression-1〉 ‘||’ 〈logical_and_expression〉
Generalized syntax:

〈logical_expression〉 ::= 〈logical_expression-1〉 〈logical_operator〉 〈logical_expression-2〉
Semantics:

〈logical_expression〉.ci =
{

1 LogicTop if 〈expression〉. f = T
0 else

4.4.7.5 The logical ‘not’ operator

Syntax:
〈unary_expression〉 ::= ‘!’ 〈cast_expression〉
Semantics:

〈unary_expression〉.ci =

 1 LogicTop if 〈unary_expression〉. f = T
∧¬〈cast_expression〉.k;

0 else

Note that the operand type is not influential. The cost of zero-testing the
operand is already accounted for in the cost of the operand node, depending
on its flavor. A LogicTop atom cost is 1 mov + 0.5 jump.

4.4.7.6 Unary arithmetic operators

Syntax:

〈postfix_expression〉 ::= 〈postfix_expression〉 ’++’
| 〈postfix_expression〉 ’– –’

〈unary_expression〉 ::= ’++’ 〈unary_expression〉
| ’– –’ 〈unary_expression〉
| ’+’ 〈cast_expression〉
| ’–’ 〈cast_expression〉

Generalized syntax:

〈postfix_expression〉 ::= ...

4.4. THE ATTRIBUTE GRAMMAR 185

Semantics:

〈expression〉.ci =
{

1 IntCompare if 〈expression〉.t is integral
1 FloatCompare if 〈expression〉.t is floating-point

Exception: if the operator is ‘+’, the cost is zero.

4.4.7.7 Identifiers

Syntax:

〈primary_expression〉 ::= IDENTIFIER

Semantics:

〈primary_expression〉.ci=

1IntCompare+1LogicLeaf if 〈primary_expression〉.t is integral∧

〈primary_expression〉. f ∈ {TF, TT, TI}
1FloatCompare+1LogicLeaf if 〈primary_expression〉.t is floating-point∧

〈primary_expression〉. f ∈ {TF, TT, TI}
0 else;

4.4.7.8 Arithmetical and bitwise expressions

Syntax

〈inclusive_or_expression〉 ::= 〈inclusive_or_expression〉 ‘|’ 〈exclusive_or_expression〉

〈exclusive_or_expression〉 ::= 〈exclusive_or_expression〉 ‘^’ 〈and_expression〉

〈and_expression〉 ::= 〈and_expression〉 ‘&’ 〈equality_expression〉

〈unary_expression〉 ::= ‘~’ 〈cast_expression〉

〈shift_expression〉 ::= 〈shift_expression〉 ‘«’ 〈additive_expression〉
| 〈shift_expression〉 ‘»’ 〈additive_expression〉

〈multiplicative_expression〉 ::= 〈multiplicative_expression-1〉 ‘*’ 〈cast_expression〉
| 〈multiplicative_expression-1〉 ‘/’ 〈cast_expression〉
| 〈multiplicative_expression-1〉 ‘%’ 〈cast_expression〉

〈additive_expression〉 ::= 〈additive_expression〉 ‘+’ 〈multiplicative_expression〉
| 〈additive_expression〉 ‘-’ 〈multiplicative_expression〉

Generalized syntax:

〈expression〉 ::= 〈expression-1〉 〈op〉 〈expression-2〉
Semantics:

〈expression〉.ci ==
{

see Table 4.5 if none of the operands has pointer type
see Table 4.6 else;

186 CHAPTER 4. COST OF SYNTAX ELEMENTS

Please note that the choice to distinguish the cost in atoms of the various
operations between integer an floating-point operations is arbitrary. I make
this choice here for sake of simplicity, although the implemented tools which
accompany this thesis allow much more refined classification of costs.

Also notice that for atoms corresponding to floating point operations,
it could be impossible to derive their cost analytically in terms of abstract
instructions when the target platform has no floating-point unit (FPU) and
the floating-point operations are emulated. The entire Appendix A.

〈op〉 〈expression〉.t 〈expression〉.ci

‘|’, ‘^’, ‘&’ or ‘~’ is integral 1 BitwiseOperation
‘«’, ‘»’ is integral 1 BitwiseShift
‘*’ is integral 1 IntMul
‘*’ is floating-point 1 FloatMul
‘/’ is integral 1 IntDiv
‘/’ is floating-point 1 FloatDiv
‘%’ is integral 1 IntModulo
‘%’ is floating-point (illegal)
‘+’ is integral 1 IntAdd
‘+’ is floating-point 1 FloatAdd
‘-’ is integral 1 IntSub
‘-’ is floating-point 1 FloatSub

Table 4.5: The inherent cost of arithmetical and bitwise operators, depending
on the resulting type.

Also note that Table 4.6 reports all the possible cases of arithmetic oper-
ators which involve pointers. No other possibilities (e.g. pointer + pointer)
are legal.

Alignment Operation

ptr + arith ptr - arith ptr - ptr

Byte PtrIntAddByte PtrIntSubByte PtrPtrSubByte
= 1 add = 1 sub = 1 sub
= 1 alul = 1 alul = 1 alul

Aligned PtrIntAddAligned PtrIntSubAligned PtrPtrSubAligned
= 1 shr + 1 add = 1 shr + 1 sub = 1 sub + 1 shl
= 2 alul = 2 alul = 2 alul

Misaligned PtrIntAddMisaligned PtrIntSubMisaligned PtrPtrSubAligned
= 1 IntMul + 1 add = 1 IntMul + 1 sub = 1 sub + IntDiv
= 1 alul + 1 IntMul = 1 alul + 1 IntMul = 1 alul + IntDiv

Table 4.6: The inherent costs of pointer arithmetic expressions, expressed in
atoms, abstract assembly instructions and corresponding classes of instruc-
tions.

4.4. THE ATTRIBUTE GRAMMAR 187

4.4.7.9 The unary dereferencing operator, ‘*’

The unary operator ‘*’ takes as an operand an expression of type pointer.
In order to determine its cost in terms of kernel instructions, and then atoms,
I will examine a number of cases, and find a general form in the end.

The grammar rule corresponding to this operator is:

〈unary_expression〉 ::= ‘*’ 〈cast_expression〉

the factors affecting the cost of this operator are:

• the valueness of the entire expression, i.e. 〈unary_expression〉.v;

• the word size of the transferred data, i.e. W(〈unary_expression〉.r).

I analyze some remarkable cases, in order of increasing complexity and
generality:

1. single-word value, R-value used:
Assume the following declarations:

int a;
int ∗ b

and consider the following statement:

a = ∗b;

The abstract assembly translation of the above statement consists in
a single mvld instruction, which transfers into register ‘a’ the single
word at the location stored in register ‘b’. For this use, I define the
atom RValueStar = 1 mvld. The cost determination process decorates
the expression ‘∗b’ with 1 RValueStar atom.

2. single-word value, L-value used: Assume the same declarations as
above, and consider the statement:

∗b = a;

Its translation consists in a single mvst instruction, which transfers the
single-word contents of register ‘a’ into the location currently stored
in register ‘b’. For this use, I define the atom LValueStar = 1 mvst.
The cost determination process decorates the expression ‘∗b’ with 1
LValueStar atom.

3. multiple-word value, R-value used:
Assume the following declarations:

type a;
type ∗ b

where ‘type’ is such that W(type) ≥ 1. Consider again the statement:

188 CHAPTER 4. COST OF SYNTAX ELEMENTS

a = ∗b;

The translation of the above statement consists in W(type) = w mvld
instructions, which transfer the contents of multiple consecutive reg-
isters, the first of which is contained in the register associated with b,
into the multiple consecutive registers associated with a, plus the in-
crements instructions required to advance pointer b :

mvld a, b ; transfers the first word
add t , b, #4 ; stores the address of the second word in ‘t’
mvld (a+1), t ; transfers the second word
add t , t , #4 ; stores the address of the third word in ‘t ’
mvld (a+2), t ; transfers the third word
...

add t , t , #4 ; stores the address of the last word in ‘t ’
mvld (a+w−1), t ; transfers the last word

Please note that ‘a+1’, ‘a+2’, ..., ‘a+w-1’ are the names of the w regis-
ters associated to variable ‘a’ by the compiler, known at compile-time.
They therefore do not imply any displacement calculation at runtime.
On the other hand, ‘b’ needs to be incremented by the word size after
each transfer. The cost of the construct is therefore given by the cost
of w mvld instructions plus w − 1 integer increment instructions, of
class alul. I render this expression in terms of atoms by defining atom
RValueStarNext = 1 mvld + 1 alul, and I decorate expression ‘∗b’ with
1 RValueStar atom, and (w − 1) RValueStarNext atoms.

4. multiple-word value, L-value used:
Assume the same declarations as above and consider the statement:

∗b = a;

Its translation consists in W(type) = w mvst instructions, which
transfer the contents of the multiple consecutive registers associated
with variable ‘a’ into the multiple consecutive registers whose ad-
dresses start at the location pointed by ‘b’, plus the increments instruc-
tions required to advance pointer ‘b:

mvst b, a ; transfers the first word
add t , b, #4 ; stores the address of the second word in ‘t’
mvst t , (a+1) ; transfers the second word
add t , t , #4 ; stores the address of the third word in ‘t ’
mvst t , (a+2) ; transfers the third word
...

add t , t , #4 ; stores the address of the last word in ‘t ’
mvst t , (a+w−1) ; transfers the last word

Again, ‘a+1’, ‘a+2’, ..., ‘a+w-1’ are the names of the w registers asso-
ciated to variable ‘a’ by the compiler, known at compile-time. They
therefore do not imply any displacement calculation at runtime. The
cost of the construct is given by the cost of w mvst instructions plus
w− 1 integer increment instructions, of class alul. I render this expres-
sion in terms of atoms by defining atom LValueStarNext = 1 mvst + 1

4.4. THE ATTRIBUTE GRAMMAR 189

alul, and I decorate expression ‘∗b’ with 1 LValueStar atom +(w − 1)
LValueStarNext atoms.

5. single-word value, RL-valueness:
Assume the following declarations:

int a;
int ∗ b

and consider the statement:

∗b += a;

The above statement must be equivalent in cost and semantics to the
following one:

∗b = ∗b + a;

and the abstract assembly translation for both statement is as follows:

mvld t , b
add t , t , a
mvst b, t

The cost, in terms of abstract instructions is therefore = 1 mvst + 1 mvld
+ 1 alul. However, the grouping of the above cost in terms of atoms
vary in the two statements, since atoms are designed to decorate parse
trees, and the parse trees of ‘∗b += a’ and ‘∗b = ∗b + a’ are different, as
illustrated in Figure 4.23 (page 190)

The atom decoration corresponding to the parse tree of expression
‘∗b = ∗b + a’, obtained applying the rules determined above, is shown
in Figure 4.24 on the left. Now I must devise an appropriate atom dec-
oration for the parse tree of expression ‘∗b += a’, which yields the same
cost. In order to do that, the parse node corresponding to subexpres-
sion ‘∗b’ must have a cost which equals 1 RValueStar plus 1 LValueStar.
I define the new atom RLValueStar = 1 mvld + 1 mvst, and I associate
this atom to subexpression ‘∗b’.

6. multiple-word value, RL-valueness:
I discuss now how to extend the above considerations to the case in
which ‘a’ and ‘b’ are declared as follows:

type a;
type ∗ b

where ‘type’ is an arithmetic multiple-word type (such as double, long
double, long long int) of word size W(type) = w. The abstract assem-
bly translation of statement

∗b += a;

in this case is:

190 CHAPTER 4. COST OF SYNTAX ELEMENTS

=

*

b

+

a*

b

*b = *b + a;

+=

*

b

a

*b += a;

Figure 4.23: ASTs of two example expressions involving the ‘∗’ operator. The
two expressions have the same semantics and effects (as far as inherent cost
is concerned), but different parse tree.

=

*

b

+

a*

b

1 LValueStar

1 RValueStar

1 IntAdd

*b = *b + a;

+=

*

b

a1RLValueStar

1 IntAdd

*b += a;

Figure 4.24: Inherent cost decoration for the two previous example expres-
sions. The two expressions have the same cumulative cost, but costs associ-
ated to individual nodes may be different.

mvld c, b ; transfers the first word

4.4. THE ATTRIBUTE GRAMMAR 191

add t_1 , b, #4 ; calculates address of the second word
add t_2 , t_1 , #4 ; calculates address of the third word
... ; ...

add t_w−1, t_w−2, #4 ; calculates address of the last word

mvld c+1, t_1 ; transfers the second word of ‘b’
mvld c+2, t_2 ; transfers the third word of ‘b’
... ; ...

mvld c+w−1, t_w−1 ; transfers the third word of ‘b’

... ; code required to sum values in register banks ‘c’ and ‘a’
; result is left in registers ‘c’ ... ‘c+w−1’

mvst b, c ; writes the first word of result back to ‘b’
mvst t_1 , c+1 ; writes the second word of result back to ‘b’
mvst t_2 , c+2 ; writes the third word of result back to ‘b’
... ; ...

mvst t_w=1, c+w−1 ; writes the last word of result back to ‘b’

and, its cost in terms of abstract assembly instructions is w mvst +
w mvld + (w − 1) alul, plus the cost of the multiple-word addition,
which must be determined according to the rules for the ‘+’ operator
described before.

In order to solve the problem in a way that is consistent with the pre-
vious cases (thus allowing generalization), I introduce a new atom RL-
ValueStarNext = 1 mvld + 1 mvst + 1 alul. The cost determination
process decorates expression ‘∗b’ with 1 RLValueStar atom and (w− 1)
RLValueStarNext atoms. Please note that RLValueStarNext 6= RValueS-
tarNext + LValueStarNext.

All the above cases can be expressed in a general form, which is summa-
rized below.

Syntax:

〈unary_expression〉 ::= ‘*’ 〈cast_expression〉
Semantics:

〈unary_expression〉.ci = 1 .vValueStar + (W(.r)− 1) .vValueStarNext

(For sake of brevity, I have abbreviated 〈unary_expression〉.v with .v and
〈unary_expression〉.r with .r.)

The following example illustrates how the inherent cost determination
works in presence of complex expression involving nested unary ‘∗’ opera-
tors and multiple-word types. Assume the following declarations:

192 CHAPTER 4. COST OF SYNTAX ELEMENTS

****p = ***q;

=

*

*

*

*

*

*

*

p

q

Figure 4.25: AST of an example expression involving multiple nested ‘∗’ op-
erators.

double ∗∗∗∗ p;
double ∗∗∗ q;

Consider the following statement:

∗∗∗∗ p = ∗∗∗ q;

The AST for this expression is given in Figure 4.25. A decorated AST where
attributes v, t, r and ci have been determined appears in Figure 4.26. A de-
tailed cost breakdown for one of the operators is shown in 4.27.

4.4. THE ATTRIBUTE GRAMMAR 193

=

*

*

*

*

*

*

*

p

q

v = L
t = [double]
r = [double]
ci = 1 LValueStar + 1 LValueStarNext

v = R
t = [pointer][double]
r = [pointer][double]
ci = 1 RValueStar

v = R
t = [pointer][pointer][double]
r = [pointer][pointer][double]
ci = 1 RValueStar

v = R
t = [pointer][pointer][pointer][double]
r = [pointer][pointer][pointer][double]
ci = 1 RValueStar

v = R
t = [pointer][pointer][pointer][pointer][double]
r = [pointer][pointer][pointer][pointer][double]
ci = 1 RValueStar

v = R
t = [double]
r = [double]
ci = 1 RValueStar + 1 RValueStarNext

v = R
t = [pointer][double]
r = [pointer][double]
ci = 1 RValueStar

v = R
t = [pointer][pointer][double]
r = [pointer][pointer][double]
ci = 1 RValueStar

v = R
t = [pointer][pointer][pointer][double]
r = [pointer][pointer][pointer][double]
ci = 1 RValueStar

****p = ***q;

Figure 4.26: Inherent cost determination for an example expression involving
multiple instances of ‘∗’ operators.

194 CHAPTER 4. COST OF SYNTAX ELEMENTS

v = L
t = [double]
r = [double]
ci = 1 vValueStar + (W(r)-1) vValueStarNext

ci = 1 LValueStar + (W(r)-1) LValueStarNext

ci = 1 LValueStar + 1 LValueStarNext

 W(double)=2

=

*

*

*

*

*

*

*

p

q

v = L
t = [double]
r = [double]
ci = 1 LValueStar + 1 LValueStarNext

v = R
t = [pointer][double]
r = [pointer][double]
ci = 1 RValueStar

v = R
t = [pointer][pointer][double]
r = [pointer][pointer][double]
ci = 1 RValueStar

v = R
t = [pointer][pointer][pointer][double]
r = [pointer][pointer][pointer][double]
ci = 1 RValueStar

v = R
t = [pointer][pointer][pointer][pointer][double]
r = [pointer][pointer][pointer][pointer][double]
ci = 1 RValueStar

v = R
t = [double]
r = [double]
ci = 1 RValueStar + 1 RValueStarNext

v = R
t = [pointer][double]
r = [pointer][double]
ci = 1 RValueStar

v = R
t = [pointer][pointer][double]
r = [pointer][pointer][double]
ci = 1 RValueStar

v = R
t = [pointer][pointer][pointer][double]
r = [pointer][pointer][pointer][double]
ci = 1 RValueStar

****p = ***q;

Figure 4.27: Inherent cost determination for an example expression involving
multiple instances of ‘∗’ operators. Detail.

4.4. THE ATTRIBUTE GRAMMAR 195

4.4.7.10 The subscript operator ‘[]’

The subscript operator ‘ [] ’ allows to access the cells of an array. It has
two operands. The left operand must be of pointer or array type, the right
operand of integral type. It has the following syntax:

〈postfix_expression〉 ::= 〈postfix_expression-1〉 ‘[’ 〈expression〉 ‘]’

The factors which affect its cost are:

• the valueness of the entire expression 〈postfix_expression〉.v (not the
first child’s one, 〈postfix_expression-1〉.v);

• the word size of the transferred value of the entire expression,
W(〈postfix_expression〉.r);

• the alignability of the byte size of the transferred value of the entire
expression, A(〈postfix_expression〉.r).

Since the possible valuenesses are 4, the possible cases for word size are
2 (single word or multiple word) and the alignabilities are 3, I should enu-
merate 24 different cases. This is impractical. It is more practical to split the
process of array subscripting in three independent phases, and consider each
of them individually:

1. resolving the address of the first word; this phase is affected by
alignability only; during this phase I assume that the result of the ex-
pression used as an index is ready and available in register ‘i’, and I
leave the result (i.e. the address of the first word of cell a[i] in register
‘t_0’);

2. calculating the addresses of the remaining words; this phase is affected
primarily by the word size, and it is skipped completely if valueness is
Z. If valueness is Z, there is no point in calculating the addresses of all
the words of cell a[i], since those words will not be transferred, and the
only useful address was already calculated before. When valueness
is not Z, the abstract assembly translation of this phase and its cost
are independent of the valueness. At the beginning of this phase I
assume that the address of the first word of cell a[i], just calculated
in the previous phase, is available in register ‘t_0’, and I calculate the
addresses of the following words, leaving them in registers ‘t_1’, ‘t_2’
... , ‘t_w−1’.

3. transferring the data; this phase assumes that there are as many ‘t_n’
registers ready with the addresses of the words to transfer. The ab-
stract assembly translation of this phase is composed by a number of
transfers which is equal to the word size of the cell type, and each
transfer is composed by respectively no instructions, one mvld instruc-
tion, one mvst instruction, one mvld and one mvst instructions, if the
valueness is respectively Z, R, L, RL.

For all the following analyses, I consider ‘a’ and ‘b’ declared as:

196 CHAPTER 4. COST OF SYNTAX ELEMENTS

type a [...];
type b;

The inherent cost of the three phases is as follows:

1. resolving the address of the first word:
This operation is always required, disrespectfully of the valueness of
the expression, if the valueness is R, the result of this calculation will
serve as source address for phase 3; if it is L, it will serve as a desti-
nation address for phase 3; if it is RL, it will serve as source and des-
tination address for phase 3; if it is Z, it will be the final result of the
expression including the current one. Additionally, this address, and
the way it is calculated do not depend on valueness and word size.

Mind that expressions a[i] and ∗(a+i) are always equivalent. Calculat-
ing the address of array cell a[i] is the same operations as evaluating
the ‘+’ subexpression in ∗(a+i), which is a pointer arithmetic operation.
Since I have already discussed the cost of pointer arithmetic in Section
4.4.7.8 (page 185), I will stick here to the same naming conventions and
atoms.

(a) alignability is byte: The abstract assembly translation of this
phase is:

add t_0 , a, i ; the offset is equal to the index

and its cost is 1 add = 1 alul = 1 PtrIntAddByte;

(b) alignability is aligned: The translation of this phase is:

shl t_0 , i , 〈log sizeof type〉 ; calculates the offset
add t_0 , a, i ; adds the base address

and its cost is 1 shl + 1 add = 2 alul = 1 PtrIntAddAligned;

(c) alignability is misaligned: The translation of this phase is:

mul t_0 , i , 〈sizeof type〉 ; calculates the offset
add t_0 , a, i ; adds the base address

and its cost is 1 mul + 1 add = 1 alul + 1 aluh = 1 PtrIntAd-
dMisaligned;

Summarizing, the cost of this phase is 1 PtrIntAddA(r);

2. calculating the addresses of the remaining words:
the translation of this phase is empty if the valueness is Z (and its cost
is 0), otherwise it is composed by W(r)− 1 instructions as follows:

add t_1 , t_0 , #4 ; calculates the address of the second word
add t_2 , t_1 , #4 ; calculates the address of the third word
... ; ...

add t_w−1, t_w−2, #4 ; calculates the address of the last word

Summarizing, the cost of this phase is (W(r) − 1) add = (W(r) − 1)
alul instructions.

4.4. THE ATTRIBUTE GRAMMAR 197

3. transferring the data:
the translation of this phase is composed as follows:

(a) valueness is Z: The translation of this phase is empty, and its cost
is zero.

(b) valueness is R: The translation of this phase is as follows:

mvld c, t_0 ; transfers the first word
mvld c+1, t_1 ; transfers the second word
...

mvld c+w−1, t_w−1 ; transfers the last word

and its cost is W(r) mvld instructions;

(c) valueness is L: The translation of this phase is as follows:

mvst t_0 , c ; transfers the first word
mvst t_1 , c+1 ; transfers the second word
...

mvst t_w−1, c+w−1 ; transfers the last word

and its cost is W(r) mvst instructions;

(d) valueness is RL: The translation of this composition of the trans-
lations for R and L valueness and its cost is W(r) (mvld+mvst);

Obtaining a general formula. Generalizing over A(r) and W(r) is easy.
Now I generalize over W(r).

Z: 1 PtrIntAddA(r)
R: 1 PtrIntAddA(r) +(W(r)− 1) alul +W(r) mvld
L: 1 PtrIntAddA(r) +(W(r)− 1) alul +W(r) mvst
RL: 1 PtrIntAddA(r) +(W(r)− 1) alul +W(r) (mvld+mvst)

Which can be rewritten as:
Z: 1 PtrIntAddA(r) +1 0 +(W(r)− 1) 0
R: 1 PtrIntAddA(r) +1 mvld +(W(r)− 1) (alul + mvld)
L: 1 PtrIntAddA(r) +1 mvst +(W(r)− 1) (alul + mvst)
RL: 1 PtrIntAddA(r) +1 (mvld+mvst) +(W(r)− 1) (alul + mvld + mvst)

Before rewriting the final form, we introduce the following atoms:
ZValueIndex = 0
RValueIndex = 1 mvld
LValueIndex = 1 mvst
RLValueIndex = 1 mvld + 1 mvst
ZValueIndexNext = 0
RValueIndexNext = 1 alul + 1 mvld
LValueIndexNext = 1 alul + 1 mvst
RLValueIndexNext = 1 mvld + 1 mvst

The final, general form is given below.

Syntax

198 CHAPTER 4. COST OF SYNTAX ELEMENTS

〈postfix_expression〉 ::= 〈postfix_expression-1〉 ‘[’ 〈expression〉 ‘]’

Semantics:

.ci = 1 PtrIntAdd A(.r) + 1.v ValueIndex + (W(.r)− 1).v ValueIndexNext

(All the attributes (c, v and r) are attributes of symbol 〈postfix_expression〉,
which has been omitted for brevity.)

The above general rule does not compose correctly when evaluating mul-
tiple subscript operators, used to access cells of multi-dimensional arrays.
This topic is beyond the scope of this document. To learn more on this, you
are invited to refer to the source code of the project which implements this
thesis.

4.4.7.11 The access to member of pointed compound operator ‘->’

The arrow operator allows to access members of a structure or a union
pointed by a given pointer. It has the following syntax:

〈postfix_expression〉 ::= 〈postfix_expression-1〉 ‘->’ IDENTIFIER

I consider it as a binary operator, whose two operands are: a first (or left)
operand, which must be an expression of type pointer to a struct or a union,
and a second (or right) operand, which must be an identifier among the ones
declared in the symbol table associated with the struct or union. This op-
erator is considered as a postfix unary operator by the C Standard, and the
identifier is not considered as a second operand, but as a part of the oper-
ator itself. This disagreement is just a matter of taxonomy, and arbitrarily
choosing one convention or the other is equivalent.

The inherent cost determination must ensure that expression:

a−>b

has exactly the same cost as:

(∗a). b

I consider the following cases:

1. access to union, R-value taken, single-word member:
Assume the following type declarations:

union {
...

int m;
...

} ∗ a;
int b;

(where ‘m’ and ‘b’ could be declared as any other single-word type in
place of int) and consider the following statement:

4.4. THE ATTRIBUTE GRAMMAR 199

b = a−>m;

The abstract assembly translation of the above statement is:

mvld b, a

i.e., a single mvld instruction, which copies the contents of the mem-
ory cell pointed by ‘a’ into ‘b’. There is no need to calculate the ad-
dress of ‘m’, since its displacement with respect to the beginning of the
union where it belongs is always zero. I define a new atom RValueU-
nionArrow = 1 mvld, and the cost of symbol 〈postfix_expression〉 to 1
RValueUnionArrow.

2. access to union, R-value taken, multiple-word member:
Assume the following type declarations:

union {
...

type m;
...

} ∗ a;
type b;

(where ‘type’ is any multiple-word type) and consider the following
statement:

b = a−>m;

The translation of the above statement is:

mvld b, a ; transfers the first word
add t , a, 4 ; calculates the address of the second word
mvld (b+1), t ; transfers the second word
add t , t , 4 ; calculates the address of the third word
mvld (b+2), t ; transfers the third word
...

add t , t , 4 ; calculates the address of the last word
mvld (b+w−1), t ; transfers the last word

The cost of the translation is composed by 1 initial mvld instruction
(equal to 1 RValueUnionArrow), plus a group composed by an add
and a mvld instruction, of cost 1 alul + 1 mvld, repeated as many times
as the number of words to transfer minus one. Please note that b+1, b+2,
... denote the names of the consecutive registers located after b, whose
names are known at static time by the compiler, and do not involve
any address calculation operation at runtime. I introduce a new atom,
called RValueUnionArrowNext, to capture the cost of the above re-
peated group, 1 alul + 1 mvld. I associate to symbol 〈postfix_expression〉
the cost of 1 RValueUnionArrow +W(r)− 1 RValueUnionArrowNext,
where r is attribute r of 〈postfix_expression〉.

3. access to union, L-value taken, single-word member:
Assume the following type declarations:

200 CHAPTER 4. COST OF SYNTAX ELEMENTS

union {
...

int m;
...

} ∗ a;
int b;

(where ‘m’ and ‘b’ could be declared as any other single-word type in
place of int) and consider the following statement:

a−>m = b;

The translation of the above statement is:

mvst a, b

i.e., a single mvst instruction, which copies the contents of register ‘b’
into the memory cell pointed by ‘a’. Again, there is no need to calculate
the address of ‘m’, since its displacement with respect to the beginning
of the union where it belongs is always zero. I define a new atom LVal-
ueUnionArrow = 1 mvst, and the cost of symbol 〈postfix_expression〉 to
1 LValueUnionArrow.

4. access to union, L-value taken, multiple-word member:
Assume the following type declarations:

union {
...

type m;
...

} ∗ a;
type b;

(where ‘type’ is any multiple-word type) and consider the following
statement:

a−>m = b;

The translation of the above statement is:

mvst a, b ; transfers the first word
add t , a, 4 ; calculates the destination address for the second word
mvst t , (a+1) ; transfers the second word
add t , t , 4 ; calculates the destination address for the third word
mvst t , (a+2) ; transfers the third word
...

add t , t , 4 ; calculates the destination address for the last word
mvst t , (a+w−1) ; transfers the last word

The cost of the translation is composed by 1 initial mvst instruction
(equal to 1 LValueUnionArrow), plus a group composed by an add
and a mvst instruction, of cost 1 alul + 1 mvst, repeated as many
times as the number of words to transfer minus one. Please note that
‘a+1’, ‘a+2’, ... denote the names of the consecutive registers located
after ‘a’, whose names are known at static time by the compiler, and

4.4. THE ATTRIBUTE GRAMMAR 201

do not involve any address calculation operation at runtime. I intro-
duce a new atom, called LValueUnionArrowNext, to capture the cost
of the above repeated group, 1 alul + 1 mvst. I associate to symbol
〈postfix_expression〉 the cost of 1 LValueUnionArrow +W(r)− 1 RVal-
ueUnionArrowNext, where r is attribute r of 〈postfix_expression〉.

5. access to union, RL-value taken, single-word member:
Assume the following type declarations:

union {
...

int m;
...

} ∗ a;
int b;

(where ‘m’ and ‘b’ could be declared as any other single-word type in
place of int) and consider the following statement:

a−>m += b;

(or any other statement obtained by replacing ‘+=’ with a type-
compliant compound assignment operator). The translation of the
above statement is:

mvld t , a ; load ‘m’ in a temporary register
add t , t , b ; perform the addition
mvst a, t ; store the result in ‘m’ again

The translation transfers the contents of ‘a−>m’ into a temporary regis-
ter, then performs the summation and finally transfers it back. Again,
there is no need to calculate the address of ‘m’, since its displacement
with respect to the beginning of the union where it belongs is always
zero. The cost associated to the arrow operator comprises the mvld
and the mvst instructions. The add instruction is, in this case, already
accounted for in the cost evaluation for operator ‘+=’. I define a new
atom RLValueUnionArrow = 1 mvld + 1 mvst, and the cost of symbol
〈postfix_expression〉 to 1 RLValueUnionArrow.

6. access to union, RL-value taken, multiple-word member:
Assume the following type declarations:

union {
...

type m;
...

} ∗ a;
type b;

(where ‘type’ is any multiple-word type such that W(type) = w) and
consider the following statement:

a−>m += b;

202 CHAPTER 4. COST OF SYNTAX ELEMENTS

(or any other statement obtained by replacing ‘+=’ with a type-
compliant compound assignment operator). The translation of the
above statement is:

mvld c, a ; transfers the first word of ‘m’ into a temporary register

add t_1 , a, 4 ; calculates the address of the second word
add t_2 , t_1 , 4 ; calculates the address of the third word
...

add t_w−1, t_w−2, 4 ; calculates the address of the last word

mvld (c+1), t_1 ; transfers the second word of ‘m’ into a temporary register
mvld (c+2), t_2 ; transfers the third word of ‘m’ into a temporary register
...

mvld (c+w−1), t_w−1 ; transfers the last word of ‘m’ into a temporary register

... ; appropriate translation for the operation between
; value in registers c ... c+w−1 and b...?;
; result left in register d ... d+w−1

mvst a, d ; transfers the first word of result into ‘m’
mvst t_1 , (d+1) ; transfers the second word of result into ‘m’
mvst t_2 , (d+2) ; transfers the third word of result into ‘m’
...

mvst t_w−1, (d+w−1) ; transfers the last word of result into ‘m’

Please note that register banks ‘c’, ‘c+1’, ‘c+2’ ... ‘c+w-1’ and ‘d’, ‘d+1’,
‘d+2’ ... ‘d+w-1’ are banks of consecutive registers containing multi-
ple word values encoded according to encoding rules for type ‘type’,
whose names are known at static time by the compiler, and do not
involve any address calculation operation at runtime. Registers ‘t_1’,
‘t_2’ ... ‘t_w−1’ are temporary registers containing the addresses of the
multiple cells containing the value of ‘a−>m’, from the second one to
the last one. They are calculated once, when their value is accessed
and they are reused, when the final result is stored.

The cost of the translation is composed by 1 mvld instruction, W(r)− 1
add instructions of cost 1 alul each, then W(r)− 1 mvld instructions,
then W(r) − 1 mvst instructions. I group the cost of the 1 mvld and
1 mvst instruction in a RLValueUnionArrow, already defined for the
previous case; then I introduce a new atom, called RLValueUnionAr-
rowNext, to capture the cost of the remaining instructions, grouped as
1 alul + 1 mvld + 1 mvst. I associate to symbol 〈postfix_expression〉 the
cost of 1 RLValueUnionArrow +W(r) − 1 RLValueUnionArrowNext,
where r is attribute r of 〈postfix_expression〉.
Please note that: RLValueUnionArrow = RValueUnionArrow + LVal-
ueUnionArrow, but RLValueUnionArrowNext 6= RValueUnionAr-
rowNext + LValueUnionArrowNext, that is, the cost of an access with
RL valueness is not, in general, given by the sum of costs for R and L
valueness.

7. access to union, Z-value taken, single- or multiple-word member:
Assume the following type declarations:

4.4. THE ATTRIBUTE GRAMMAR 203

union {
...

type m;
...

} ∗ a;

(where ‘type’ has no restrictions) and consider the following expres-
sion:

& a−>m

The abstract assembly translation of the above statement is empty,
since the address of ‘m’ is the same as the address of ‘a’, and no calcu-
lations need to be done.

I define here two new atoms ZValueUnionArrow = 0 and ZValueU-
nionArrowNext = 0.

8. access to struct, R-value taken, single-word member: Assume the fol-
lowing type declarations:

struct {
...

int m;
...

} ∗ a;
int b;

(where ‘m’ and ‘b’ could be declared as any other single-word type in
place of int) and I consider the following statement:

b = a−>m;

The translation of the above statement is:

add t , a, 〈offset of m〉 ; calculates the address of m
mvld b, t ; transfers the contents

which calculates the address of ‘m’ by adding the address of ‘a’ and
the offset of ‘m’ inside ‘a’ (known by the compiler); and copies the
contents of the memory cell at that address into the register associated
to variable ‘b’. The cost of the translation is equal to 1 alul + 1 mvld.
I define a new atom RValueStructArrow = 1 alul + 1 mvld, and set the
cost of symbol 〈postfix_expression〉 to 1 RValueStructArrow.

9. access to struct, R-value taken, multiple-word member: Assume the
following type declarations:

struct {
...

type m;
...

} ∗ a;
type b;

204 CHAPTER 4. COST OF SYNTAX ELEMENTS

(where ‘type’ is any multiple-word type) and consider the following
statement:

b = a−>m;

The translation of the above statement is:

add t , a, 〈offset of m〉 ; calculates the address of the first word m
mvld b, t ; transfers the first word
add t , t , 4 ; calculates the address of the second word
mvld (b+1), t ; transfers the second word
add t , t , 4 ; calculates the address of the third word
mvld (b+2), t ; transfers the third word
...

add t , t , 4 ; calculates the address of the last word
mvld (b+w−1), t ; transfers the last word

The translation is composed by an initial group of cost 1 alul + 1 mvld
instructions (equal to 1 RValueStructArrow), plus a group composed
by an add and a mvld instruction, of cost 1 alul + 1 mvld, repeated
as many times as the number of words to transfer minus one. Please
note that ‘b+1’, ‘b+2’, ... denote the names of the consecutive regis-
ters located after ‘b’, whose names are known at static time by the
compiler, and do not involve any address calculation operation at run-
time. For sake of consistency and to guarantee the possibility to gen-
eralize the formulae, I introduce a new atom, called RValueStructAr-
rowNext, to capture the cost of the above repeated group, 1 alul + 1
mvld, even if its cost is identical to RValueStructArrow. I associate to
symbol 〈postfix_expression〉 the cost of 1 RValueStructArrow +W(r)− 1
RValueStructArrowNext, where r is attribute r of 〈postfix_expression〉.

10. access to struct, L-value taken, single-word member: Assume the fol-
lowing type declarations:

struct {
...

int m;
...

} ∗ a;
int b;

(where ‘m’ and ‘b’ could be declared as any other single-word type in
place of int) and consider the following statement:

a−>m = b;

The translation of the above statement is:

add t , a, 〈offset of m〉 ; calculates the address of m
mvst t , b ; transfers the contents

which calculates the address of ‘m’ by adding the address of ‘a’ and
the offset of ‘m’ inside ‘a’ (known by the compiler); and copies the
contents of the register associated to variable ‘b’ into the memory cell

4.4. THE ATTRIBUTE GRAMMAR 205

at that address. The cost of the translation is equal to 1 alul + 1 mvst. I
define a new atom LValueStructArrow = 1 alul + 1 mvst, and the cost
of symbol 〈postfix_expression〉 to 1 LValueStructArrow.

11. access to struct, L-value taken, multiple-word member: Assume the
following type declarations:

struct {
...

type m;
...

} ∗ a;
type b;

(where ‘type’ is any multiple-word type) and consider the following
statement:

a−>m = b;

The abstract assembly translation of the above statement is:

add t , a, 〈offset of m〉 ; calculates the destination address for the first word
mvst t , b ; transfers the first word
add t , t , 4 ; calculates the destination address for the second word
mvst t , (b+1) ; transfers the second word
add t , t , 4 ; calculates the destination address for the third word
mvst t , (b+2) ; transfers the third word
...

add t , t , 4 ; calculates the destination address for the last word
mvst t , (b+w−1) ; transfers the last word

The cost of the translation is composed by an initial group of cost 1
alul + 1 mvst instruction (equal to 1 LValueStructArrow), plus a group
composed by an add and a mvst instruction, of cost 1 alul + 1 mvst,
repeated as many times as the number of words to transfer minus one.
Please note that ‘b+1’, ‘b+2’, ... denote the names of the consecutive
registers located after ‘b’, whose names are known at static time by the
compiler, and do not involve any address calculation operation at run-
time. I introduce a new atom, called LValueStructArrowNext, to cap-
ture the cost of the above repeated group, 1 alul + 1 mvst. I associate to
symbol 〈postfix_expression〉 the cost of 1 LValueStructArrow +W(r)− 1
RValueStructArrowNext, where r is attribute r of 〈postfix_expression〉.

12. access to struct, RL-value taken, single-word member: Assume the
following type declarations:

struct {
...

int m;
...

} ∗ a;
int b;

(where ‘m’ and ‘b’ could be declared as any other single-word type in
place of int) and I consider the following statement:

206 CHAPTER 4. COST OF SYNTAX ELEMENTS

a−>m += b;

(or any other statement obtained by replacing ‘+=’ with a type-
compliant compound assignment operator). The translation of the
above statement is:

add t , a, 〈offset of m〉 ; calculates the address of ‘m’
mvld c, t ; load its contents into a temporary register
add c, c , b ; perform the addition
mvst t , c ; store the result in ‘m’ again

The cost of the translation is equal to 1 alul + 1 mvld + 1 mvst. I define
a new atom RLValueStructArrow = 1 alul + 1 mvld + 1 mvst, and the
cost of symbol 〈postfix_expression〉 to 1 RLValueStructArrow.

13. access to struct, RL-value taken, multiple-word member: Assume the
following type declarations:

struct {
...

type m;
...

} ∗ a;
type b;

(where ‘type’ is any multiple-word type) and I consider the following
statement:

a−>m += b;

(or any other statement obtained by replacing ‘+=’ with a type-
compliant compound assignment operator). The translation of the
above statement is:

add t_0 , a, 〈offset of m〉 ; calculates the address of the first word of ‘m’
add t_1 , t_0 , 4 ; calculates the address of the second word of ‘m’
... ; ...

add t_w−1, t_w−2, 4 ; calculates the address of the last word of ‘m’

mvld c, t_0 ; loads the first word to a temporary register ‘c’
mvld c+1, t_1 ; loads the second word to a temporary register ‘c’
... ; ...

mvld c+w−1, t_w−1 ; loads the last word to a temporary register ‘c’

... ; appropriate translation for the operation between
; value in registers c ... c+w−1 and b...?;
; result left in registers d ... d+w−1

mvst t_0 , d ; transfers the first word of result into ‘m’
mvst t_1 , (d+1) ; transfers the second word of result into ‘m’
... ; ...

mvst t_w−1, (d+w−1) ; transfers the last word of result into ‘m’

The cost of the translation is composed by w add instructions, needed
to calculate the addresses of the cells containing the encoded value of

4.4. THE ATTRIBUTE GRAMMAR 207

a−>m, then w mvld instructions needed to load their value in a bank
of consecutive registers, then w mvst instructions needed to write the
result back to the registers whose addresses were calculated before.

Please note that c, c+1, c+2, ..., c+w-1 denote the names of the consec-
utive registers, whose names are known at static time by the compiler,
and do not involve any address calculation operation at runtime.

For sake of consistency and generalizability, I introduce two new
atoms, called RLValueStructArrow and RLValueStructArrowNext,
whose costs are both equal to 1 alul + 1 mvld + 1 mvst. I as-
sociate to symbol 〈postfix_expression〉 the cost of 1 RLValueStructAr-
row +W(r) − 1 RLValueStructArrowNext, where r is attribute r of
〈postfix_expression〉.

14. access to struct, Z-value taken, single- or multiple-word member: I
assume the following type declarations:

struct {
...

type m;
...

} ∗ a;

(where ‘type’ has no restrictions) and consider the following expres-
sion:

& a−>m

The translation of the above statement is

add t , a, 〈offset of m〉 ; calculates the address of a−〉m

Its cost is 1 add = 1 alul. I define here two new atoms ZValueStructAr-
row = 1 alul and ZValueUnionStructNext = 0.

Summary of the above cases: (generalization over w is complete)

SU(t) v Cost

union Z 0 + 0
union R 1 mvld + (W(r)− 1) (mvld + alul)
union L 1 mvst + (W(r)w − 1) (mvst + alul)
union RL 1 (mvld + mvst) + (W(r)− 1) (alul + mvld + mvst)

struct Z 1 alul + 0
struct R 1 (alul + mvld) + (W(r)− 1) (alul + mvld)
struct L 1 (alul + mvst) + (W(r)− 1) (alul + mvst)
struct RL 1 (alul + mvld + mvst) + (W(r)− 1) (alul + mvld + mvst)

Expressed in terms of atoms:

208 CHAPTER 4. COST OF SYNTAX ELEMENTS

SU(t) v Cost

union Z 1 ZValueUnionArrow +(W(r)− 1) ZValueUnionArrowNext
union R 1 RValueUnionArrow +(W(r)− 1) RValueUnionArrowNext
union L 1 LValueUnionArrow +(W(r)− 1) LValueUnionArrowNext
union RL 1 RLValueUnionArrow +(W(r)− 1) RLValueUnionArrowNext

struct Z 1 ZValueStructArrow +(W(r)− 1) ZValueStructArrowNext
struct R 1 RValueStructArrow +(W(r)− 1) RValueStructArrowNext
struct L 1 LValueStructArrow +(W(r)− 1) LValueStructArrowNext
struct RL 1 RLValueStructArrow +(W(r)− 1) RLValueStructArrowNext

The above formulae can be summarized as follows.

Syntax
〈postfix_expression〉 ::= 〈postfix_expression-1〉 ’->’ IDENTIFIER

Semantics:

.ci = 1 .vValueSU(.t)Arrow + (W(.r)− 1).vValueSU(.t)ArrowNext

For sake of brevity, I have not indicated which the symbol of the above
attributes. For all of them, the omitted symbol name is 〈postfix_expression〉.

SU(·) is a utility function, defined as follows. Given a type stack t,
SU(t) is a function which yields the name “Struct” if top(t) is a struct type-
definition record, and “Union” if top(t) is a union type-definition record.

4.4.7.12 The member access operator ‘.’

The dot operator allows to access members of a structure or of a union.
It is defined by the following syntax rule:

〈postfix_expression〉 ::= 〈postfix_expression-1〉 ‘.’ IDENTIFIER

I consider it as a binary operator because it requires two operands: the first
(or left) operand type must be structure or union, and second (or right)
operand type must be an identifier, among the ones declared in the sym-
bol table associated with the structure or union. Like for the arrow operator
‘−>’, the C standard considers the dot operator as a postfix unary opera-
tor, and the identifier is not considered as an operand, but as a part of the
operator itself. Again, this disagreement is just a matter of taxonomy, and
arbitrarily choosing one convention or the other is equivalent.

As I have already motivated in Section 4.4.2 (page 158), the dot operator
exhibits anomalies which affect the valueness and the restricted type of their
left descendants. I have already described completely the effects of those
anomalies on the cost determination process of the affected nodes. Now, I
determine what is the cost of the dot operator itself.

The dot operator, depending on the circumstances, has zero cost, or the
cost of an offset calculation (i.e., an alul instruction).

Factors affecting cost:

4.4. THE ATTRIBUTE GRAMMAR 209

• access to structure vs. access to union member: if a structure is ref-
erenced by address, accessing its member m requires calculating the
address of m by summing the address of the structure and the dis-
placement of m; no such address addition is required when accessing
a member of a union, since all the members have zero offset;

• left operand is dereference or subscript operator: with these such ex-
pressions (e.g., ‘(∗pa).m’ or ‘a[i]. m’), the accessed structure is indicated
by address, and determining the position of the accessed member re-
quires summing the position of the structure and the displacement of
‘m’ in it. This is not required with accesses to simple variables such as
‘a.m’, where the final position of ‘m’ is known at static time;

The cost of the ‘ . ’ operator, when attributed, is the cost of an integer sum-
mation, denoted with atom DotOffset = 1 alul.

=

b.

m*

a

(*a).m = b;

=

s

*

a

*a = s;

v = L
t = [struct tag]
r = [struct tag]
ci = 1 LValueStar + (W(r)-1) LValueStarNext

v= L
t = [struct tag]
r = [type]
ci = 1 LValueStar + (W(r)-1) LValueStarNext

v = R
t = [pointer][struct tag]
r = [pointer][struct tag]
ci = 0

v = R
t = [struct tag]
r = [struct tag]
ci = 0

v = L
t = [type]
r = [type]
ci = 1 DotOffset

v = R
t = [pointer][struct tag]
r = [pointer][struct tag]
ci = 0

v = R
t = [type]
r = [type]
ci = 0

Figure 4.28: Determining ci for a ‘ . ’ operator, when it is father of a ‘∗’ op-
erator (right). The operator has non-zero cost because its offset calculation
instruction cannot be merged with the translation of any node. An expres-
sion without the ‘ . ’ is reported for comparison (left).

Syntax:

〈postfix_expression〉 ::= 〈postfix_expression-1〉 ’.’ IDENTIFIER

Semantics:

• 〈postfix_expression〉.ci = = 1 DotOffset;
if top(〈postfix_expression-1〉.t) = [struct] ∧
(〈postfix_expression-1〉 ⇒ 〈postfix_expression〉 ‘[’ 〈expression〉 ‘]’ ∨
〈postfix_expression-1〉 ⇒ 〈primary_expression〉 ⇒ ‘(’ 〈expression〉 ‘)’ ∗⇒ ‘(’ ‘*’
〈cast_expression〉 ’)’
)

210 CHAPTER 4. COST OF SYNTAX ELEMENTS

=

b.

m

a[i].m = b;

=

s

[]

a

a[i] = s;

v = R
t = [array][struct tag]
r = [array][struct tag]
ci = 0

v = L
t = [type]
r = [type]
ci = DotOffset

i

[]

a i

v = R
t = [int]
r = [int]
ci = 0

v = L
t = [struct tag]
r = [struct tag]
ci = 1 LValueIndex + (W(r)-1) LValueIndexNext

v = R
t = [struct tag]
r = [struct tag]
ci = 0

v = R
t = [array][struct tag]
r = [array][struct tag]
ci = 0

v = R
t = [int]
r = [int]
ci = 0

v = L
t = [struct tag]
r = [type]
ci = 1 LValueIndex + (W(r)-1) LValueIndexNext

v = R
t = [type]
r = [type]
ci = 0

Figure 4.29: Determining ci for a ‘ . ’ operator, when it is father of a ‘ [] ’ op-
erator (right). The operator has non-zero cost because its offset calculation
instruction cannot be merged with the translation of any node. An expres-
sion without the ‘ . ’ is reported for comparison (left).

=

b.

m

a->n.m = b;

=

s

->

a

a->n = s;

v = L
t = [type]
r = [type]
ci = 0

n

->

a n

v = R
t = [struct tag1]
r = [struct tag1]
ci = 0

v = R
t = [struct tag2]
r = [struct tag2]
ci = 0

v = L
t = [struct tag2]
r = [struct tag2]
ci = 1 LValueArrow + (W(r)-1)LValueArrowNext

v = R
t = [struct tag2]
r = [struct tag2]
ci = 0

v = R
t = [struct tag1]
r = [struct tag1]
ci = 0

v = R
t = [int]
r = [int]
ci = 0

v = R
t = [type]
r = [type]
ci = 0

v = L
t = [struct tag2]
r = [type]
ci = 1 LValueArrow + (W(r)-1)LValueArrowNext

Figure 4.30: Determining ci for a ‘ . ’ operator, when it is father of a ‘−>’ oper-
ator (right). The ‘ . ’ operator has no cost, because the offset calculation can be
merged into the translation of ‘−>’. An expression without the ‘ . ’ is reported
for comparison (left).

4.4. THE ATTRIBUTE GRAMMAR 211

q = &(a.m);

=

p

&

a

p = &a;

v = Z
t = [struct tag]
r = [struct tag]
ci = 0

v = L
t = [pointer][struct tag]
r = [pointer][struct tag]
ci = 0

=

q &

a

v = R
t = [pointer][type]
r = [pointer][type]
ci = 0

v = Z
t = [struct tag]
k = [type]
ci = 0

m

.

v = R
t = [pointer][struct tag]
r = [pointer][struct tag]
ci = 0

v = L
t = [pointer][type]
r = [pointer][type]
ci = 0

n = m

v = Z
t = [type]
k = [type]
ci = 0

Figure 4.31: Determining ci for a ‘ . ’ operator, when it is child of a ‘&’ operator
(right). The ‘ . ’ operator has no cost, because the address of any member field
of ‘a’ is known at compile time. An expression without the ‘ . ’ is reported for
comparison (left).

• 〈postfix_expression〉.ci = 0;
otherwise.

4.4.7.13 The function call operator

The cost of a function call includes the cost of the instruction which ac-
tually transfers execution to the called function, and the copy instructions to
transfer the arguments and the return value.

Note that the creation of a virtual ‘return’ AST node, associated with a
Return atom and supported by appropriate instrumentation is required for
functions returning ‘void’ and lacking a final ‘return;. Any further discussion
on the topic is beyond the scope of this document. The readers interested to
learn more on this are invited to refer to the source code of the project which
implements this thesis.

Syntax:

〈postfix_expression〉 ::= 〈postfix_expression-1〉 ’(’ ’)’
| 〈postfix_expression-1〉 ’(’ 〈argument_expression_list〉 ’)’

Semantics:

〈postfix_expression〉.ci = 1 FunctionCall +
Argument · ∑d

i=1 W(〈parameter_declaration〉i .t)+
Argument · ∑

p
i=d+1 W(D(〈assignment_expression〉i .t))

212 CHAPTER 4. COST OF SYNTAX ELEMENTS

where:

• d is the number of declared parameters, not counting the ellipsis if present; zero if
the function has no prototype;

• p is the number of the passed arguments;

• 〈assignment_expression〉i is the i-th argument, present in the argument expres-
sion list of the function call expression; all the passed arguments are symbols
〈assignment_expression〉1 ... 〈assignment_expression〉p;

• 〈parameter_declaration〉i is the i-th parameter as declared in the function declaration
prototype; I assume that they also have an attribute t; all the parameters declared
in the prototype are symbols 〈parameter_declaration〉1 ... 〈parameter_declaration〉d; if
there is no prototype for the called function, then d = 0;

4.4.7.14 The simple assignment operator

Expression containing a simple assignment operator are governed by the
following syntax rule:

〈assignment_expression〉 ::= 〈unary_expression〉 ’=’ 〈assignment_expression-1〉

If node N is a simple assignment node in an AST, its inherent cost N.ci
depends on its left and right child nodes, and it can be either zero, or W(N.r)·
Assignment.

In this section I will introduce and motivate the rule to distinguish the
two cases. This rule is a more complete rendition of the consequences of
translation rules already reported in Section 4.3.

In natural language, the cost of an assignment is zero when at least one
of the operands are not register-bound, else the cost is as many ‘Assignment’
atoms as the word size of the restricted type.

I now motivate the above rule, then I give rules to determine the register-
boundedness of the left or right child of an assignment expression.

First, I remind that in the construction of cost rules for expressions, I
assumed that the cost of an expression is the cost of translation required to
transfer the result to or from a bank of register of given name (according to
the expression’s valueness).

Therefore,

• in a case like the following one:

∗a = ∗b;

where the assumptions on the type of variables ‘a’ and ‘b’ follow:

int ∗ a;
int ∗ b;

the translations of subexpressions ‘∗a’ and ‘∗b’ are both register-
unbound. In fact, the target register of the mvld instruction which

4.4. THE ATTRIBUTE GRAMMAR 213

is the translation of ‘∗b’ is free, and so is the the source register of the
mvst instruction which is part of the translation of ‘∗a’. The translation
of the entire assignment expression need just to rewrite the two trans-
lations, after binding all the occurrences of ‘free’ to the same, unique
register. There is no need for new instructions. The inherent cost of the
assignment is therefore zero;

• in a case where exactly one of the right or left child expressions of the
assignment operator are register bound, such as

a = ∗b;

where the assumptions on the type of variables ‘a’ and ‘b’ follow:

int a;
int ∗ b;

again, the inherent cost of the assignment is zero. In fact, the transla-
tion of the assignment operator is just the composition of the transla-
tion of the children, where the ‘free’ occurrences in the translation of
the right child have been bound to the register associated to ‘a’, with-
out additional instructions and, therefore no additional cost. This is
exactly the case illustrated in the translation rules and in the example
of Section 4.3 (page 117).

The same considerations apply when the roles are exchanged, and the
register-unbound child is the left one. Although this case is not de-
scribed in Section 4.3 for simplicity, the rationale is the same.

• in a case where both translations corresponding to the right and left
children of the assignment operator are register-bound, such as the
following:

a = b;

where the assumptions on the type of variables ‘a’ and ‘b’ follow:

int a;
int b;

the translation of the assignment needs to actually include mov in-
structions to move data from the register corresponding to attribute R
of the left child to R of the right child. Therefore, as many as W(N.r)
mov instructions are required. No displacement update instructions
are required because all the registers involved in the data transfer are
known by name. I define a new atom, named Assignment, whose cost
is exactly one alul instruction (the class of the mov instruction).

The task of determining the register-boundedness for each of the right
and left child nodes of the assignment node is guided by the rules already
described in Section 4.4.5 (page 178).

Syntax:

214 CHAPTER 4. COST OF SYNTAX ELEMENTS

〈assignment_expression〉 ::= 〈unary_expression〉 ’=’ 〈assignment_expression-1〉
Semantics:

〈assignment_expression〉.ci =

W(〈assignment_expression〉.r) Assignment

if both operands are both register-bound
0

else

4.4.7.15 The compound assignment operators

Syntax:

〈assignment_expression〉 ::= 〈unary_expression〉 ‘*=’ 〈assignment_expression〉
| 〈unary_expression〉 ‘/=’ 〈assignment_expression〉

〈assignment_expression〉 ::= 〈unary_expression〉 ‘+=’ 〈assignment_expression〉
| 〈unary_expression〉 ‘-=’ 〈assignment_expression〉

〈assignment_expression〉 ::= 〈unary_expression〉 ‘«=’ 〈assignment_expression〉
| 〈unary_expression〉 ‘»=’ 〈assignment_expression〉
| 〈unary_expression〉 ‘&=’ 〈assignment_expression〉
| 〈unary_expression〉 ‘|=’ 〈assignment_expression〉
| 〈unary_expression〉 ‘^=’ 〈assignment_expression〉

Semantics:
the cost is the same as the arithmetic or bitwise operator without the ‘=’.

4.4.7.16 Equality and relational operators

The equality and relational operator expressions are governed by the fol-
lowing syntax:

Syntax:

〈equality_expression〉 ::= 〈equality_expression-1〉 ‘==’ 〈relational_expression-1〉
| 〈equality_expression-1〉 ‘!=’ 〈relational_expression-1〉

〈relational_expression〉 ::= 〈relational_expression-1〉 ‘<’ 〈shift_expression〉
| 〈relational_expression-1〉 ‘>’ 〈shift_expression〉
| 〈relational_expression-1〉 ‘<=’ 〈shift_expression〉
| 〈relational_expression-1〉 ‘>=’ 〈shift_expression〉

which I generalized in the following rule:

〈re_expression〉 ::= 〈re_expression-1〉 〈re_op〉 〈re_expression-2〉

4.4. THE ATTRIBUTE GRAMMAR 215

where 〈re_op〉 ::= ‘==’ | ‘!=’ | ‘>’ | ‘<’ | ‘>=’ | ‘<=’ ;
Semantics:

t′ = U(〈re_expression-1〉.t, 〈re_expression-2〉.t)

〈re_expression〉.ci =
{

1 FloatCompare if t′ is floating-point
1 IntCompare if t′ is integral

The generalized rule is not correct from the point of view of operator
precedence modeling, nevertheless I assume that parsing is done according
to the real untouched grammar (as in Section 4.5.1 (page 231)), and the gener-
alized rule is used only for cost determination and AST decoration purposes.

Legal operand types: arithmetic and pointer. Note that it is legal to assign
structures but it is not to perform equality checks.

4.4.7.17 The ‘return’ statement

Syntax:
〈jump_statement〉 ::= ‘return’ 〈expression〉 ’;’

Semantics:
〈jump_statement〉.ci = W(CC(〈expression〉.t, t0)) Argument

where t0 is the type of the current function containing the statement.

216 CHAPTER 4. COST OF SYNTAX ELEMENTS

4.4.8 Attribute ‘cc’, conversion cost

Attribute cc expresses the cost of executing the type conversions associated
with a given symbol. A type conversion is required to convert the value
associated at run-time to a given expression, from the representation corre-
sponding to the type of the expression, to the representation corresponding
to the type needed in the larger expression where this value is used. To avoid
every ambiguities in the cost attribution process, I define conversions as fol-
lows:

a conversion from type t1 to type t2 is the assembly code required to convert
an encoded value, stored in a register or register bank (of appropriate size,
according to type t1) in such a way that at the end of that assembly code, the
converted value is available in some register or register bank (of appropriate
size and encoding, according to type t2). All the registers involved in the
operation are known by name or they are free.

Please note that my notion of conversion is not perfectly overlapping to
the notion of conversion used in the C standard. More precisely, whenever
there is a conversion according to my definition, there is also a conversion
according to the C standard, but the vice versa is not true. For example, the
so-called function designator conversion (as described in Section 4.4.1.14 (page
153)) is not a conversion in my sense, since it just means to take the address of
a function as a result instead of taking the function itself (whose value is not
defined); there are no values stored in registers which have their encoding
changed.

In the C programming language, type conversions are possible either ex-
plicitly (via casting operations) or implicitly (e.g. during an arithmetic op-
eration, an assignment or a function call). Whichever is the reason for the
type conversion, the cost of the conversion is completely determined once
the starting and destination type are known. It is therefore convenient to
define, once and forever, a table which contains the cost of conversion for
each possible couple of types. An example of this table could be Table 4.7.
Be aware of the fact that the order in which the above rules are listed in the
table is significant. For example, a conversion from ‘float’ to ‘float’ matches
the first rule and has cost equal to zero, whereas a conversion from ‘float’
to ‘double’ matches the floating-point to floating-point rule, thus costing 1
FloatToFloat atom.

The above table is a simplification of the reality: it treats all integral types
in the save way, even though two conversions involving different two dif-
ferent couples of integral types may have different costs, depending on the
architecture. The same happens for floating point types.

Please note that, in my terminology, a conversion from type t to the same
type t is valid, and it is empty. The cost of an empty conversion is triv-
ially zero. Note that lookups in the table are done discarding type qualifiers

4.4. THE ATTRIBUTE GRAMMAR 217

Source type Target type Resulting cost

1 same as 〈type_name〉.t whatever 0
2 pointer or array pointer 0
3 integral (word-size) pointer 0
4 integral pointer 1 IntToInt
5 integral (different size) integral 1 IntToInt
6 pointer integral (non word-size) 1 IntToInt
7 integral integral 0
8 floating-point integral 1 FloatToInt
9 integral floating-point 1 IntToFloat

10 floating-point floating-point 1 FloatToFloat

Table 4.7: Summary of the rules which determine the cost of a type conver-
sion. The order of the rules is meaningful: multiple rules could match a
given case, the first matching one is applied.

(const, volatile). The const qualifier is used only for type checking at compile
time, and for the volatile qualifier is used only to inhibit certain optimiza-
tions. They cannot influence type conversion.

As far as the calculation of attribute cc is concerned for each possible ex-
pression, the operators of the C language fall in a number of classes such
that, in each class, the semantic rules to calculate attribute cc follow the same
pattern. I summarize these classes in Table 4.8, and I discuss them individ-
ually in the next sections. The table presents an enumerated row for each
class: each row indicates the arity of the operators which are part of that
class, then a name for the class, the complete list of operators which belong
to it, and a short description of how the operators behave as far as the result
type is concerned, expressed in natural language.

218 CHAPTER 4. COST OF SYNTAX ELEMENTS

Class Arity Informal description, members and behavior

1 1 The no-conversion unary operators
‘sizeof’, ‘ ! ’, ‘&’, ‘∗’
prefix or postfix ‘++’, prefix or postfix ‘−−’
Behavior: the operand does not undergo any conversions.

2 1 The integral promotion unary operators
‘+’, ‘−’, ‘~’
Behavior: the operand undergoes integral promotion.

3 2 The no-conversion binary operators
‘ , ’, ‘ [] ’, ‘ . ’, ‘−>’, ‘&&’, ‘||’
Behavior: the operands do not undergo any conversions.

4 2 The cast operator
‘(type)’
Behavior: the right operand is converted to the type indicated by
the left operand.

5 2 Integral promotion binary operators
‘<<’, ‘>>’
Behavior: the operands undergo integral promotion.

6 2 The usual arithmetic conversions operators
‘==’, ‘!=’, ‘<’, ‘>’, ‘<=’, ‘>=’ ‘+’, ‘−’, ‘∗’, ‘/’, ‘%’, ‘&’, ‘|’, ‘^’
Behavior: each of the operands is converted to the type determined
according to the usual arithmetic conversions (as by C standard).

7 2 The simple assignment operator
‘=’
Behavior: the right operand is converted to the type of the left
operand.

8 2 The compound assignment operators
‘+=’, ‘−=’, ‘∗=’, ‘/=’, ‘%=’, ‘&=’, ‘|=’, ‘^=’, ‘<<=’, ‘>>=’
Behavior: the left and right operands undergo the usual arithmetic
conversions, then the result is converted to the type of the left
operand.

9 3 The conditional operator
‘?: ’
Behavior: the second and third operands are converted to the re-
sult type, determined according to the usual arithmetic conversion
rules.

10 1..n The function call operator
Behavior: each argument is either converted to the type of the cor-
responding formal parameters, or by default argument conversion as
by C standard.

11 1 The ‘return’ statement
Behavior: the operand is converted to the function declared return
type.

Table 4.8: The operators of the C language (and the return statement) classi-
fied by conversion behavior.

4.4. THE ATTRIBUTE GRAMMAR 219

4.4.8.1 The no-conversion unary operators

The operator expressions belonging to this class do not cause any conver-
sions.

Syntax:
〈unary_expression〉 ::= ‘sizeof’ 〈unary_expression-1〉

| ‘sizeof’ ’(’ 〈type_name〉 ’)’
| ‘!’ 〈cast_expression〉
| ‘&’ 〈cast_expression〉
| ‘*’ 〈cast_expression〉
| ‘++’ 〈unary_expression-1〉
| ‘--’ 〈unary_expression-1〉

〈postfix_expression〉 ::= 〈postfix_expression-1〉 ‘++’
| 〈postfix_expression-1〉 ‘--’

Semantics:
〈unary_expression〉.cc = 0;

or
〈postfix_expression〉.cc = 0;

Some more detailed annotations follow. As far as the ‘!’ operator is con-
cerned, according to the standard, this operator returns an int value. Never-
theless, no conversion is done, ever. The operation may require a comparison
which is type dependent. If the operand has floating-point type, the cost of
floating point comparison is already accounted for in 〈unary_expression〉.ci.

As specified in Sections 6.3.2.4 and 6.3.3.1 of the C standard [81], prefix
and postfix increment and decrement operators in this class return the same
type as their operand, and operands must be scalar (i.e. integral or floating-
point). Therefore no operand conversion is needed.

The same applies to referencing and dereferencing operators.

4.4.8.2 The integral promotion unary operators

Operators in this class perform an integral promotion on their operand. I have
already presented integral promotion in Section 4.4.1.4 (page 146).

The cost of integer promotion, under my architectural assumptions is
always null except for the integer promotion of [char] to [int], whose cost is
one IntToInt atom.

Syntax:
〈unary_expression〉 ::= ‘+’ 〈cast_expression〉

| ‘-’ 〈cast_expression〉
| ‘~’ 〈cast_expression〉

Semantics:
〈unary_expression〉.cc = CC(〈cast_expression〉.t, I(〈cast_expression〉.t))

Practically, under my assumptions, the cost of this conversion is always
zero except when the type of 〈cast_expression〉 is a ‘char’ (signed or un-
signed). In that case, the cost assumes the value of 1 IntToInt atom.

220 CHAPTER 4. COST OF SYNTAX ELEMENTS

4.4.8.3 The no-conversion binary operators

Operators in this class do not cause any conversion.

Syntax:

〈expression〉 ::= 〈expression-1〉 ‘,’ 〈assignment_expression〉

〈postfix_expression〉 ::= 〈postfix_expression-1〉 ‘[’ 〈expression-1〉 ‘]’
| 〈postfix_expression-1〉 ‘.’ IDENTIFIER
| 〈postfix_expression-1〉 ‘->’ IDENTIFIER

〈logical_or_expression〉 ::= 〈logical_or_expression-1〉 ‘||’ 〈logical_and_expression-1〉

〈logical_and_expression〉 ::= 〈logical_and_expression-1〉 ‘&&’ 〈inclusive_or_expression-1〉
Semantics:

〈expression〉.cc = 0; or
〈postfix_expression〉.cc = 0; or
〈logical_or_expression〉.cc = 0; or
〈logical_and_expression〉.cc = 0;

The dot, arrow operators simply indicate the access to members of ob-
jects which are of type ‘struct’ or ‘union’. The accessed values are already
in their respective locations, encoded according to their declared type. No
conversion is needed.

4.4.8.4 The cast operator

The cast operator simply converts the right operand to the type indicated by
the left operand. The conversion is explicit, and its cost is determined by
function CC(·, ·).

Syntax:

〈cast_expression〉 ::= ‘(’ 〈type_name〉 ‘)’ 〈cast_expression-1〉
Semantics:

〈cast_expression〉.cc = CC(〈cast_expression-1〉.t, 〈type-name〉.t)

4.4.8.5 The integral promotion binary operators

Only the bitwise shift operators belong to this class. These operators perform
integral promotion on each of their two operands, individually.

Syntax:

〈shift_expression〉 ::= 〈shift_expression-1〉 ‘«’ 〈additive_expression〉
| 〈shift_expression-1〉 ‘»’ 〈additive_expression〉

4.4. THE ATTRIBUTE GRAMMAR 221

Semantics:

〈shift_expression〉.cc = CC(〈shift_expression-1〉.t, I(〈shift_expression-1〉.t))+
CC(〈additive_expression〉.t, I(〈additive_expression〉.t));

4.4.8.6 The usual arithmetic conversions operators

Operators in this class determine their result type according to the usual
arithmetic conversions (see Section 4.4.1.11 (page 149)), then they convert
each of their operands to the result type.

Syntax:
〈equality_expression〉 ::= 〈equality_expression〉 ‘==’ 〈relational_expression〉

| 〈equality_expression〉 ‘!=’ 〈relational_expression〉

〈relational_expression〉 ::= 〈relational_expression〉 ‘<’ 〈shift_expression〉
| 〈relational_expression〉 ‘>’ 〈shift_expression〉
| 〈relational_expression〉 ‘<=’ 〈shift_expression〉
| 〈relational_expression〉 ‘>=’ 〈shift_expression〉

〈additive_expression〉 ::= 〈additive_expression-1〉 ‘+’ 〈multiplicative_expression〉
| 〈additive_expression-1〉 ‘-’ 〈multiplicative_expression〉

〈multiplicative_expression〉 ::= 〈multiplicative_expression-1〉 ‘*’ 〈cast_expression〉
| 〈multiplicative_expression-1〉 ‘/’ 〈cast_expression〉
| 〈multiplicative_expression-1〉 ‘%’ 〈cast_expression〉

〈inclusive_or_expression〉 ::= 〈inclusive_or_expression-1〉 ‘|’ 〈exclusive_or_expression〉

〈exclusive_or_expression〉 ::= 〈exclusive_or_expression-1〉 ‘^’ 〈and_expression〉

〈and_expression〉 ::= 〈and_expression-1〉 ‘&’ 〈equality_expression〉
Generalized syntax:
〈father_expression〉 ::= 〈child_expression-1〉 〈operator〉 〈child_expression-2〉
Semantics:

〈father_expression〉.cc = CC(〈child_expression-1〉.t, 〈father_expression〉.t)+
CC(〈child_expression-2〉.t, 〈father_expression〉.t);

Please remember from Section 4.4.1.11 (page 149) that
〈father_expression〉.t = U(〈child_expression-1〉.t, 〈child_expression-2〉.t).
Therefore, at least one of CC(〈child_expression-1〉.t,〈father_expression〉.t)
or CC(〈child_expression-2〉.t,〈father_expression〉.t) is zero.

4.4.8.7 The simple assignment operator

In a simple assignment expression, the right operand is converted to the type
of the left operand.

Syntax:
〈assignment_expression〉 ::= 〈unary_expression〉 ‘=’ 〈assignment_expression-1〉

222 CHAPTER 4. COST OF SYNTAX ELEMENTS

Semantics:

〈assignment_expression〉.cc = CC(〈assignment_expression-1〉.t, 〈unary_expression〉.t);

4.4.8.8 The compound assignment operators

Compound assignment operators determine the type of their ‘intermediate
result’ (which I call t′) according to the usual arithmetic conversions as de-
scribed in Section 4.4.1.11 (page 149)). Then they convert each operand to
type t′, they calculate the result and they store it back by converting it from
type t′ to the type of the left operand.

Syntax:

〈assignment_expression〉 ::= 〈unary_expression〉 ‘*=’ 〈assignment_expression-1〉
| 〈unary_expression〉 ‘/=’ 〈assignment_expression-1〉
| 〈unary_expression〉 ‘%=’ 〈assignment_expression-1〉
| 〈unary_expression〉 ‘+=’ 〈assignment_expression-1〉
| 〈unary_expression〉 ‘-=’ 〈assignment_expression-1〉
| 〈unary_expression〉 ‘«=’ 〈assignment_expression-1〉
| 〈unary_expression〉 ‘»=’ 〈assignment_expression-1〉
| 〈unary_expression〉 ‘&=’ 〈assignment_expression-1〉
| 〈unary_expression〉 ‘|=’ 〈assignment_expression-1〉
| 〈unary_expression〉 ‘^=’ 〈assignment_expression-1〉

Semantics:

t′ = U(〈unary_expression〉.t, 〈assignment_expression-1〉.t);
〈assignment_expression〉.cc = CC(〈unary_expression〉.t, t′)+

CC(〈assignment_expression-1〉.t, t′)+
CC(t′, 〈assignment_expression〉.t);

I emphasize that the semantics described above is the correct one. The reader is in-
vited to abandon more naive beliefs, such as the one according which compound assign-
ment operators cause the right operand to be converted to the type of the left operand,
and then the operation to be performed directly between the left and the converted right
operand, in the encoding of the left operand. This belief is incorrect. Please consider the
following two examples:

int i = 12;
i /= 2.7;

int i = 12;
i /= (int)2.7;

At the end of the left fragment, the value of variable ‘i’ is 4. At the end of the right
fragment, the value of variable ‘i’ is 6. If the above belief was true, both fragments should
yield 6.

The cost rules in this section apply provided that the operation is admitted by the
type constraints of the operators involved (e.g. the expression ‘i <<= 2.0’ is not allowed).
Depending on the cases one or more of the above three CC(..., ...) contributions may be
zero.

4.4. THE ATTRIBUTE GRAMMAR 223

4.4.8.9 The conditional operator

The result type of a conditional operator is determined according to the usual
arithmetic conversions, applied on the second and third operand. The con-
versions associated to the operator involve the conversion of the second and
third argument to the result type.

Syntax:
〈conditional_expression〉 ::= 〈logical_or_expression〉 ’?’ 〈expression〉 ’:’

〈conditional_expression-1〉
Semantics:

〈conditional_expression〉.cc =
CC(〈expression〉.t, 〈conditional_expression〉.t)+
CC(〈conditional_expression-1〉.t, 〈conditional_expression〉.t)

Please note that one or more of the above CC(...) contributions are zero.

4.4.8.10 The function call operator

The conversions undergone by the actual arguments of a function call are not
completely trivial. They are fully specified in Section 6.3.2.2 of the C standard
[81]. I report the salient specifications in the following two statements:1:

• «If the expression that denotes the called function has a type that does
not include a prototype, the integral promotions are performed on
each argument, and arguments that have type ‘float ’ are promoted to
‘double’. These are called the default argument promotions.»

• «If the expression that denotes the called function has a type that in-
cludes a prototype, the arguments are implicitly converted, as if by
assignment, to the types of the corresponding parameters. The ellipsis
notation in a function prototype declarator causes argument type con-
version to stop after the last declared parameter. The default argument
promotions are performed on trailing arguments».

In synthesis, when a prototype is available for the called function, argu-
ments are converted to the respective parameter types, as if by assignment,
therefore following the same rules and costs already described in Section
4.4.8.7 (page 221). When a prototype is not available for the called function,

1 Be aware of the following terminological issue. In the standard, the terms parameter
and argument are not interchangeable, and have distinct meaning. Informally, parameter
and arguments are respectively close to the concepts called formal parameters and actual
parameters. Formally, a parameter is an element (nonterminal 〈parameter_declaration〉 in the
grammar) of a parameter type list (nonterminal 〈parameter_type_list〉 in the grammar). «A
parameter type list specifies the types of, and may declare identifiers for, the parameters
of a function» (see Section 6.5.4.3 of the C standard [81]). Simply said, parameters are
symbols which appear in function declarators, and include a type and possibly an identi-
fier. On the other hand, an argument is an expression (as complex as desired, nonterminal
〈assignment_expression〉 in the grammar) which appears in an argument expression list
(nonterminal 〈argument_expression_list〉 in the grammar).

224 CHAPTER 4. COST OF SYNTAX ELEMENTS

the default argument promotions are used. The default argument promotions
are used also when a prototype is available and it is a variable-argument
prototype, for those arguments corresponding to the ellipsis ‘...’.

If t is a type, I denote with D(t) the type resulting from the default argu-
ment promotion of type t, as prescribed by the C standard.

Syntax:
〈postfix_expression〉 ::= 〈postfix_expression-1〉 ’(’ ’)’

| 〈postfix_expression-1〉 ’(’ 〈argument_expression_list〉 ’)’

where:
〈argument_expression_list〉 ::= 〈argument_expression_list〉 ‘,’ 〈assignment_expression〉

Semantics:

〈postfix_expression〉.cc =
∑d

i=1 CC(〈assignment_expression〉i .t, 〈parameter_declaration〉i .t)+
∑

p
i=d+1 CC(〈assignment_expression〉i .t, D(〈assignment_expression〉i .t))

where:

• d is the number of declared parameters, not counting the ellipsis if present; zero if
the function has no prototype;

• p is the number of the passed arguments;

• 〈assignment_expression〉i is the i-th argument, present in the argument expres-
sion list of the function call expression; all the passed arguments are symbols
〈assignment_expression〉1 ... 〈assignment_expression〉p;

• 〈parameter_declaration〉i is the i-th parameter as declared in the function declaration
prototype; I assume that they also have an attribute t; all the parameters declared
in the prototype are symbols 〈parameter_declaration〉1 ... 〈parameter_declaration〉d.

4.4.8.11 The ‘return’ statement

Syntax:
〈jump_statement〉 ::= ‘return’ 〈expression〉 ’;’

Semantics:
〈jump_statement〉.cc = CC(〈expression〉.t, t0)

where t0 is the type of the current function containing the statement.

4.4. THE ATTRIBUTE GRAMMAR 225

4.4.9 Attribute ‘cf’, flow control cost
Attribute c f expresses the single-execution cost of determining whether to
transfer the control flow to another point in the program, and possibly trans-
ferring it when needed. It is defined for statements. It is an inherited at-
tribute; N.c f depends in general on N. f , on the syntax of its father node.

4.4.9.1 Iteration statements

4.4.9.1.1 ‘while’ statements

Syntax:

〈iteration_statement〉 ::= ’while’ ’(’ 〈expression〉 ’)’ 〈statement〉
Semantics:

〈expression〉.c f = 0;
〈statement〉.c f = 1 While = 1 jump;

4.4.9.1.2 ‘do ... while (...)’ statements

Syntax:

〈iteration_statement〉 ::= ‘do’ 〈statement〉 ‘while’ ‘(’ 〈expression〉 ‘)’ ‘;’

Semantics:
〈expression〉.c f = 0;
〈statement〉.c f = 0;

(Costs are zero. There are no jump instructions to associate. Compare
with Section 4.3 (page 117).)

4.4.9.1.3 ‘for’ statements

The only additional instruction introduced by the translation of a ‘for’
statement is a an unconditional jump instruction ‘j’, appearing after the
translation of 〈optional_expression-3〉 in the translation rule for ‘for’ statements
(Section 4.3 (page 117)).

Its cost is of class jump, and to encapsulate it, I define a new atom
named ‘For’. This atom must be assigned as an inherited cost to one of
symbols 〈statement〉 or 〈optional_expression-3〉, since the ‘j’ instruction is guar-
anteed to execute exactly the same number of times as 〈statement〉.T and
〈optional_expression-3〉.T, since both translations are monolithic, and they are
interested by exactly the same execution flows. The choice is completely ar-
bitrary. I choose to attribute it to 〈statement〉.

Syntax:

〈iteration_statement〉 ::= ‘for’ ‘(’ 〈optional_expression-1〉 ‘;’ 〈optional_expression-2〉 ‘;’
〈optional_expression-3〉 ‘)’ 〈statement〉

226 CHAPTER 4. COST OF SYNTAX ELEMENTS

Semantics:

〈optional_expression-1〉.c f = 0
〈optional_expression-2〉.c f = 0
〈optional_expression-3〉.c f = 0
〈statement〉.c f = 1 For

4.4.9.2 Selection statements

4.4.9.2.1 ‘if (...) ...’ statements

Syntax:
〈selection_statement〉 ::= ’if’ ’(’ 〈expression〉 ’)’ 〈statement〉
Semantics:

〈expression〉.c f = 0
〈statement〉.c f = 0

(Costs are zero. There are no jump instructions to associate. Compare
with Section 4.3 (page 117).)

4.4.9.2.2 ‘if (...) ... else ...’ statements

Syntax:
〈selection_statement〉 ::= ‘if’ ‘(’ 〈expression〉 ‘)’ 〈statement-1〉 ‘else’ 〈statement-2〉
Semantics:

〈statement-1〉.c f = 1
2 If

〈statement-2〉.c f = 1
2 If

Note that it is impossible to determine in advance whether the flavor of
the translation of 〈expression〉 will be TF or TT. Therefore, it is not possible
to attribute in advance the cost of the additional jump (‘j end’) to one of the
two branches. For this reason, this cost is attributes to both of them in half.
Therefore, both statements receive a cost equal to half If, and 1 If = 1 jump.

4.4.9.2.2.0.7. »Wovon man nicht sprechen kann, darüber muß man schweigen.«
[18]

4.4.9.2.3 ‘switch’ statements

The most convenient and realistic way to account for the translation of a
switch statement is to assume that the compiler translates it in the form of a
jump table. This translation style is very common, and significantly easier to
model than a chain of comparisons. I illustrate it with the following example:

4.4. THE ATTRIBUTE GRAMMAR 227

switch (〈expression〉)
{

case 〈constant_expression-1〉 :
〈statement_list-1〉

case 〈constant_expression-2〉 :
〈statement_list-2〉

...
default:

〈statement_list-n〉
}

The corresponding translation based on a jump-table is as follows:

{
〈 expression 〉 .T
shl free , 〈 expression 〉 .R, #2
add free , free , #jumptable
j free

jumptable: DATA default ; cell 0
DATA default ; cell 1
...

DATA case−2 ; cell 〈constant_expression−2〉 . e
...

DATA default ; other cells
...

DATA case−1 ; cell 〈constant_expression−1〉 . e
...

case−1: 〈statement_list−1〉 .T
case−2: 〈statement_list−2〉 .T

...
default : 〈statement_list−n〉 .T

end:
}

Note that:

• the translation is correct with respect to ‘break’ statements and fall-
through cases. Break instructions are simply translated to a ‘j end’;

• the purpose of the ‘shl’ instruction is to multiply by four the result of
the selection expression, thus obtaining the offset of the cell containing
the case address in the jump table. This is required because in my
architectural assumptions, addresses are 32 bit (i.e. 4 byte) long;

• ‘DATA’ is a directive to reserve a word in the program memory, whose
value is initialized to the value of the label given as an argument; I
employ the ‘DATA’ directives to create the jump table;

• note that jump addresses in the jump table are ordered by increasing
value of the case key, while code in the ‘case-n’ sections is ordered in

228 CHAPTER 4. COST OF SYNTAX ELEMENTS

the same way as in the original source code, to respect fall-through
correctness;

• cell 〈constant_expression-2〉.e is reported before 〈constant_expression-1〉.e
just to give the idea that cases in the jumptable are ordered depending
on the numerical value of their respective constant expressions, which
is not the same order as the cases appear in the source code.

Syntax:

〈selection_statement〉 ::= ‘switch’ ’(’ 〈expression〉 ’)’ 〈statement〉
Semantics:

〈expression〉.c f = 1 Switch;

A Switch atom is therefore 2 alul + 1 jump. More accurate models of the
compiler, modeling more efficient techniques in a more accurate way are left
to the implementation of this thesis.

4.4.9.3 Labeled statements

Syntax:

〈labeled_statement〉 ::= IDENTIFIER ‘:’ 〈statement〉
| ‘case’ 〈constant_expression〉 ‘:’ 〈statement〉
| ‘default’ ‘:’ 〈statement〉

Semantics:
〈statement〉.c f = 0;

No cost.

4.4.9.4 Jump statements

Syntax:

〈jump_statement〉 ::= ‘goto’ IDENTIFIER ’;’
| ‘continue’ ’;’
| ‘break’ ’;’
| ‘return’ ’;’
| ‘return’ 〈expression〉 ’;’

Generalized syntax:

〈jump_statement〉 ::= 〈jump_instruction〉 〈optional_identifier_or_expression〉 ’;’

Semantics:

〈jump_instruction〉.c f =

1 Goto
1 Continue
1 Break
1 Return
1 Return

respectively, depending on which of the above syntax rules was recognized.

4.4. THE ATTRIBUTE GRAMMAR 229

Trivial. All the above atoms have cost equal to 1 jump. I introduce sepa-
rate atom names to distinguish the cause of the consumption.

230 CHAPTER 4. COST OF SYNTAX ELEMENTS

4.4.10 Attribute ‘c’, total single-execution cost
The total cost of each node is the sum of the cost contributions presented
in the previous sections: the inherent cost, the conversion cost and the flow
control cost.

In other words, for each symbol 〈symbol〉:

Semantics:
〈symbol〉.c = 〈symbol〉.ci + 〈symbol〉.cc + 〈symbol〉.c f

4.5. GRAMMAR REFERENCE 231

4.5 Grammar reference
This section contains the two portions of the specifications of the C language
(according to the ANSI standard) describing respectively expressions and
statements.

4.5.1 Expressions
〈expression〉 ::= 〈assignment_expression〉

| 〈expression〉 ‘,’ 〈assignment_expression〉

〈assignment_expression〉 ::= 〈conditional_expression〉
| 〈unary_expression〉 ‘=’ 〈assignment_expression〉
| 〈unary_expression〉 ‘*=’ 〈assignment_expression〉
| 〈unary_expression〉 ‘/=’ 〈assignment_expression〉
| 〈unary_expression〉 ‘%=’ 〈assignment_expression〉
| 〈unary_expression〉 ‘+=’ 〈assignment_expression〉
| 〈unary_expression〉 ‘-=’ 〈assignment_expression〉
| 〈unary_expression〉 ‘«=’ 〈assignment_expression〉
| 〈unary_expression〉 ‘»=’ 〈assignment_expression〉
| 〈unary_expression〉 ‘&=’ 〈assignment_expression〉
| 〈unary_expression〉 ‘|=’ 〈assignment_expression〉
| 〈unary_expression〉 ‘^=’ 〈assignment_expression〉

〈conditional_expression〉 ::= 〈logical_or_expression〉
| 〈logical_or_expression〉 ‘?’ 〈expression〉 ‘:’

〈conditional_expression〉

〈logical_or_expression〉 ::= 〈logical_and_expression〉
| 〈logical_or_expression〉 ‘||’ 〈logical_and_expression〉

〈logical_and_expression〉 ::= 〈inclusive_or_expression〉
| 〈logical_and_expression〉 ‘&&’ 〈inclusive_or_expression〉

〈inclusive_or_expression〉 ::= 〈exclusive_or_expression〉
| 〈inclusive_or_expression〉 ‘|’ 〈exclusive_or_expression〉

〈exclusive_or_expression〉 ::= 〈and_expression〉
| 〈exclusive_or_expression〉 ‘^’ 〈and_expression〉

〈and_expression〉 ::= 〈equality_expression〉
| 〈and_expression〉 ‘&’ 〈equality_expression〉

〈equality_expression〉 ::= 〈relational_expression〉
| 〈equality_expression〉 ‘==’ 〈relational_expression〉
| 〈equality_expression〉 ‘!=’ 〈relational_expression〉

〈relational_expression〉 ::= 〈shift_expression〉
| 〈relational_expression〉 ‘<’ 〈shift_expression〉
| 〈relational_expression〉 ‘>’ 〈shift_expression〉
| 〈relational_expression〉 ‘<=’ 〈shift_expression〉
| 〈relational_expression〉 ‘>=’ 〈shift_expression〉

〈shift_expression〉 ::= 〈additive_expression〉
| 〈shift_expression〉 ‘«’ 〈additive_expression〉
| 〈shift_expression〉 ‘»’ 〈additive_expression〉

232 CHAPTER 4. COST OF SYNTAX ELEMENTS

〈additive_expression〉 ::= 〈multiplicative_expression〉
| 〈additive_expression〉 ‘+’ 〈multiplicative_expression〉
| 〈additive_expression〉 ‘-’ 〈multiplicative_expression〉

〈multiplicative_expression〉 ::= 〈cast_expression〉
| 〈multiplicative_expression〉 ‘*’ 〈cast_expression〉
| 〈multiplicative_expression〉 ‘/’ 〈cast_expression〉
| 〈multiplicative_expression〉 ‘%’ 〈cast_expression〉

〈cast_expression〉 ::= 〈unary_expression〉
| ‘(’ 〈type_name〉 ‘)’ 〈cast_expression〉

〈unary_expression〉 ::= 〈postfix_expression〉
| ‘++’ 〈unary_expression〉
| ‘--’ 〈unary_expression〉
| ‘&’ 〈cast_expression〉
| ‘*’ 〈cast_expression〉
| ‘+’ 〈cast_expression〉
| ‘-’ 〈cast_expression〉
| ‘~’ 〈cast_expression〉
| ‘!’ 〈cast_expression〉
| ‘sizeof’ 〈unary_expression〉
| ‘sizeof’ ’(’ 〈type_name〉 ’)’

〈postfix_expression〉 ::= 〈primary_expression〉
| 〈postfix_expression〉 ‘[’ expression ‘]’
| 〈postfix_expression〉 ‘(’ ‘)’
| 〈postfix_expression〉 ‘(’ 〈argument_expression_list〉 ‘)’
| 〈postfix_expression〉 ‘.’ IDENTIFIER
| 〈postfix_expression〉 ‘->’ IDENTIFIER
| 〈postfix_expression〉 ‘++’
| 〈postfix_expression〉 ‘--’

〈primary_expression〉 ::= IDENTIFIER
| CONSTANT
| STRING_LITERAL
| ‘(’ 〈expression〉 ‘)’

4.5.2 Statements
〈statement〉 ::= 〈labeled_statement〉

| 〈compound_statement〉
| 〈expression_statement〉
| 〈selection_statement〉
| 〈iteration_statement〉
| 〈jump_statement〉

〈labeled_statement〉 ::= IDENTIFIER ‘:’ 〈statement〉
| ‘case’ 〈constant_expression〉 ’:’ 〈statement〉
| ‘default’ ’:’ 〈statement〉

〈compound_statement〉 ::= ‘{’ 〈optional_declaration_list〉 〈optional_statement_list〉 ‘}’

〈optional_statement_list〉 ::=
| 〈statement_list〉

4.5. GRAMMAR REFERENCE 233

〈statement_list〉 ::= 〈statement〉
| 〈statement_list〉 〈statement〉

〈expression_statement〉 ::= ‘;’
| 〈expression〉 ‘;’

〈selection_statement〉 ::= ‘if’ ’(’ 〈expression〉 ’)’ 〈statement〉
| ‘if ’(’ expression ’)’ 〈statement〉 ‘else’ 〈statement〉
| ‘switch’ ’(’ 〈expression〉 ’)’ 〈statement〉

〈iteration_statement〉 ::= ‘while’ ‘(’ 〈expression〉 ‘)’ 〈statement〉
| ‘do’ 〈statement〉 ‘while’ ‘(’ 〈expression〉 ‘)’ ‘;’
| ‘for’ ‘(’ 〈optional_expression〉 ‘;’ 〈optional_expression〉 ‘;’

〈optional_expression〉 ‘)’ 〈statement〉

〈jump_statement〉 ::= ‘goto’ IDENTIFIER ‘;’
| ‘continue’ ‘;’
| ‘break’ ‘;’
| ‘return’ ‘;’
| ‘return’ 〈expression〉 ‘;’

〈translation_unit〉 ::= 〈external_declaration〉
| 〈translation_unit〉 〈external_declaration〉

〈external_declaration〉 ::= 〈function_definition〉
| 〈declaration〉

〈function_definition〉 ::= 〈declaration_specifiers〉 〈declarator〉 〈declaration_list〉
〈compound_statement〉

| 〈declaration_specifiers〉 〈declarator〉 〈compound_statement〉
| 〈declarator〉 〈declaration_list〉 〈compound_statement〉
| 〈declarator〉 〈compound_statement〉

234 CHAPTER 4. COST OF SYNTAX ELEMENTS

Chapter 5
Results, conclusions,
developments

THIS chapter reports experimental results which show the viability
and effectiveness of the estimation and optimization techniques
presented in this thesis. Then, it draws the conclusion of the work,
and it discusses some directions where the research could extend.

5.1 Results

5.1.1 Estimation
The major advantages of my estimation technique are the high level of in-
formation provided and the speed, at the expenses of a slightly reduced
accuracy. As far as the high level is concerned, a quantitative comparison
with other approaches is difficult to setup and bears little meaning. As far
as speed and accuracy is concerned, I have compared the technique against
instruction set simulation on a suite of industrial benchmarks including au-
tomotive, consumer, network, office, security and telecommunications ap-
plications.

Although the technique is general and completely independent from any
architectural detail, I chose one specific simulator and, therefore, a specific
architecture to model. As an instruction set simulator, I have employed
SimIt-Arm [35], because it is currently the common reference point in the
embedded design community. Actually, SimIt itself provides the latencies
and the counts of the executed instructions, but not their energies, so I aug-
mented SimIt with absorbed current data. The most convenient way to do so
was to reuse the same platform information available from JouleTrack [42],
therefore I refer to a platform hosting a StrongArm SA-1100 processor with a

235

236 CHAPTER 5. RESULTS, CONCLUSIONS, DEVELOPMENTS

clock running at 206 MHz and a supply voltage of 1.5 V. The memory hierar-
chy comprises separate instruction and data caches, each with associativity
equal to 32 and sized 512 and 256 blocks respectively, where each block is
formed by 32 bytes. Cache hits complete in 1 clock cycle; cache misses cause
read and write penalties of 33 and 22 clock cycles respectively.

As a benchmark suite, I used MiBench [150], which is, in turn, the refer-
ence point for benchmarks in the embedded systems community. I ran 17 of
the 24 benchmarks on both SimIt-Arm and in our tool flow. I was unable to
include the remaining 7 benchmarks in the tests because they did not com-
pile successfully under the arm-linux-gcc tool chain, which is required
for SimIt-Arm.

SimIt My estimates Estimation error
Benchmark E(mJ) T(ms) E(mJ) T(ms) εE(%) εT(%)

1 adpcm-enc 37.1 191.6 40.4 281.9 9.3 47.6
2 adpcm-dec 35.3 171.3 29.1 148.2 -16.6 -13.3
3 bitcount 57.2 318.7 58.5 234.9 2.8 -26.1
4 blowfish-enc 75.4 483.2 74.1 517.9 -1.2 7.2
5 blowfish-dec 75.8 479.1 74.1 517.9 -1.2 8.1
6 crc32 91.0 637.0 72.4 511.0 -20.3 -19.8
7 dijkstra 32.4 176.6 41.4 198.9 27.9 12.6
8 fft 89.9 336.6 82.9 391.9 -7.8 16.5
9 ispell 10.1 80.5 11.7 89.2 16.8 10.9

10 jpeg 60.9 504.7 75.1 489.5 23.2 -3.0
11 qsort 120.9 687.4 83.5 466.4 -30.9 -32.1
12 rijndael-enc 42.0 245.0 40.9 242.3 -2.4 -1.1
13 rijndael-dec 41.2 238.8 39.6 237.6 -3.4 -0.2
14 sha 18.1 74.7 22.4 102.0 24.9 37.8
15 stringsearch 4.8 44.4 4.6 40.9 -3.5 -6.8
16 susan 40.5 180.1 41.7 191.4 4.4 6.3
17 tiff 3.1 16.6 1.8 9.6 -42.8 -41.9

Table 5.1: The comparison between energy and execution time estimates pro-
vided by SimIt-Arm and our tool shows that our methodology is quite accu-
rate.

I report in Table 5.1 the results, with the full list of the benchmarks I em-
ployed, together with their consumed energy and execution time estimated
respectively with SimIt-Arm and our methodology.

Figures show that there is close correspondence between reference and
estimated data. The estimates exhibit good quality-of-result indicators: the
coefficients of correlation between real and estimated data are 0.978 and
0.960 for the consumed energy and the execution time estimates respectively.
Moreover, the average of the absolute value of the relative errors equals
14.1% for energy and 17.1% for execution time. Work is in progress to re-
fine the implementation of our methodology, especially as far as statistical
corrections are concerned, and even higher accuracy is expected when it will
be complete.

As far as speed is concerned, statistics over the same benchmarks show,
for our source-level flow, simulation times which are, on the average 10,350

5.1. RESULTS 237

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Benchmarks

0

20

40

60

80

100

120

140
E

ne
rg

y
(m

J)

Reference
Estimated

Figure 5.1: Comparison between reference and estimated energy in the ex-
perimental benchmarks.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Benchmarks

0

100

200

300

400

500

600

700

T
im

e
(m

s)

Reference
Estimated

Figure 5.2: Comparison between reference and estimated execution time in
the experimental benchmarks.

times shorter than SimIt-Arm. In short, 1 hour of instruction-set simula-
tion can be replaced with 0.348 seconds of source-level simulation. This is
good advance in the exploration possibilities made available to developers:
with ISS tools, in one hour of simulation over a modern workstation, a de-
veloper can analyze a single run of a complex application (such as an MP3
encoder) over a limited number of samples. Since the same analysis requires
less than half second with our source-level approach, in the same simulation
time the developer could analyze the algorithm over sequences which are
10,000 times longer, or explore many different optimization alternatives of
the algorithm over the same sequence.

5.1.2 Optimization
I have conducted preliminary experiments to show the viability and the ef-
fectiveness of the approach. In order to do so, I have submitted four different

238 CHAPTER 5. RESULTS, CONCLUSIONS, DEVELOPMENTS

benchmark applications to our flow. For each application, we obtained the
list of proposed optimizations. Then, I applied those optimizations manu-
ally, verifying the effect after each of them.

The results are that: (1) the transformations suggested by the flow cause
significant improvements in consumed energy and execution times, and (2)
the optimization loop is very quick, requiring a few seconds per iteration. I
do not consider here the time required for the application of the transforma-
tions. I chose not to perform automatic transformation application because it
involves considerable implementation effort, and little scientific novelty. An
automatic transformation technique was proposed in [127], and there are no
conceptual difficulties to integrate that technique in our approach.

In the remainder of this section, I describe the benchmarks, the experi-
mental setup, and the detailed results.

I have employed four different benchmarks: (1) Acfilter, (2) Hough Trans-
form, (3) Dijkstra, (4) FFT. The first benchmark, ‘Acfilter’, is a psycho-
acoustic audio filter, composed by three stages: gammatone filter bank,
equalization and phase-accurate recombination. It was provided to me by an
industrial partner, who defined it as “already optimized”. The second bench-
mark is a computer-vision application, which employs the Hough transform
to detect lines in panoramic images captured from conical mirrors. This code
was embedded on a moving robot. The third benchmark is Dijkstra’s algo-
rithm to find the shortest path in a graph, an algorithm frequently used in
networking applications. It comes from MiBench [150]. The fourth bench-
mark is a usual FFT implementation, also from [150].

The experimental setup included SimIt-Arm [35], an instruction set sim-
ulator, used to verify a posteriori the effect of the transformations. Please note
that an ISS is not part of our proposed flow: I used it here only for inde-
pendent validation. I have employed SimIt-Arm rather than another ISS,
because it is currently the reference ISS in the embedded community. The
experimental configuration is the same as in the experiments described in
the previous section.

I now report briefly the transformations suggested by our optimization
flow, in order of decreasing score. For benchmark 1, it suggested 7 opti-
mizations: a strength reduction, a function inlining, a function macro re-
placement, a common subexpression elimination, and 3 loop unrollings. For
benchmark 2, the flow suggested 7 optimizations: 6 loop unrollings and a
strength reduction. For benchmark 3, the flow suggested 5 optimizations: 2
loop unrollings, 1 malloc factoring, 1 loop unrolling, 1 fscanf factorization.
For benchmark 4, the flow suggested: 1 function specialization, 1 loop un-
rolling, 2 standard library call factorization.

I applied all the above optimizations, one at a time, and ran the
instruction-level simulators after each step. The results are reported in Table
5.2 and in the charts in Figure 5.3. The optimization flow achieves reduc-
tions between 7.8% and 22% in execution time, and between 5% and 22% in
consumed energy.

The optimization flow proves to be effective, suggesting transformations
that cause significant gains both in energy and execution time.

5.1. RESULTS 239

Benchmark (1): AcFilter

Time (ms) Time gain Energy (mJ) Energy gain

Original 331.18 390.70
1: FI 329.05 0.64% 388.14 0.65%
2: LU 326.91 1.29% 385.63 1.30%
3: LU 318.69 3.77% 382.76 2.03%
4: LU 318.69 3.77% 382.76 2.03%
5: FM 298.71 9.80% 379.62 2.83%
6: FM 297.95 10.03% 371.51 4.91%
7: LU 285.86 13.68% 367.39 5.96%

Benchmark (2): Hough Transform

Time (ms) Time gain Energy (mJ) Energy gain

Original 1756.32 240.25
1: LU 1602.46 8.76% 224.10 6.72%
2: LU 1544.46 12.06% 230.77 3.94%
3: LU 1446.64 17.63% 217.60 9.43%
4: LU 1402.14 20.17% 214.81 10.59%
5: SR 1401.86 20.18% 214.83 10.58%

Benchmark (3): Dijkstra

Time (ms) Time gain Energy (mJ) Energy gain

Original 237.08 41.458
1: LU 236.61 0.20% 41.423 0.08%
2: LU 236.51 0.24% 41.412 0.11%
3: MF 227.00 4.25% 40.713 1.80%
4: LU 226.60 4.42% 40.639 1.98%
5: SF 218.39 7.88% 39.366 5.05%

Benchmark (4): FFT

Time (ms) Time gain Energy (mJ) Energy gain

Original 214.13 39.081
1: FS 169.06 21.05% 30.874 21.00%
2: LU 167.68 21.69% 30.665 21.53%
3: SF 167.03 22.00% 30.575 21.77%
4: SF 166.43 22.27% 30.481 22.01%

Table 5.2: Results: which transformations are selected by our flow for each
benchmark, and how much execution time and energy gains they cause. For
a key to the acronyms (FS, LU, ...) see Section 3.4.1 (page 93).

240 CHAPTER 5. RESULTS, CONCLUSIONS, DEVELOPMENTS

0 1 2 3 4 5 6 7
70%

80%

90%

100%
AcFilter

Time

Energy

0 1 2 3 4 5
70%

80%

90%

100%
Hough

Time

Energy

0 1 2 3 4 5
70%

80%

90%

100%
Dijkstra

Time

Energy

0 1 2 3 4
70%

80%

90%

100%
FFT

Time

Energy

Figure 5.3: Results: how much execution time and energy are gained after
applying each of the transformations proposed by our flow.

5.2. CONCLUSIONS 241

5.2 Conclusions

5.2.1 Estimation
This thesis describes a methodology to determine the cost of executing a C
program, providing estimates for source-level entities. The method is for-
mally founded and supported by a complete set of tools. It proves to be ac-
curate and remarkably faster (10,000 times) than instruction-set simulation.
Thanks to its optimized instrumentation strategy, instrumented programs
run only 2.2 slower than original programs. Most important, our methodol-
ogy offers to the programmer an unprecedented insight in the source-level
causes of energy and time consumption, by allowing consumption estima-
tion of individual syntax elements. Additionally, it externally operates as
regular C compiler, therefore it can be applied transparently to most existing
projects with no changes. Finally, it does not require the target onto which
the code will be targeted but rather relies on a pre-characterization of that
platform.

5.2.2 Optimization
I have also described a technique to select and target automatically the source
code transformations to optimize a given program. The method is formally
founded, and supported by a set of tools. It relies on an estimation engine
which is accurate, and faster than instruction-set simulation. It improved
execution time and energy consumption significantly over four industrial
benchmarks. Thanks to this technique, it is possible to speed up the op-
timization process for embedded software, thanks to a short optimization
loop, free from slow steps, such as instruction-set simulation.

242 CHAPTER 5. RESULTS, CONCLUSIONS, DEVELOPMENTS

5.3 Developments

5.3.1 Extending the methodology to C++

Given the important and increasing relevance of the C++ programming lan-
guage in the embedded design community, the extensibility of the method-
ology proposed here to C++ is highly desirable. This section shows that this
extension is possible, and it involves mainly a technical effort, while the con-
ceptual difficulties are quite moderate.

The following paragraphs discuss the issues, and their associated re-
quired effort, involved in adapting the methodology to each of the new fea-
tures that C++ introduces with respect to C (with reference to [84]):

• lexical scanning:
the language adds a new style of comments ‘ // ... ’, 28 new keywords1,
and minor extensions in the notation of string literals. Updating the
implementation of the flow to comply is trivial;

• parsing:
the complexity of the syntax of the C++ programming language is sig-
nificantly higher than ANSI C. Willink [85] publishes a grammar for
standard C++ which comprises 560 syntax rules, whereas the C gram-
mar used in this thesis reported by Degener [147] comprises 213. The
very effort required to extend the syntax is significant, nevertheless it is
very likely that the ready, open-source rules by Willink can be reused
for the purpose. Very significant technical effort is required, on the
other hand to extend the structure of the type system2 and the symbol
tables, which are required to perform scoping. A complete support
for the C++ scoping rules is required for correct lexical tie-ins. Signif-
icant technical effort is required to extend the AST generation for the
new rules. C++ presents some syntactical ambiguities which need to
be resolved semantically. Non-negligible technical effort is required to
implement the following parse-time disambiguation mechanisms:

– declarations may now appear in all the places where a statement
may appear; a disambiguation technique is required to distin-
guish expression statements from declarations; in cases, this re-
quires examining the entire parse sub-tree candidate (Section 6.8
in [84]);

– a similar disambiguation technique is needed to distinguish
function-style casts from declarations (similar as above) inside
declarators (see Section 8.1.1 in [84]);

1 asm, catch, class, const_cast, delete, dynamic_cast, explicit , false , friend,
inline, mutable, namespace, new, operator, private, protected, public, reinterpret_cast ,
static_cast , template, this, throw, true, try, typeid, typename, virtual, wchar_t.

2scoping rules which are consistent with namespaces and classes (potentially nested)
require a symbol table structure and contents which are far more complex than the corre-
sponding data structures for the C language.

5.3. DEVELOPMENTS 243

– access to base class members can also be ambiguous; although it
can be assumed that the input code is correct and unambiguous,
effort is needed to resolve which class member in the hierarchy is
accessed.

• declarations and definitions:
new distinction between what is considered a declaration and what a
definition, with impact on its repeatability; new ‘class’-type scope and
scoping rules; namespaces. Significant technical effort involved, but
no conceptual difficulties;

• standard conversions:
no significant additions, except to pointer to members. Initialization,
assignment, access, and comparison of pointer to members require
some theoretical modeling;

• expressions:
there are 5 new operators: ‘new’, ‘delete’, ‘delete [] ’, and pointer-to-
member operators ‘−>∗’ and ‘.∗’. Some technical effort is required
to insure appropriate instrumentation of the new operators. Some
theoretical modeling effort is required to model the inherent costs of
the new operators in a consistent way. The instrumentation of the
‘new’ operator may require installing an instrumental new handler via
set_new_handler. Due to ‘virtual’ methods and late binding, a method
call could have a significantly different inherent cost than the current
inherent cost of a function call. Some theoretical effort is involved in
the preparation of a translation model and of an associated cost model
which is consistent with the modeled compiler. Candidate implemen-
tation models are proposed in Section 10.7c to 10.10c in [84];

• declarations:
C++ introduces ‘ inline’ functions and methods. The inherent cost of
an inlined function must be set to zero. A fundamental difficulty is in
determining whether a function or a method marked as ‘inline’ was ac-
tually inlined or not. There are circumstances of different kinds which
may prevent inlining appropriate metrics, compiler assistance or other
hacks needed to determine whether the function was actually inlined.
Section 7.1.2 in [84] discusses them thoroughly;

• references:
the model requires a theoretical revision of non-negligible effort to
model the cost of accessing, initializing, comparing and passing ref-
erences;

• derived classes:
inheritance (even multiple and virtual inheritance) does not cause any
difficulties to the current instrumentation style chosen. The instrumen-
tation relies on the ability (of the actual compiler and language runtime
libraries) to correctly perform the determination of the called methods;

244 CHAPTER 5. RESULTS, CONCLUSIONS, DEVELOPMENTS

• member access control:
no effort involved; programs are assumed correct; it is not the respon-
sibility of our methodology to guarantee appropriate member access;

• overloading:
significant effort required to determine the actual called function or
operator in case of overloaded functions/operator. Note that this is
just required to calculate cost of conversion for the arguments, not to
calculate the costs of the code inside the called function. Evaluation
of this cost is not an issue, since the current instrumentation technique
already instruments functions internally. Some technical effort is re-
quired to determine whether each individual operator instance is over-
loaded or not. If it is not, the associated ci, cc and c f evaluation rules
must be suspended3. Some technical effort is required to determine
which one among the many possible overloaded operator definitions
apply to the current case: this is required to determine if there is any
argument conversion cost;

• templates:
templates offer a way to provide a way to define a type-unbound set
of classes or functions with a single definition. This is a potential cause
of indeterminism. It introduces difficulties for appropriate cost anal-
ysis and instrumentation. More precisely: the control-flow cost of the
statements and expressions inside a template function or a method of
a template class are independent from the template parameters. In-
herent and conversion costs present some difficulties. In general, for
each operator instance, it is not easy to determine in advance whether
an overloaded or a standard implementation was called. In cases, it
requires runtime support. Technical effort is required to perform this
cost disambiguation. Thanks to complete instrumentation of the over-
loading definitions, it is always possible to determine what was called,
although it is not clear how to do that with the least run-time overhead.
It is likely that RTTI may help for the purpose;

• exception handling:
the current instrumentation technique allows to determine whether an
exception was thrown and caught. Some theoretical effort is required
to model the exception handling process, also considering the inherent
and conversion costs associated to creating and passing the exception
object.

As a conclusion, I estimate the effort required to update the current im-
plementation of the methodology in such a way that it accepts C++ as an
input language. In the light of the above considerations, my estimate for this
effort is less than one man-year.

3imagine the consequences of applying the current cost evaluation mechanism to an
overloaded instance of ‘<<’, thus attributing a bitwise operation cost to an operation
which is significantly more complex.

5.3. DEVELOPMENTS 245

5.3.2 Modeling more complex hardware
The original version of the methodology presented here is designed to es-
timate the energy consumed by the core of a single-issue processor, with
single-instruction single-data instructions. During the preparation of this
document, the author has been working on an extension of this technique,
aimed at estimating the consumption of the datapath, scratchpad data mem-
ory and instruction memory hierarchy of a single-core or multi-core archi-
tecture, with data-level parallel instructions.

The extended version of the tools allows the definition of intrinsics, for
which the programmer provides:

• a C implementation, which is used only during source-level simula-
tion to ensure functionally-correct behavior;

• a cost definition in terms of abstract instructions; an intrinsic defined
in this way is, at the same time, a new atom, for which the programmer
has to provide an abstract cost.

Preliminary work is also ongoing on source-level estimation for VLIW
architectures.

The design and implementation of these extended techniques and tools
will be discussed by the author in other publications.

246 CHAPTER 5. RESULTS, CONCLUSIONS, DEVELOPMENTS

Appendix A
The cost of floating-point
emulated operations

THE source-level estimation methodology proposed in this thesis re-
lies on abstract translation and execution models. Unfortunately,
these models do not provide deterministic estimates for the execu-
tion of floating-point arithmetic operations on platforms which do

not include a floating point unit.
Therefore, appropriate models are required which account for the cost of

executing emulated floating-point operations. In this appendix, I determine
statistical models specifically designed for this purpose.

I show how to obtain estimates for the emulation routines included in
soft-float (the emulation library included in the popular GCC compiler) on
a popular architecture (ARM). To do that, I have performed experiments on
the reference instruction-set simulator for that architecture (SimIt-ARM).

A.1 Motivation
Source-level estimation relies on an abstract compilation model from source
code to an abstract instruction set, and on a statistical characterization of the
execution time and energy consumption of the instruction set. The transla-
tions of purely arithmetical expressions generated by that translation models
are short, simple basic blocks. Therefore, only one execution flow is possible
in such translations, and this makes the determination of their execution cost
trivial and independent from the operands.

Unfortunately, when a compiler generates the translation of a floating-
point arithmetical expression for architectures which do not include a
floating-point unit (FPU), the result is not a short, simple basic block. In-
stead, the compiler maps floating-point operations to calls to routines in a

247

248 APPENDIX A. FLOATING POINT EMULATION COST

floating-point emulation library. The cost of executing these routines can-
not be evaluated deterministically at static time. In fact, these routines loops
and conditions, therefore multiple execution flows are possible, each with
different costs.

The above limitation is not negligible, because a large number of proces-
sors designed for use within embedded systems do not feature an FPU, for
example the ARM7TDMI processor. To overcome this limitation, I provide
statistically-accurate estimates for the cost of executing floating point opera-
tions.

I have determined these estimates by preparing an appropriate experi-
mental setup, including an instruction-set simulator, a complete C compila-
tion and build toolchain for that target, and a set of script for the automated
test set generation and evaluation.

I will show that the actual values assumed by operands affect signifi-
cantly the cost of operations. For example, summing two numbers which
are similar in magnitude costs more than summing two numbers which are
far away from each other. In fact, in the first case the mantissa of the result
must be really calculated, while in the second case the result is just one of the
two operands.

With the approach I show, a developer can also tune his own statistical
models for emulated FP operations according to the actual statistical distri-
butions of the operand values that his application will process.

A.2 Experimental setup

For the experiments, I chose the ARM7TDMI microprocessor, which is a gen-
eral purpose micro-processor very commonly used in the design of embed-
ded systems, and which does not contain a floating-point unit. I chose to
employ SimIt-Arm as an instruction-set simulator for ARM because it is the
reference point in the embedded design community. SimIt-Arm comes with
a build toolchain for the C/C++ programming languages based on GNU
GCC version 2.95, which includes the soft-float library for floating point em-
ulated operations.

The entire list of the emulation functions which is included in soft-float for
the ARM architecture is reported in Table A.1, together with the C operator
they map (e.g. arithmetic operators such as ‘+’, ‘−’, ... or relational operators
such as ‘>=’, ‘<’, ...) and the floating-point data type which they accept as ar-
guments (one of float , double or long double). The complete list of prototypes
for the above functions is also reported, in Figure A.2. This list is important
in the construction of any benchmark for reasons that I will explain later.

The information reported here is compliant with the reference informa-
tion for the chosen compiler, as reported in Section 4.2 “Routines for floating
point emulation” of the “GCC Internals” manual [86].

Data types float , double and long double are composed as indicated in Ta-
ble A.2, according to the respective IEEE standard.

A.3. BENCHMARK CONSTRUCTION 249

Data type
Operator float double long double

+ __addsf3 __adddf3 __addtf3
− __subsf3 __subdf3 __subtf3
∗ __mulsf3 __muldf3 __multf3
/ __divsf3 __divdf3 __divtf3

== __eqsf2 __eqdf2 __eqtf2
!= __nesf2 __nedf2 __netf2
>= __gesf2 __gedf2 __getf2
< __ltsf2 __ltdf2 __lttf2
<= __lesf2 __ledf2 __letf2
> __gtsf2 __gtdf2 __gttf2

Table A.1: Map of the emulation functions used in the GCC compiler [86].

data type Standard Size sign mantissa exponent unused

float IEEE 754 32 bits 1 23 8 0
double IEEE 754 64 bits 1 52 11 0
long double IEEE 854 96 bits 1 64 15 16

Table A.2: Bit composition of the floating-point data types.

A.3 Benchmark construction
The task of constructing accurate benchmarks to measure the above func-
tions is a tricky operation, which demands special attention in order to filter
out (or, when not possible, at least minimize) a number of parasitic effects
which perturb the measurements. In the following paragraphs, I describe
and motivate the design choices I made for the purpose.

• I have written the benchmarks in C rather than in assembly language
for portability. This way, the same set of benchmarks can be easily
reused with no modifications for measurements on any other target for
which the GCC compiler is available, and with minor modifications on
those targets which have no GCC but some other C compiler available;

• I have chosen to I directly call the soft-float routines, in order to have
strict control over the assembly translation of the benchmarks. There-
fore, I place invocations to them in source codes (__addsf3,__subsf3, ...
) rather than the corresponding C operators (+,−, ...). This allows
complete control to which routine is actually invoked, making sure
that no unexpected type conversions take place. This choice has the
additional beneficial effect of avoiding the effects compiler optimiza-
tions (e.g. constant subexpression elimination) which may happen in
arithmetic expressions but not across function call boundaries;

• I am interested in determining the entire statistical distribution of exe-

250 APPENDIX A. FLOATING POINT EMULATION COST

float __addsf3 (float a, float b);
double __adddf3 (double a, double b);
long double __addtf3 (long double a, long double b);

float __subsf3 (float a, float b);
double __subdf3 (double a, double b);
long double __subtf3 (long double a, long double b);

float __mulsf3 (float a, float b);
double __muldf3 (double a, double b);
long double __multf3 (long double a, long double b);

float __divsf3 (float a, float b);
double __divdf3 (double a, double b);
long double __divtf3 (long double a, long double b);

int __eqsf2 (float a, float b);
int __eqdf2 (double a, double b);
int __eqtf2 (long double a, long double b);

int __nesf2 (float a, float b);
int __nedf2 (double a, double b);
int __netf2 (long double a, long double b);

int __gesf2 (float a, float b);
int __gedf2 (double a, double b);
int __getf2 (long double a, long double b);

int __ltsf2 (float a, float b);
int __ltdf2 (double a, double b);
int __lttf2 (long double a, long double b);

int __lesf2 (float a, float b);
int __ledf2 (double a, double b);
int __letf2 (long double a, long double b);

int __gtsf2 (float a, float b);
int __gtdf2 (double a, double b);
int __gttf2 (long double a, long double b);

Figure A.1: Prototypes of the emulation functions belonging to the soft-float
library.

cution times of each emulation routines. I derive these distributions by
performing tests over samples. These samples come themselves from
some populations with given statistical properties, and these proper-
ties influence the outcome of the measurement. In order for the mea-
surements not to be biased, the choice of these properties must be con-
scious and consistent with reality. It is perfectly sound to assume that
in a given user application variables assume values in some ranges
more frequently than the rest of representable values, nevertheless
there are no simple, application-independent motivations to assume

A.3. BENCHMARK CONSTRUCTION 251

that the entire population of variables and application privileges a
given subset of the floating-point representable field. Therefore, in the
experiments I select operands by extracting independent, identically-
distributed random samples from a population with uniform distri-
butions, covering exactly all the representable range for each of the
floating-point data types. The choice to determine complete distribu-
tions rather than average values has impacts on the construction of
experiments, especially since the instruction-set simulator does not al-
low to extract statistics on individual portions of a benchmark. For
example, a benchmark consisting of a loop including the generation of
random operands and a call to an emulation routine is not acceptable,
since the benchmark execution time gives information on the average
execution time of the single call, but not its statistical distribution;

• in general, the cost of executing a benchmark as just explained is
much larger than the cost of executing the single emulated operation
I am interested in. It includes a large overhead due to program start,
command-line argument parsing and conversion. A way to remove
this overhead is needed. I do this by comparison against a dummy
benchmark. A dummy benchmark is a program designed to have the
same translation and execution flow of the original benchmark, except
for the calls of the routines under estimation, which are excluded from
the dummy. Then, I simulate execution of the benchmark and of the
corresponding dummy in the same conditions and with the same ar-
guments. Eventually, I subtract the cost of executing the dummy from
the cost of executing the benchmark. The design of accurate dummies
in C requires care to avoid undesired compiler optimizations. For ex-
ample, if the result of the operation under measurement is not used,
the compiler could cancel the entire operation. Benchmarks and dum-
mies must be carefully designed together, with an eye on their data-
flow structure. The benchmark designer must ensure that the com-
piler applies the same optimizations on the benchmark and on the
dummy, with special attention to common subexpression elimination,
dead code elimination, constant folding and arithmetic optimizations.
A couple of examples of common techniques which I have employed
to achieve these results are:

– literal constants must be replaced with calls to conversion func-
tions, for example the definition:

float f = 2.5;

must be replaced with:

float f = atof("2.5");

While in the first case the compiler is able to determine the value
of variable ‘f’ for all the subsequent operations which use it, and
even to suppress dead code depending on conditional expres-
sions such as: if (! f) { ... }, this cannot happen anymore in the

252 APPENDIX A. FLOATING POINT EMULATION COST

second case, where the compiler must actually generate the code
for the call to ‘atof()’, and it cannot predict its outcome;

– to ensure that an operation (not including a function call) is ac-
tually performed, its result must be used later. If the result is not
used, the compiler may eliminate the entire operation. A com-
mon way to do that is to sum intermediate results and return the
sum as the ‘main’ function result value. The benchmark source
code and associated dummy must be designed in such a way that
this ‘use’ code is present in both in the same form.

• in the design of benchmarks, especially when long sequences of op-
erations are present, or the use of arrays are involved, the effects on
caches must be taken into account. The loop bodies should be long
enough to make the effect of the jump at the end of the body negligi-
ble, but short enough to fit entirely in the instruction cache. After the
first loop iteration, no more instruction cache misses should occur. The
same should apply for data.

• the benchmark designer must be aware of the technicalities of the C
language which could affect the measurements, and which are often
unknown to programmers: one of these is how calls are generated by
ANSI C compilers to functions whose prototypes are not given. Since
I am measuring routines which are not designed to be called by the
user, their prototype is not available in standard header files. It is the
responsibility of the benchmark designer to declare these routines, as
in Figure A.2. Without them, the C compiler creates prototypes with
the default argument data types (i.e., ‘double’ when floating-point ar-
gument are provided). This makes it impossible to perform correct
argument passing and perturbs the results by adding unrequested ar-
gument conversion overhead.

A.4 Arithmetic operations

This section describes an experiment to determine the statistical distribution
of the latencies of the four arithmetic operations (+, −, ∗,/) when applied on
floating-point data. To comply with all the requirements for parasitic effect
removal described in the previous section, I have designed a script and a
template for the generation of benchmark codes.

I prepared multiple executable versions of the benchmarks by compiling
the template in Figure A.2 with different values for TYPE and FUNCTION.
TYPE assumes all the possible data types (float, double, long double) and
FUNCTION is replaced with all the emulation functions (__addsf3, __subsf3,
...) or is left undefined, for the dummy benchmark. The multiple compila-
tions are performed by the script in Figure A.3.

At the end of benchmark generation, the following executable bench-
marks are available:

A.4. ARITHMETIC OPERATIONS 253

#include "../ soft−float−prototypes.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char ∗ argv[])
{

TYPE f1, f2 , f3 ;

f1 = atof(argv [1]);
f2 = atof(argv [2]);
f3 = atof("12345.6789");

#ifdef FUNCTION
f3 = FUNCTION(f1,f2);
f3 = FUNCTION(f1,f2);
f3 = FUNCTION(f1,f2);

/∗ ...
total 100 calls to the desired function
...

∗/
f3 = FUNCTION(f1,f2);

#endif

return (int)(f1 + f2 + f3);
}

Figure A.2: Parametric source code template for the generation of arithmetic
operation benchmarks.

test-float-add test-double-add test-long-double-add
test-float-sub test-double-sub test-long-double-sub
test-float-mul test-double-mul test-long-double-mul
test-float-div test-double-div test-long-double-div
test-float-dummy test-double-dummy test-long-double-dummy

Another script, which I do not report here for sake of brevity, generates
1000 random numbers for each data type (3000 tests in total), extracted from
a uniform distribution over the representable field of each data type, and
runs each benchmark with these numbers as arguments. In each benchmark,
the operation is repeated 100 times in order to minimize border effects.

The results of the benchmark are reported in the following tables.

254 APPENDIX A. FLOATING POINT EMULATION COST

#!/usr/bin/ tclsh

set precisions {s d t }
set precname(s) " float "
set precname(d) "double"
set precname(t) "long double"

set operators { + − ∗ / }
set opname(+) add
set opname(−) sub
set opname(∗) mul
set opname(/) div

foreach precision $precisions {
set type $precname($precision)
foreach operator $operators {

set function __$opname($operator)${precision}f3
set file test−[string map {" " "_"} $type]−$opname($operator)

exec arm−linux−gcc −static −DTYPE=$type −DFUNCTION=$function prototype.c −o $file
exec arm−linux−gcc −S −DTYPE=$type −DFUNCTION=$function prototype.c −o $file.s

}
set file test−[string map {" " "_"} $type]−dummy
exec arm−linux−gcc −static −DTYPE=$type prototype.c −o $file
exec arm−linux−gcc −S −DTYPE=$type prototype.c −o $file.s

}

Figure A.3: The Tcl script used to generate benchmark source files for the
arithmetic operations benchmarks.

Mean value

Float Double Long Double

Addition 165.53 259.50 546.07
Subtraction 175.70 279.11 624.86
Multiplication 164.00 404.08 1095.00
Division 673.30 1396.10 3538.90

Table A.3: Average measured cost of floating-point operators on operands
extracted from uniformly-distributed populations, expressed in clock cycles.

A.4. ARITHMETIC OPERATIONS 255

Standard deviation

Float Double Long Double

Addition 18.54 20.98 13.54
Subtraction 18.35 20.80 29.20
Multiplication 3.80 3.14 24.69
Division 13.25 26.23 153.48

Table A.4: Standard deviation of the measured cost of floating-point arith-
metic operators on operands extracted from uniformly-distributed popula-
tions, expressed in clock cycles.

Addition

Subtraction

Multiplication

Division

500 1000 1500 2000 2500 3000 3500

Addition

Subtraction

Multiplication

Division

Addition

Subtraction

Multiplication

Division

4000

float

double

long double

Figure A.4: Average cost of arithmetic operators between operands of the
various floating-point types.

256 APPENDIX A. FLOATING POINT EMULATION COST

float

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 130 140 150 160 170 180 190 200

line 1

double

 0

 10

 20

 30

 40

 50

 60

 70

 230 240 250 260 270 280 290 300

line 1

long double

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 300 350 400 450 500 550 600 650

line 1

Figure A.5: Statistical distribution of the latency of emulation routine for
operator ‘+’. Horizontal axis is latency in cycles, vertical is frequency over
1000 cases.

A.4. ARITHMETIC OPERATIONS 257

float

 0

 20

 40

 60

 80

 100

 120

 140 150 160 170 180 190 200 210

line 1

double

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 250 260 270 280 290 300 310 320

line 1

long double

 0

 20

 40

 60

 80

 100

 120

 140

 160

 560 580 600 620 640 660 680 700 720 740 760

line 1

Figure A.6: Statistical distribution of the latency of emulation routine for
operator ‘−’. Horizontal axis is latency in cycles, vertical is frequency over
1000 cases.

258 APPENDIX A. FLOATING POINT EMULATION COST

float

 0

 10

 20

 30

 40

 50

 60

 155 160 165 170 175 180 185

line 1

double

 0

 20

 40

 60

 80

 100

 120

 395 400 405 410 415 420 425 430

line 1

long double

 0

 50

 100

 150

 200

 250

 300

 350

 960 980 1000 1020 1040 1060 1080 1100 1120 1140 1160

line 1

Figure A.7: Statistical distribution of the latency of emulation routine for
operator ‘∗’. Horizontal axis is latency in cycles, vertical is frequency over
1000 cases.

A.4. ARITHMETIC OPERATIONS 259

float

 0

 50

 100

 150

 200

 250

 300

 560 580 600 620 640 660 680 700

line 1

double

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1200 1250 1300 1350 1400 1450

line 1

long double

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1500 2000 2500 3000 3500 4000 4500

line 1

Figure A.8: Statistical distribution of the latency of emulation routine for
operator ‘/’. Horizontal axis is latency in cycles, vertical is frequency over
1000 cases.

260 APPENDIX A. FLOATING POINT EMULATION COST

A.5 Relational operators
This section describes an experiment to determine the statistical distribution
of the latencies of relational operators (==,!=, >=, < , <= and >) when applied
on floating-point data. To comply with all the requirements for parasitic ef-
fect removal described in the previous section, I employed scripts and tem-
plates which are similar the ones already described in the previous section.
The corresponding results follow.

Mean value

Float Double Long Double

== 87.44 126.39 169.46
!= 99.69 141.62 208.83
>= 104.38 126.76 201.78
< 116.76 148.79 253.72
<= 101.12 128.98 202.97
> 116.72 148.85 254.58

Table A.5: Average cost of floating-point relational operators, on operands
extracted from uniform populations, expressed in clock cycles. Values with
an asterisk (*) were not measurable due to deficiencies in the soft-float library
implementation, and have been interpolated.

Standard deviation

Float Double Long Double

== 35.44 73.28 73.71
!= 35.91 73.59 * 73.64
>= 35.79 71.26 72.91
< 38.89 73.55 * 73.64
<= 35.66 73.26 73.98
> 35.89 73.54 * 73.63

Table A.6: Standard deviation of the cost of floating-point relational oper-
ators, on operands extracted from uniform populations, expressed in clock
cycles. Values marked with an asterisk (*) were not measurable due to defi-
ciencies in the soft-float library implementation, and have been interpolated.

A.5. RELATIONAL OPERATORS 261

==
!=
>=
<

50 100 150 200

float

double

long double

<=
>

==
!=
>=
<
<=
>

==
!=
>=
<
<=
>

250

Figure A.9: Average cost of relational operators between operands of the
various floating-point types.

262 APPENDIX A. FLOATING POINT EMULATION COST

float

 0

 5

 10

 15

 20

 25

 30

 35

 86 86.5 87 87.5 88 88.5 89 89.5 90 90.5 91 91.5

line 1

double

 0

 5

 10

 15

 20

 25

 30

 35

 122 123 124 125 126 127 128 129 130 131

line 1

long double

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 166 167 168 169 170 171 172 173 174

line 1

Figure A.10: Statistical distribution of the latency of emulation routine for
operator ‘==’. Horizontal axis is latency in cycles, vertical is frequency over
1000 cases.

A.5. RELATIONAL OPERATORS 263

float

 0

 5

 10

 15

 20

 25

 30

 35

 98 99 100 101 102 103 104 105

line 1

double

 0

 5

 10

 15

 20

 25

 30

 35

 40

 138 139 140 141 142 143 144 145 146

line 1

long double

 0

 5

 10

 15

 20

 25

 30

 206 207 208 209 210 211 212

line 1

Figure A.11: Statistical distribution of the latency of emulation routine for
operator ‘!=’. Horizontal axis is latency in cycles, vertical is frequency over
1000 cases.

264 APPENDIX A. FLOATING POINT EMULATION COST

float

 0

 5

 10

 15

 20

 25

 30

 35

 99 100 101 102 103 104 105 106 107 108 109

line 1

double

 0

 5

 10

 15

 20

 25

 30

 35

 125 126 127 128 129 130 131 132 133

line 1

long double

 0

 10

 20

 30

 40

 50

 60

 70

 190 195 200 205 210 215

line 1

Figure A.12: Statistical distribution of the latency of emulation routine for
operator ‘>=’. Horizontal axis is latency in cycles, vertical is frequency over
1000 cases.

A.5. RELATIONAL OPERATORS 265

float

 0

 5

 10

 15

 20

 25

 30

 35

 40

 114 115 116 117 118 119 120 121 122 123 124 125

line 1

double

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 145 146 147 148 149 150 151 152 153 154 155

line 1

long double

 0

 10

 20

 30

 40

 50

 60

 70

 230 235 240 245 250 255 260 265 270 275

line 1

Figure A.13: Statistical distribution of the latency of emulation routine for
operator ‘<’. Horizontal axis is latency in cycles, vertical is frequency over
1000 cases.

266 APPENDIX A. FLOATING POINT EMULATION COST

float

 0

 5

 10

 15

 20

 25

 30

 35

 40

 99 100 101 102 103 104 105 106 107 108

line 1

double

 0

 5

 10

 15

 20

 25

 30

 35

 40

 125 126 127 128 129 130 131 132 133 134

line 1

long double

 0

 10

 20

 30

 40

 50

 60

 190 195 200 205 210 215

line 1

Figure A.14: Statistical distribution of the latency of emulation routine for
operator ‘<=’. Horizontal axis is latency in cycles, vertical is frequency over
1000 cases.

A.5. RELATIONAL OPERATORS 267

float

 0

 5

 10

 15

 20

 25

 30

 35

 40

 114 115 116 117 118 119 120 121 122 123 124 125

line 1

double

 0

 5

 10

 15

 20

 25

 30

 35

 40

 145 146 147 148 149 150 151 152

line 1

long double

 0

 10

 20

 30

 40

 50

 60

 70

 230 235 240 245 250 255 260 265 270 275

line 1

Figure A.15: Statistical distribution of the latency of emulation routine for
operator ‘>’. Horizontal axis is latency in cycles, vertical is frequency over
1000 cases.

268 APPENDIX A. FLOATING POINT EMULATION COST

A.6 Dependence on data for arithmetic opera-
tions

In this section I examine how the cost of arithmetic operations is influenced
by the value assumed by the arguments, especially by the exponent. To
evaluate this, I divided the representable field of the three data types in
30 equally-spaced subfields, and for each of the 900 (30 times 30) subfields
in which a couple of numbers could fall, I generated 30 different random
floating-point values. For each of those subfields, I obtained the mean value
and standard deviation of the execution time of the operation expressed in
clock cycles.

The purpose of this investigation is to determine zones where the mean
value differs significantly from the global average, and possibly determine
its cause. For example, if in case of overflow the cost is significantly higher or
lower than when overflow does not occur, and I know that in the application
under estimation overflow never occurs, then it is reasonable to provide my
application with an estimate for the execution of emulated routines that is
different from the global average already calculated, and which only takes
account of cases without overflow.

The result of the experiments are shown in the next pages. In all the
cases, the standard deviation has not shown any significant irregularity. On
the other hand, the mean value of the execution time exhibits significant
changes. Apart from the long double data type, the following observations
apply:

• all the plots show symmetry with respect to the main diagonal, which
is the proof that the algorithms are cost-invariant with respect to the
order of operands (e.g. the cost of a + b is the same as b + a, as it is
reasonable to expect);

• addition and subtraction show the same behavior as expected, since
the two operations differ in their implementation only for sign ex-
change operations, which have negligible cost;

• in addition and subtraction, there is a “white band” along the main
diagonal, which represents cases where the two operands are close
enough to each other. In these cases, a and b are close enough (roughly
|log10|a| − log10|b|| <= 9 for floats and |log10|a| − log10|b|| <= 20 for
doubles) that the mantissa and exponent of the result must be actually
calculated; in all other cases, they are far enough that the result is equal
to one of the operands;

• for multiplication and division, there are a “white band” and a “light
gray triangle”. The plot for multiplication shows the same features
as the division, except for a reflection on the horizontal axis. I at-
tempt explanation for the above features on the multiplication plot;
specular version of the same explanations apply for the division. The
white band represents multiplication between numbers which pro-
duce very small results (in absolute values), which are represented in

A.6. DEPENDENCE ON DATA FOR ARITHMETIC OPERATIONS 269

non-normalized form, and it represents the additional costs involved
in calculating the non-normalized form. Whatever is below this white
stripe leads to underflow. The “light gray triangle” is associated with
overflow. It is not clear why all the triangle above overflow leads to
higher costs.

270 APPENDIX A. FLOATING POINT EMULATION COST

float

 145

 150

 155

 160

 165

 170

 175

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

 0

 10

 20

 30

 40

double

 240

 260

 280

 300

 320

 340

 360

 380

-400 -300 -200 -100 0 100 200 300 400
-400

-300

-200

-100

 0

 100

 200

 300

 400

long double

 528

 530

 532

 534

 536

 538

 540

 542

 544

 546

-400 -300 -200 -100 0 100 200 300 400
-400

-300

-200

-100

 0

 100

 200

 300

 400

Figure A.16: Average cost of operator ‘+’ depending on arguments. Hori-
zontal and vertical axes are operand exponents, color is average cost over 30
random cases.

A.6. DEPENDENCE ON DATA FOR ARITHMETIC OPERATIONS 271

float

 155

 160

 165

 170

 175

 180

 185

 190

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

 0

 10

 20

 30

 40

double

 240

 260

 280

 300

 320

 340

 360

 380

 400

 420

-400 -300 -200 -100 0 100 200 300 400
-400

-300

-200

-100

 0

 100

 200

 300

 400

long double

 595

 600

 605

 610

 615

 620

 625

 630

 635

 640

 645

-400 -300 -200 -100 0 100 200 300 400
-400

-300

-200

-100

 0

 100

 200

 300

 400

Figure A.17: Average cost of operator ‘−’ depending on arguments. Hori-
zontal and vertical axes are operand exponents, color is average cost over 30
random cases.

272 APPENDIX A. FLOATING POINT EMULATION COST

float

 155

 160

 165

 170

 175

 180

 185

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

 0

 10

 20

 30

 40

double

 380

 400

 420

 440

 460

 480

 500

-400 -300 -200 -100 0 100 200 300 400
-400

-300

-200

-100

 0

 100

 200

 300

 400

long double

 1030

 1040

 1050

 1060

 1070

 1080

 1090

 1100

-400 -300 -200 -100 0 100 200 300 400
-400

-300

-200

-100

 0

 100

 200

 300

 400

Figure A.18: Average cost of operator ‘∗’ depending on arguments. Hori-
zontal and vertical axes are operand exponents, color is average cost over 30
random cases.

A.6. DEPENDENCE ON DATA FOR ARITHMETIC OPERATIONS 273

float

 655

 660

 665

 670

 675

 680

 685

 690

 695

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

 0

 10

 20

 30

 40

double

 1360

 1380

 1400

 1420

 1440

 1460

 1480

-400 -300 -200 -100 0 100 200 300 400
-400

-300

-200

-100

 0

 100

 200

 300

 400

long double

 3200

 3300

 3400

 3500

 3600

 3700

 3800

 3900

-400 -300 -200 -100 0 100 200 300 400
-400

-300

-200

-100

 0

 100

 200

 300

 400

Figure A.19: Average cost of operator ‘/’ depending on arguments. Hori-
zontal and vertical axes are operand exponents, color is average cost over 30
random cases.

274 APPENDIX A. FLOATING POINT EMULATION COST

A.7 Dependence on data for relational opera-
tors

I am also interested in knowing whether the cost of relational expressions
changes when portions of the encoded values of the two operands match. I
distinguish the following 7 cases:

1. operand1 > operand2 (different sign)

2. operand1 > operand2 (same sign, different exponent)

3. operand1 > operand2 (same sign and same exponent)

4. operand1 = operand2

5. operand1 < operand2 (same sign and same exponent)

6. operand1 < operand2 (same sign, different exponent)

7. operand1 < operand2 (different sign)

It is reasonable to expect how the above circumstances influence the cost
of comparisons. For example the cost of < and > operators is lower when
the operands have different sign, because in such a case, there is no need
to examine their mantissa and exponent. The cost is slightly higher when
they have the same sign but different exponent, and the operation involves
exponent comparison. The cost is even higher when the two operands have
same sign and exponent: in this case the operation must also compare the
two mantissas. All these considerations are visually expressed by the plots
in Figure A.20.

A.7. DEPENDENCE ON DATA FOR RELATIONAL OPERATORS 275

Mean value

Op. Data type Case
1 2 3 4 5 6 7

float 83.47 83.20 83.70 73.93 83.81 83.74 83.45
== double 121.44 122.08 125.00 115.18 124.22 122.20 121.56

long double 170.39 169.26 169.35 177.12 169.14 169.42 170.13

float 102.04 102.02 101.47 92.14 102.31 102.11 102.00
!= double 137.18 137.20 139.31 130.21 139.05 137.51 137.25

long double 209.34 208.25 208.31 216.07 208.54 209.21 209.11

float 118.28 120.38 122.12 121.16 122.00 119.39 118.33
> double 144.46 146.57 153.38 159.16 148.16 145.55 144.52

long double 257.06 259.02 256.32 274.48 259.36 254.00 256.04

float 105.33 107.13 109.15 107.53 108.20 106.18 105.30
<= double 128.20 130.18 137.41 143.27 132.10 129.44 128.06

long double 201.01 206.53 203.34 217.42 204.31 203.39 202.57

float 118.43 120.05 122.20 121.28 122.11 119.50 118.34
< double 144.15 146.35 153.27 159.17 148.12 145.06 144.05

long double 256.35 258.28 255.52 274.14 258.51 253.17 255.10

float 105.02 106.31 108.42 107.19 107.51 106.12 105.34
>= double 128.23 130.12 137.40 143.31 132.38 129.40 128.14

long double 200.19 205.45 202.14 216.41 203.15 202.23 201.38

Table A.7: Average costs of floating-point comparison operations depending
on which parts of the operands’ encoded value match.

276 APPENDIX A. FLOATING POINT EMULATION COST

 ne

 ne

 ne

 ge

 ge

 ge

 lt

 lt

 lt

 le

 le

 le

 gt

 gt

 gt

 eq

 eq

 eq

0 50 100 150 200 250 300

==

>

<=

<

>=

!=

float

double

long double

float

double

long double

float

double

long double

float

double

long double

float

double

long double

float

double

long double

Figure A.20: Average costs of floating-point comparison operations depend-
ing on which parts of the operands’ encoded value match.

Bibliography

Context
[1] G. E. Moore, Cramming More Components Onto Integrated

Circuits, in Electronics, April 19, 1965, republished at:
http://www.intel.com/technology/mooreslaw/;

[2] G. D. Hutcheson, Moore’s Law: The History and Economics of an Observation
that Changed the World, in Electrochemical Society Interface, March 2005, pages:
17–21, http://electrochem.org;

[3] S. Hamilton, Taking Moore’s Law Into the Next Century, in IEEE Computer, Vol.
32, No. 1, pages: 43–48, January 1999;

[4] The International Technology Roadmap for Semiconductors ITRS 2004 Update,
http://public.itrs.net, January 10, 2005,

[5] R.W. Keyes, Fundamental limits of silicon technology, in Proceedings of the IEEE,
Vol. 89, No. 3, pages: 227–239, March 2001;

[6] M. Ajmone Marsan, S. Marano, C. Mastroianni and M. Meo, Performance Analysis
of Cellular Mobile Communication Networks Supporting Multimedia Services, in
Mobile Networks and Applications, Vol. 5, No. 3, pages: 167–177, September 2000;

[7] K. W. Richardson, UMTS overview in Electronics and Communication Engineering
Journal, Vol. 12, No. 3, pages: 93–100, June 2000;

[8] International Organization for Standardisation, ISO/IEC JTC1/SC29/WG11
(MPEG), Coding of Moving Pictures and Audio, N4668, MPEG-4 Overview, March
2002;

[9] P. K. Doenges, T. K. Capin, F. Lavagetto, J. Ostermann, Igor S. Pandzic and E. D.
Petajan, MPEG-4: Audio/Video & Synthetic Graphics/Audio for Mixed Media in
Image Communication Journal, Special Issue on MPEG-4, Vol. 9, No. 4, May 1997;

[10] International Organization for Standardisation, IEEE Standard for Information
technology – Telecommunications and information exchange between systems –
Local and metropolitan area networks – Specific requirements, ISO/IEC 8802-
11: 1999(E), ANSI/IEEE Std 802.11, 1999 Edition (R2003), Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications, avail-
able at: http://standards.ieee.org/getieee802/download/802.11-1999.pdf, 2003;

277

278 BIBLIOGRAPHY

[11] IEEE Standard for Information technology – Telecommunications and informa-
tion exchange between systems – Local and metropolitan area networks – Spe-
cific requirements, Part 15.1: Wireless Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications for Wireless Personal Area Networks (WPANs),
available at: http://standards.ieee.org/getieee802/download/802.15.1-2002.pdf,
2002;

[12] D. A. Wheeler, More Than a Gigabuck: Estimating GNU/Linux’s Size, Version
1.07, June 30, 2001;

Artificial language issues

[13] D. E. Knuth, Semantics of Context-Free Languages, in Theory of Computing Systems,
Vol. 2, No. 2, pages: 127–145, Springer-Verlag, New York, USA, June 1968;

[14] D. S. Wile, Abstract syntax from concrete syntax, in Proc. International Conference
on Software engineering (ICSE’97), pages: 472–480, Boston, MA, USA, 1997;

[15] D. S. Wile, Toward a Calculus for Abstract Syntax Trees, in Proc. IFIP TC 2 WG 2.1
Intl. Workshop on Algorithmic Languages and Calculi, IFIP Working Group 2.1, pages:
324–353, Strasbourg, France, 1997;

[16] L. Cardelli and A. D. Gordon, Mobile Ambients Theoretical Computer Science, Spe-
cial Issue on Coordination, D. Le Métayer Editor. Vol 240/1, pages: 177–213, June
2000;

[17] C. Ghezzi and M. Jazayeri, Programming Language Concepts, Third Edition, John
Wiley and Sons, 1998, ISBN 0-471-10426-4;

[18] L. J. J. Wittgenstein, Logisch-Philosophische Abhandlung, Annalen der Naturphiloso-
phie, Vol. 14, Wilhelm Ostwald (ed.), 1921;

Performance estimation for embedded sys-
tems

[19] P. Puschner and Ch. Koza, Calculating the Maximum Execution Time of Real-Time
Programs, in Real-Time Systems, Kluwer Academic Publishers, Norwell, MA, USA,
Vol. 1, No. 2, pages: 159–176, September 1989;

[20] E. Kligerman and D. Stoyenko, Real-time Euclid: A language for reliable real time
systems, in IEEE Transactions on Software Engineering, vol. SE-12, pages: 941-949,
September 1986;

[21] K. Suzuki and A. Sangiovanni-Vincentelli, Efficient Software Performance Estima-
tion Methods for Hardware/Software Codesign in Proc. Design Automation Con-
ference (DAC’96), pages: 605–610, June 1996;

[22] S. Malik, M. Martonosi and Y. T. S. Li, Static Timing Analysis for Embedded Soft-
ware, in Proc. Design Automation Conference (DAC’97), pages: 147–152, June 1997;

[23] K. Chen, S. Malik and D. I. August, Retargetable Static Timing Analysis for Em-
bedded Software, in Proc. International Symposium on Systems Synthesis (ISSS’01),
pages: 39–44, Montréal, P.Q., Canada, 2001;

BIBLIOGRAPHY 279

[24] A. Hergenhan and W. Rosenstiel, Static Timing Analysis of Embedded Software on
Advanced Processor Architectures, in Proc. Design, Automation and Test in Europe
Conference and Exhibition (DATE’00), pages: 552–559, Paris, France, March 2000;

[25] P. Puschner and R. Nossal, Testing the Results of Static Worst-Case Execution-Time
Analysis, in Proc. IEEE Real-Time Systems Symposium (RTSS’98), pages: 134–143,
1998;

[26] S. Mallat and F. Falzon, Analysis of low bit rate image transform coding, in IEEE
Transactions on Signal Processing, vol. 46, pages: 1027–1042, April 1998;

[27] M. Mattavelli and S. Brunetton, A statistical study of MPEG-4 VM texture decoding
complexity, Technical Report M924, ISO-IEC/JTC1/SC29/WG11 MPEG-4, Tam-
pere, Finland, July 1996;

[28] V. Tiwari, S. Malik and A. Wolfe, Power Analysis of Embedded Software: A First
Step Towards Software Power Optimization, in IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, Vol. 2, No. 4, pages: 437–445, 1994;

[29] V. Tiwari, S. Malik, and A. Wolfe, Compilation Techniques for Low Energy: An
Overview, in Proc. 1994 Symposium on Low-Power Electronics, San Diego, CA, USA,
1994;

[30] V. Tiwari, S. Malik, A. Wolfe and M. T.-C. Lee Instruction Level Power Analysis
and Optimization of Software, in Journal of VLSI Signal Processing, pages: 1–18,
Kluwer Academic Publishing, Boston, MA, USA, 1996;

[31] D. Burger and T. Austin, in The SimpleScalar Tool Set, Version 2.0, in Technical
Report 1342, Computer Science Department, University of Wisconsin, Madison,
WI, USA, 1997;

[32] W. Ye, N. Vijaykrishnan, M. Kandemir and M. J. Irwin, The Design and Use of Sim-
plePower: A Cycle Accurate Energy Estimation Tool, in Proc. Design Automation
Conference (DAC’00), pages: 340–345, 2000;

[33] D. Brooks, V. Tiwari and M. Martonosi, Wattch: A Framework for Architectural
Level Power Analysis and Optimizations, in Proc. International Symposium on Com-
puter Architecture (ISCA’00), pages: 83–94, June 2000;

[34] T. Simunic, L. Benini and G. De Micheli, Cycle-accurate simulation of energy con-
sumption in embedded systems, in Proc. Design Automation Conference (DAC’99),
pages: 867–872, June 1999;

[35] W. Qin and S. Malik, Automated Synthesis of Efficient Binary Decoders for Retar-
getable Software Toolkits, in Proc. Design Automation Conference (DAC’03), pages:
220–225, June 2003;

[36] W. Qin and S. Malik, Flexible and Formal Modeling of Microprocessors with Ap-
plication to Retargetable Simulation, in Proc. Design, Automation and Test in Europe
Conference and Exhibition (DATE’03), p. 10556, Munich, Germany, 2003;

[37] D. C. Suresh, W. A. Najjar, F. Vahid, J. R. Villarreal, G. Stitt, Profiling tools for
hardware/software partitioning of embedded applications, in Proc. ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES’03), San Diego, CA, USA, 2003;

[38] A. Stammermann, L. Kruse, W. Nebel, A. Pratsch, E. Schmidt, M. Schulte and A.
Schulz, System Level Optimization and Design Space Exploration for Low Power,
in Proc. International Symposium on Systems Synthesis (ISSS ’01), pages: 142–146,
Montréal, P.Q., Canada, 2001;

280 BIBLIOGRAPHY

[39] K. V. Seshu Kumar, Value reuse optimization: reuse of evaluated math library
function calls through compiler generated cache, in ACM SIGPLAN Notices
Archive, Vol. 38, No. 8, pages: 60–66, August 2003;

[40] S. Wilton and N. Jouppi, CACTI: An enhanced cache access and cycle time model,
in IEEE Journal of Solid-State Circuits, Vol. 31, No. 5, p. 677–688, May 1996;

[41] R. A. Uhlig and T. N. Mudge, Trace-driven Memory Simulation: A Survey, in
ACM Computing Surveys, Vol. 29, No. 2, p. 128–170, 1997;

[42] A. Sinha and A. P. Chandrakasan, JouleTrack: a Web-based Tool for Software
Energy Profiling, in Proc. Design Automation Conference (DAC’01), June 2001;

[43] T. Simunic, L. Benini and G. De Micheli, Energy Efficient Design of Battery-
Powered Embedded Systems in Special Issue of IEEE Transactions on VLSI Systems,
May 2001;

[44] M. Zhao, B. Childers and M. L. Soffa, Predicting the impact of optimizations for
embedded systems, Proc. ACM SIGPLAN/SIGBED Conference on Languages, Com-
pilers, and Tools for Embedded Systems (LCTES’03), pages: 1–11, San Diego, CA, USA,
2003;

[45] E. Senn, N. Julien, J. Laurent and E. Martin, Power Consumption Estimation of a C
Program for Data-Intensive Applications, in Proc. Workshop on Complexity-Effective
Design (WCED’02), May 2002;

[46] N. Julien, E. Senn, J. Laurent and E. Martin, Power Estimation of a C algorithm on
a VLIW Processor, in Proc. ISHPC-IV, Kansai Science City, Japan, May 2002;

[47] M. Ravasi and M. Mattavelli, High-level algorithmic complexity evaluation for
system design, in Journal of Systems Architecture, No. 48, pages: 403–427, 2003;

[48] M. Ravasi, An Automatic C-code Instrumentation Framework for High Level Algo-
rithmic Complexity Analysis and System Design Ph. D. dissertation, document 2839
(2003), École Polytechnique Fédérale de Lausanne, Switzerland, September 2003;

[49] M. Ravasi, M. Mattavelli1, P. Schumacher and R. Turney, High-Level Algorithmic
Complexity Analysis for the Implementation of a Motion-JPEG2000 Encoder, in
Lecture Notes in Computer Science, Springer-Verlag GmbH, Vol. 2799, pages: 440–
450, 2003;

[50] T. K. Tan, A. K. Raghunathan, G. Lakishminarayana and N. K. Jha, High-level
software energy macro-modeling, in Proc. Design Automation Conference (DAC’01),
Las Vegas, Nevada, USA, pages: 605–610, 2001;

[51] A. Muttreja, A. Raghunathan, S. Ravi and N. K. Jha, Automated energy/perfor-
mance macromodeling of embedded software, in Proc. Design Automation Confer-
ence (DAC’04), pages: 99–102, June 2004;

[52] J. T. Russell and M. F. Jacome, Software Power Estimation and Optimization for
High Performance, 32-bit Embedded Processors, in Proc. International Conference
on Computer Design (ICCD’98), pages: 328–333, 1998;

[53] M. Reshadi, P. Mishra and N. Dutt, Instruction Set Compiled Simulation: A Tech-
nique for Fast and Flexible Instruction Set Simulation, in Design Automation Con-
ference (DAC’03), pages: 758–763, Anaheim, CA, USA, June 2003;

[54] Y. Li and J. Henkel, A framework for estimating and minimizing energy dis-
sipation of embedded HW/SW systems, In Proc. Design Automation Conference
(DAC’98), pages: 188–193, June 1998;

BIBLIOGRAPHY 281

[55] J. Henkel and Y. Li, Avalanche: An Environment for Design Space Exploration
and Optimization of Low-Power Embedded Systems IEEE Trans. VLSI Systems,
Vol. 10, No. 4, p. 454–468, August 2002;

[56] C. Brandolese, W. Fornaciari, F. Salice and D. Sciuto, Energy Estimation for 32-
bit Microprocessors in Proc. International Workshop on Hardware/Software Codesign
(CODES 2000), Mission Bay, San Diego, May 2000;

[57] C. Brandolese, W. Fornaciari, F. Salice and D. Sciuto, Source-Level Execution Time
Estimation of C Programs, in Proc. International Workshop on Hardware/Software
Codesign (CODES 2001), Copenhagen, Denmark, 2001;

[58] C. Brandolese, W. Fornaciari, F. Salice and D. Sciuto, An Instruction-level
Functionality-based Energy Estimation Model for 32-bit Microprocessors, in Proc.
Design Automation Conference (DAC’00), Los Angeles, CA, USA, June 2000;

[59] C. Brandolese, W. Fornaciari, F. Salice and D. Sciuto, Library Functions Timing
Characterization for Source–Level Analysis, in Proc. Design, Automation and Test in
Europe Conference and Exhibition (DATE’03), Munich, Germany, pages: 1132–1133,
March 2003;

Instrumentation techniques

[60] J. K. Hollingsworth, B. P. Miller, and J. Cargille. Dynamic program instrumenta-
tion for scalable performance tools. in Proc. of Scalable High-Performance Computing
Conference (SHPCC’94), pages: 841–850, May 1994.

[61] M. D. Smith, Tracing with Pixie, in Technical Report CSL-TR-91-497, Computer
Systems Laboratory, Stanford University, Stanford, CA, USA, November 1991;

[62] A. Srivastava and A. Eustace, ATOM: A System for Building Customized Program
Analysis Tools, in Proc. ACM SIGPLAN Conference on Programming Language Design
an Implementation (PLDI’94), Orlando, FL, USA, pages: 196–205, June 1994;

[63] J. R. Larus and E. Schnarr, EEL: Machine-Independent Executable Editing, in
Proceedings of the SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI’95), pages: 291–300, June 1995;

[64] J. R. Larus, Efficient Program Tracing, in IEEE Computer, May 1993, pages: 291–
300, 1993;

[65] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy and B. Bershad, In-
strumentation and Optimization of Win32/Intel Executables Using Etch in Proc.
USENIX Windows NT Workshop, pages: 1–8, Seattle, Washington, August 1997;

[66] J. R. Larus, Abstract Execution: A Technique for Efficiently Tracing Programs, in
Software Practice and Experience, vol. 20, n. 12, pages: 1241–1258, December 1990;

[67] M. Lajolo, M. Lazarescu and A. Sangiovanni-Vincentelli, A Compilation-based
Software Estimation Scheme for Hardware/Software Co-simulation, in Proc. Inter-
national Workshop on Hardware/Software Codesign (CODES’99), Rome, Italy, pages:
85–89, 1999;

[68] K. Templer and C. L. Jeffery, A configurable automatic instrumentation tool for
ANSI C, in Proc. of the Automated Software Engineering Conference, pages: 249–253,
1998;

282 BIBLIOGRAPHY

[69] L. DeRose, D. Reed, SvPablo: A Multi-Language Architecture-Independent Per-
formance Analysis System, in Proc. International Conference on Parallel Processing
(ICPP’99), Fukushima, Japan, September 1999;

[70] R. F. Cmelik, SpixTools introduction and user’s manual, Technical Report TR-93-6,
Sun Microsystems Laboratories, Palo Alto, CA, 1993;

[71] T. Ball and J. R. Larus, Optimally Profiling and Tracing Programs, in ACM Trans-
actions on Programming Languages & Systems, Vol. 16, pages: 1319–1360, July 1994;

[72] M. Ducassé and J. Noye, Tracing Prolog programs by source instrumentation is
efficient enough in Journal of Logic Programming, Vol. 43, No. 2, pages: 157–172,
May 2000;

[73] E. Jahier and M. Ducassé, Generic Program Monitoring by Trace Analysis, in The-
ory and Practice of Logic Programming Journal, Special Issue on Program Develop-
ment, Cambridge University Press, Vol. 2 parts 4 and 5, pages: 613–645, September
2002;

[74] C. X. Zhang, Z. Wang, N. C. Gloy, J. B. Chen and M. D. Smith, System Support for
Automated Profiling and Optimization, in Proc. Symposium on Operating Systems
Principles, pages: 15–26, 1997;

[75] P. T. Devanbu, GENOA - A Customizable, front-end retargetable Source Code
Analysis Framework in Proc. International Conference on Software engineering (ICSE
’92), pages: 307–317, Melbourne, Australia, 1992;

Compiler design

[76] A.V. Aho, R. Sethi and J. D. Ullman, Compilers: Principles, Techniques and Tools,
Addison Wesley, ISBN: 0-201100-88-6, January 1986;

[77] D. Grune, H. E. Bal, C. J. H. Jacobs and K. G. Langendoen, Modern Compiler Design,
John Wiley and Sons, ISBN 0-471976-97-0, August 2000;

[78] A. Appel, Modern Compiler Implementation in C, Cambridge University Press, ISBN
0-521-60765-5, 1998;

[79] C. W. Fraser and D. R. Hanson, A Retargetable C Compiler: Design and Implemen-
tation, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, ISBN:
0805316701, 1995;

The C and C++ programming languages

[80] International Standards Organization, Technical committee JTC 1 / SC 22, “Pro-
gramming languages, their environments and system software interfaces”, Pro-
gramming languages – C, standard ISO/IEC 9899:1990, 1990;

[81] H. Schildt, The Annotated ANSI C Standard, Osborne McGraw-Hill, Berkeley, CA,
USA, ISBN: 0-07-881952-0, 1990;

[82] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Second Edition,
Prentice-Hall, ISBN 0-13-110362-8, 0-13-110370-9, 1988;

BIBLIOGRAPHY 283

[83] P. van den Linden, Expert C Programming – Deep C Secrets, Prentice Hall Profes-
sional Technical Reference, ISBN: 0-13-177429-8, June 1994;

[84] M. A. Ellis and B. Stroustrup, The Annotated C++ Reference Manual, Addison-
Wesley, ISBN: 0-20-151459-1, April 2001;

[85] E. Willink, "Meta-compilation for C++", Ph.D. Thesis, Department of Computing,
University of Surrey, UK, 1999;

[86] The Free Software Foundation, The GNU Compiler Collection Internals,
http://gcc.gnu.org/onlinedocs/gccint;

Compiler optimizations
[87] R. G. Cattell, Automatic Derivation of Code Generators from Machine Descrip-

tions, in ACM Transactions on Programming Languages and Systems (TOPLAS), Vol.
2, No. 2, pages: 173–190, 1980;

[88] A. V. Aho and S. C. Johnson, Optimal code generation for expression trees, in
Journal of the ACM, Vol. 23, No. 3, pages: 488–501, July 1976;

[89] A. V. Aho, M. Ganapathi and S. W. Tjiang, Code generation using tree matching
and dynamic programming, in ACM Transactions on Programming Languages and
Systems (TOPLAS), Vol. 11, No. 4, pages: 491–516, October 1989;

[90] H. Massalin, Superoptimizer: A Look At The Smallest Program, in Proc. Interna-
tional Conference on Architectural Support for Programming Languages and Operating
System (ASPLOS’87), Vol. 22, No. 10, pages: 122–127, New York, NY, 1987;

[91] T. Granlund and R. Kenner, Eliminating branches using a superoptimizer and
the GNU C compiler. in Proc. of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’92), San Francisco, CA, pages: 341–352,
June 1992;

[92] G. J. Chaitin, Register allocation and spilling via graph coloring. in Proc. ACM
SIGPLAN Symposium on Compiler Construction (SIGPLAN ’82), Boston, MA, USA,
June 23-25, pages: 98–101;

[93] M. N. Wegman and F. K. Zadeck, Constant propagation with conditional branches,
in ACM Transactions on Programming Languages and Systems (TOPLAS), Vol. 13, No.
2, 1991, pages: 181–210, 1991;

[94] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman and F. K. Zadeck, Efficiently
Computing Static Single Assignment Form and the Control Dependence Graph,
in ACM Transactions on Programming Languages and Systems (TOPLAS), Vol. 13, No.
4, pages: 451–490, October 1991;

[95] R. Metzger and S. Stroud, Interprocedural Constant Propagation: An Empirical
Study, in ACM Letters on Programming Languages and Systems, Vol. 1, No. 2, pages:
213–232, June 1992;

[96] K. D. Cooper, L. T. Simpson and C. A. Vick, Operator strength reduction, in ACM
Transactions on Programming Languages and Systems (TOPLAS), Vol. 23, No. 5, pages:
603–625, September 2001;

[97] J. Cocke, Global Common Subexpression Elimination, in Proc. Symposium on Com-
piler Construction, SIGPLAN Notices, Vol.5, No. 7, pages: 20–24, July 1970;

284 BIBLIOGRAPHY

[98] S. S. Muchnick and N. D. Jones, Program Flow Analysis: Theory and Application,
Prentice Hall Professional Technical Reference, ISBN: 0137296819, 1981;

[99] F. E. Allen and J. Cocke, A Catalogue of Optimizing Transformations, in Design
and Optimization of Compilers, pages: 1–30, Prentice Hall, 1972;

[100] J. Knoop, O. Ruething and B. Steffen, Lazy code motion, in Proc. ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI’92),
SIGPLAN Notices, Vol. 27, No. 7, pages: 224–234, June 1992;

[101] F. Müller and D. B. Whalley, Avoiding unconditional jumps by code replication,
Proc. ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI’92), SIGPLAN Notices, Vol. 27, No. 7, pages: 322–330, July 1992;

[102] A. Aiken and A. Nicolau, Optimal Loop Parallelization, in Proc. ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’88), pages:
308–317, Atlanta, Georgia, USA, 1988;

[103] B. R. Rau, Iterative Modulo Scheduling: an Algorithm for Software Pipelining
Loops, in Proc. IEEE International Symposium on Microarchitecture (MICRO 27),
pages: 63–74, San Jose, California, USA, 1994;

[104] B. R. Rau, Iterative Modulo Scheduling: an Algorithm for Software Pipelining
Loops, in International Journal of Parallel Programming, Vol. 24, No. 1, pages: 3–64,
1996;

[105] J. A. Fisher, Trace scheduling: a technique for global microcode compaction, in
Instruction-level parallel processors, IEEE Computer Society Press, Los Alamitos, CA,
USA, ISBN: 0-8186-6527-0, pages: 186–198, 1995;

[106] J. E. Smith, A study of branch predition strategies, in Proc. 8th Annual International
Symposium on Computer Architecture (ISCA’81), pages: 135–148, June 1981;

[107] T. Ball, J. R. Larus, Branch Prediction for Free, in Proc. ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’93), Albuquerque, New
Mexico, USA, pages: 300–313, June 1993;

[108] Y. Wu and J.R. Larus, Static branch frequency and program profile analysis, in
Proc. IEEE International Symposium on Microarchitecture (MICRO 27), San Jose, CA,
USA, pages: 1–11, November 1994;

[109] J. R. C. Patterson, Accurate Static Branch Prediction by Value Range Propagation",
in Proc. ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI’95), pages: 67–78, La Jolla, San Diego, CA, USA, June 1995;

[110] Andreas Krall, Improving Semi-static Branch Prediction by Code Replication, in
Proc. ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI’94), Vol. 29, No. 7, pages: 97–106, Orlando, USA, June 1994;

[111] R. A. Johnson and M. S. Schlansker, Analysis Techniques for Predicated Code, in
Proc. IEEE International Symposium on Microarchitecture (MICRO 29), pages: 100–
113, San Jose, California, USA, 1996;

[112] J. C. H. Park and M. S. Schlansker, On predicated execution, Technical Report HPL-
91-58, Hewlett-Packard Laboratories, Palo Alto CA, May 1991;

[113] R. A. Johnson and M. S. Schlansker, Analysis of Predicated Code, Technical Report
HPL-96-119, Hewlett-Packard Laboratories, Palo Alto CA, December 1996;

BIBLIOGRAPHY 285

[114] T. C. Mowry, M. S. Lam and A. Gupta, Design and Evaluation of a Compiler
Algorithm for Prefetching, in Proc. Intl. Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS’92), SIGPLAN Notices, Vol.
27, No. 9, pages: 62–73, 1992;

[115] J. R. Allen and K. Kennedy, Automatic Loop Interchange, in Proc. ACM SIGPLAN
Symposium on Compiler Construction (SIGPLAN ’84), Montréal, Canada, pages: 233–
246, 1984;

[116] F. Irigoin and R. Triolet, Supernode Partitioning. in Proc. ACM Symposium on the
Principles of Programming Languages (POPL’88), pages: 319–329, San Diego, CA,
USA, January 1988;

[117] K. S. McKinley, S. Carr and C.-W. Tseng, Improving Data Locality with Loop
Transformations, in ACM Transactions on Programming Languages and Systems,
pages: 424–453, Vol. 18, No. 4, July 1996;

[118] V. Sarkar, Optimized unrolling of nested loops, in Proc. International Conference on
Supercomputing (ICS’00), pages: 153–166, 2000;

[119] J. Lu and K. D. Cooper, Register promotion in C programs, in Proc. ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’97), pages:
308–319, Las Vegas, Nevada, USA, 1997;

[120] S. Carr and K. Kennedy, Scalar replacement in the presence of conditional control
flow, in Software – Practice & Experience, Vol. 24, No. 1, pages: 51–77, John Wiley &
Sons, Inc., New York, NY, USA, January 1994;

[121] K. Pettis and R.C. Hansen, Profile Guided Code Positioning, in Proc. ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI’90),
SIGPLAN Notices, Vol. 25, No.6, pages: 16–27, White Plains, NY, USA, June 1990;

[122] J. W. Davidson, A. Holler, A Study of a C Function Inliner, in Software–Practice and
Experience, Vol. 19, No. 1, pages: 79–97, January 1988;

[123] K. D. Cooper, M. W. Hall, L. Torczon, An Experiment with Inline Substitution, in
Software–Practice and Experience, Vol. 21, No. 6, pages: 581–601, June 1991;

[124] Jack W. Davidson and Anne Holler, Subprogram Inlining: A Study of Its Effects
on Program Execution Time, in IEEE Transactions on Software Engineering, Vol. 18,
No. 2, pages: 89–102, 1992;

[125] P. P. Chang, S. A. Mahlke, W. Y. Chen and W. W. Hwu, Profile-guided Automatic
Inline Expansion for C Programs, in Software–Practice and Experience, Vol. 22, No.
5, pages: 349–369, 1992;

Source-level optimizations
[126] C. Brandolese, Analysis and modeling of energy reducing source code transfor-

mations in Proc. Design, Automation and Test in Europe Conference and Exhibition
(DATE’04), Vol. 3, pages: 306-311, Paris, France, February 2004;

[127] The Stanford Compiler Group, The SUIF Library: a set of core routines for manipulat-
ing SUIF data structures, Stanford University Press, 1994;

[128] T. Simunic, L. Benini and G. De Micheli, Energy Efficient Design of Battery-
Powered Embedded Systems in Special Issue of IEEE Trans. on VLSI Systems, May
2001;

286 BIBLIOGRAPHY

[129] C. Brandolese, W. Fornaciari, F. Salice and D. Sciuto, The Impact of Source Code
Transformations on Software Power And Energy Consumption, in Journal of Cir-
cuits, Systems, and Computers (JCSC), Vol. 11, No. 5, 2002, pages. 477–502;

[130] B. Franke, M. O’Boyle, J. Thomson, G. Fursin, Probabilistic Source-level Opti-
misation of Embedded Programs, in Proc. ACM SIGPLAN/SIGBED Conference
on Languages, Compilers, and Tools for Embedded Systems (LCTES’05), pages: 78–86,
Chicago, Illinois, USA, 2005;

[131] S. Triantafyllis, M. Vachharajani, N. Vachharajani and D. I. August, Compiler
Optimization-Space Exploration, in Proc. International Symposium on Code Genera-
tion and Optimization (CGO’03), p. 204–215, March 2003;

[132] Y. Fei, S. Ravi, A. Raghunathan and Niraj K. Jha, Energy-Optimizing Source Code
Transformations for OS-driven Embedded Software, in Proc. International Confer-
ence on VLSI Design (VLSI Design 2004), pages: 261–266, Mumbai, India, January
2004;

[133] E.-Y. Chung, L. Benini and G. De Micheli, Source code transformation based on
software cost analysis, in Proc. International Symposium on Systems Synthesis (ISSS
’01), pages: 153–158, Montréal, P.Q., Canada, 2001;

[134] S. E. Richardson, Caching Function Results: Faster Arithmetic by Avoiding Unnec-
essary Computation, in Sun Microsystems Technical Report SMLI TR-92-1, Septem-
ber 1992;

[135] E.-Y. Chung, G. De Micheli, M. Carilli, L. Benini and G. Luculli, Value-based
Source Code Specialization for Energy Reduction in ST Journal of System Research,
Vol 3, No. 1, April 2002;

[136] J. Bormans, K. Denolf, S. Wuytack, L. Nachtergaele and I. Bolsens, Integrating
System-level Low Power Methodologies into a Real-life Design Flow, IEEE PAT-
MOS’99, pages: 19–28, 1999;

[137] G. Arnout, PowerEscape, Maximizing Data Efficiency for Power and Performance,
White paper, http://www.powerescape.com/technology/papers, 2005;

[138] G. Agosta, G. Palermo and C. Silvano, Multi-Objective Co-Exploration of Source
Code Transformations and Design Space Architectures for Low-Power Embedded
Systems, Proc. ACM Symposium on Applied Computing, pages: 891–896, Nicosia,
Cyprus, 2004;

[139] S. Triantafyllis, M. Vachharajani, N. Vachharajani and D. I. August, Compiler
Optimization-Space Exploration, Proc. Intl. Symposium on Code Generation and Op-
timization, pages: 204–215, March 2003;

[140] E. Zitzler, J. Teich and S. S. Bhattacharyya, Multidimensional Exploration of Soft-
ware Implementation for DSP Algorithms, in Journal of VLSI Signal Processing
Systems, Vol. 24, No. 1, Kluwer Academic Publishers, 1999;

[141] H. Blume, H. Hübert, H. T. Feldkämper and T. G. Noll, Model-based Exploration
of the Design Space for Heterogeneous Systems on Chip Journal of VLSI Signal
Processing Systems, Vol. 40 No. 1, p. 19–34, May 2005;

[142] A. Peymandoust, T. Simunic and G. De Micheli, Low Power Embedded Software
Optimization using Symbolic Algebra Proc. Design, Automation and Test in Europe
Conference and Exhibition (DATE’02), Paris, France, 2002;

BIBLIOGRAPHY 287

Compiler design tools
[143] C. Donnelly and R. M. Stallman, Bison Manual: Using the Yacc-compatible Parser

Generator GNU Press, Free Software Foundation, Boston, MA, USA, September
2003, ISBN 1-882114-23-X;

[144] C. Donnelly and R. M. Stallman, Bison: the Yacc-compatible Parser Generator
http://www.gnu.org/software/bison/manual/, September 2005;

[145] V. Paxson, Flex, version 2.5: a fast scanner generator
http://www.gnu.org/software/flex/manual/, March 1995;

[146] J. Fenlason, R. Stallman, GNU gprof, The GNU Profiler,
http://www.gnu.org/software/flex/manual/, September 1997;

[147] J. Lee and J. Degener, ANSI C Yacc grammar, http://www.lysator.liu.se/c/ANSI-
C-grammar-y.html;

[148] E. M. Gagnon and L. J. Hendren, SableCC, an Object-Oriented Compiler Frame-
work, in Proc. Technology of Object-Oriented Languages and Systems (TOOLS’98),
1998, pages: 140–154;

[149] T. J. Parr and R. W. Quong, ANTLR: A Predicated-LL(k) Parser Generator, in
Software – Practice & Experience, Vol. 25 , No. 7, pages: 789–810, John Wiley & Sons,
York, NY, USA, July 1995;

Benchmarks
[150] M. R. Guthaus et al., MiBench: A free, commercially representative embedded

benchmark suite, in Proc. IEEE 4th Annual Workshop on Workload Characterization,
Austin, TX, USA, Dec. 2001;

[151] Telenor R & D, Digital Video Coding at Telenor R & D, Telenor’s H.263 Software,
http://www.nta.no/brukere/DVC/h263 software/

288 BIBLIOGRAPHY

Typeset by the author in Palatino Linotype with PDFLATEX.
Printed by ACCO (Academische Coöperatief) Drukkerij,

Kaboutermanstraat 30, 3000 Leuven, België.

290 BIBLIOGRAPHY

POLITECNICO DI MILANO
Dipartimento di Elettronica e Informazione

Piazza Leonardo da Vinci, 32 I-20133 Milano, Italia

	Overview
	Designers need new software estimation techniques
	Designing embedded software is getting difficult
	Why I choose the C language
	The fundamental approach of this thesis
	Many techniques are possible, just one is chosen
	The final objective of this thesis
	Advantages of this approach
	Frequently raised objections
	<<Your novel contribution is not quite clear>>
	<<Source-level estimation has already been done!>>
	<<Your approach is too limited>>

	Estimation: A motivational example
	Source-level estimation can speed up optimization
	Optimization: A motivational example
	The organization of this thesis
	Background
	Performance estimation techniques
	Static timing analysis
	Static Functional-level Power Analysis
	Instruction-set simulation
	Binary instrumentation
	Compilation-based techniques
	gprof: Program counter sampling
	Source code instrumentation
	Black-box techniques
	Memory-oriented techniques
	Conclusions

	Source-level optimization exploration techniques

	An instance of the technique
	Abstracting the reality, modeling the abstraction
	From reality to the abstract flow
	Architecture abstraction
	Instruction-set architecture
	Memory

	Compiler abstraction
	Front-end
	Semantic analysis
	Context handling
	Early liveness analysis

	Intermediate code generation
	Intermediate code optimization
	Constant folding
	Arithmetic simplification
	Liveness analysis
	Other optimization steps

	Target code generation
	Instruction selection
	Register allocation

	Target code optimization
	Machine code generation

	The model flow
	Analytical cost model
	Model application
	Step 1: Analyze
	Step 2: Instrument
	Step 3: Build
	Step 4: Run
	Step 5: Collect
	Step 6: Report

	People and activities
	Founding the technique
	Targeting the technique
	Using the technique

	Overall scheme

	The optimization flow
	Modularity of the algorithm
	Scalability of the algorithm
	Current limitations

	Tool implementation

	Cost of syntax elements
	Notation
	Denoting syntax and semantic rules
	Concrete and abstract syntax trees
	Describing semantic attribute evaluation
	Denoting assembly translations

	Which factors affect the cost of syntax elements
	The valueness affects the inherent cost
	The operand type affects the inherent costs
	The operand type affects the conversion costs
	The constancy affects all the costs
	The translation flavor affects the control-flow and inherent costs
	The register boundedness affects the inherent cost

	An abstract translation model
	I privilege understandability
	Attributes
	Some useful functions
	The attribute grammar which is the model
	Observations
	Examples

	The attribute grammar
	Attribute `t', result type
	The `sizeof' operator
	Integer-type unary operators
	Operand-type unary operators
	Integral promotion operators
	The referencing operator
	The dereferencing operator
	The cast operator
	Integer-type binary operators
	First-operand type binary operators
	Second-operand type binary operators
	The arithmetic binary operators
	The access operators
	The conditional operator
	The function call operator

	Attribute `r', restricted result type
	Anomaly affecting the precedence
	Anomaly affecting valueness
	Anomaly affecting the transferred size
	Attribute `r' calculation rules

	Attribute `k' and `e': constancy and constant value
	The `sizeof' operator
	Simple unary operators
	Other unary operators
	Simple binary operators
	Logical binary operators
	Access and compound assignment operators
	Simple assignment, comma and cast operators
	The conditional operator
	The function call operator

	Attribute `v', valueness
	Attribute `b', register boundedness
	Attribute `f', translation flavor
	Attribute `ci', inherent cost
	The `sizeof' operator
	Comma operator
	The cast operator
	The logical `and' and `or' operators
	The logical `not' operator
	Unary arithmetic operators
	Identifiers
	Arithmetical and bitwise expressions
	The unary dereferencing operator, `*'
	The subscript operator `[]'
	The access to member of pointed compound operator `->'
	The member access operator `.'
	The function call operator
	The simple assignment operator
	The compound assignment operators
	Equality and relational operators
	The `return' statement

	Attribute `cc', conversion cost
	The no-conversion unary operators
	The integral promotion unary operators
	The no-conversion binary operators
	The cast operator
	The integral promotion binary operators
	The usual arithmetic conversions operators
	The simple assignment operator
	The compound assignment operators
	The conditional operator
	The function call operator
	The `return' statement

	Attribute `cf', flow control cost
	Iteration statements
	`while' statements
	`do ... while (...)' statements
	`for' statements

	Selection statements
	`if (...) ...' statements
	`if (...) ... else ...' statements
	`switch' statements

	Labeled statements
	Jump statements

	Attribute `c', total single-execution cost

	Grammar reference
	Expressions
	Statements

	Results, conclusions, developments
	Results
	Estimation
	Optimization

	Conclusions
	Estimation
	Optimization

	Developments
	Extending the methodology to C++
	Modeling more complex hardware

	Floating point emulation cost
	Motivation
	Experimental setup
	Benchmark construction
	Arithmetic operations
	Relational operators
	Dependence on data for arithmetic operations
	Dependence on data for relational operators

