— DejaGnu —
a short introduction

Randolf Rotta
July 26, 2002

The single most important rule of testing is to do it.
— Brian Kernighan and Rob Pike, The Practice of Programming —

Abstract
This article tries to highlight the importance of regression testing and will explore
the functionality of the regression test framework DejaGnu. It’s intended as a short
tutorial on how to use DejaGnu.

1 Regression tests

1.1 What’s that?

The purpose of regression tests is mainly to ensure that a program has not regressed. This
means, the functionality and behavior of a software system or a specific part of a system
hasn’t changed or at least doesn’t regress while changes where done in the source code.
There are two common types of tests often called regression test.

Functional tests check the entire system to meet external requirements and goals like
performance. They were specified by the customer and permit him to understand and
track a project’s growth. Here real world data can be used as input for the system and
then the output can be compared with the expected results. Sometimes there are special
specifications on the functionality, which also provide good test cases.

Another source of test cases for functional tests are interface or language specifica-
tions which have to be implemented. For example for the GNU Debugger (gdb) it is
essential, that it’s interface works as specified in the documentation because other tools
like graphical debuggers and IDEs use gdb as debugging backend.

Unit tests were created by the programmers to check every aspect of a single part of
the system like a class or module on expected behavior. The goal is to test each part (unit)
of code in isolation. This is very important, because it directly supports the programmer
in his everyday work.

1.2 Why should I test?

The results of test runs provide a documented stage of development by showing which
parts of the system work and which don’t work yet. So tests supply the programmer a
documented level of correctness. Moreover the test cases itself provide another form of
documentation as everybody can examine the test to learn more about what a unit should
do and how it is used.

In conjunction with versioning control systems like CVS regular tests can indicate
when and where new errors were introduced. They are likely to be caused by the code
changed since the last check point.

This allows save refactoring of the source code from little code clean ups up to the
replacement of complete parts of a system without unnoticed changes in behavior and
functionality. Now the programmer has the ability and freedom to change and reorganize
even complex systems in the most straight way without worrying how to find back to the
old behavior and functionality. By the way, this is the main reason why regression tests
are a so essential part of the eXtreme Programming methodology.

An often used approach is to write the test cases of a unit before the actual coding.
So one has to think about, what the unit should do and which problems could arise, very
early, which can lead to a better design in the first place. After writing the test cases,
they should be tested by running them without the real unit to see if they actually fail,
otherwise they may be wrong. Then one can work on the unit until all test cases succeed.
So the programmer know, when the necessary work is done. Theoretically the resulting
code can be seen bug free, since the code reacts like it was desired and expressed in the
test cases.

In order to be able to perform the test cases, the programs need an interface which
permits automated test in some way, thus leading to a design for testing. The general
interfaces of the programs can also benefit from this.

1.3 So for what testing frameworks?

Doing regression tests means running many different test cases and running them often.
So it’s unacceptable doing them manually, because this would be very time consuming
and also unreliable. What is needed, are automated exercises of the code.

In some programming languages it seems easy to write test directly in the same lan-
guage. For example JUnit helps doing regression test in Java, but different languages like
C have exceptions which cannot be caught from within the program. Reacting on seg-
mentation faults, race conditions and so on or performing network wide or cross platform
tests needs a testing framework.

Also most times tests are performed by giving some input to the application and
compare the resulting output against expected results. For textual output, comparison
can be done with regular expressions to only match the interesting parts of the data and
not the syntactical sugar around it.

There exists quite a big number of testing frameworks and supporting programs. Nam-
ing them all isn’t possible here, so only some interesting open source products will be
mentioned. A summary of commercial tools can be found on http://www.aptest.com/
and http://www.testingfags.org/.

DejaGnu
STAF
Check
Android
JUnit
Abbot
Siege
LogiTest

general purpose test framework for batch and interactive programs
Software Testing Automation Framework

very easy framework for defining unit tests

GUI testing tool based on Tcl and Expect

a testing framework for Java

Java GUI testing

HTTP-Based testing of servers and web sites

regression testing of web sites with GET, POST, Cookies, HT'TPS etc.

2 Interfaces for testing

2.1 Batch oriented tests

When the only interface to an program is it’s command line, then the only thing automated
test suites can do, is to start the program with given parameters and examine the output
and maybe generated files. For example compilers are such programs where no interaction

is required.

Batch oriented test are easy to write and easy to be done automatic, but it’s difficult
to test single units of a large system this way, when there is no suitable way of accessing

commandl i ne
par anet ers

'

Application

test suite

generated|fil es and
consol g out put

v
Figure 2.1: Batched testing

them over the command line parameters.

2.2 Stream based tests

test suite

comuands Aresul ts
and data

<A conmuni cati on
~—1 channel

(remote)
system
A 4
Application

Figure 2.2: Testing over streams

This covers quite a big range of test methods. The first coming in mind are console based
programs which interact with the user over its standard input and output channels AKA
STDIN and STDOUT. Most of this programs take a line of input as command then do
something and put out some messages with the results. Examples for such programs are
mathematical engines like singular, octave or scilab, or debuggers like the GNU Debugger
GDB. As mentioned earlier it may be required that interfaces react as specified through
a language definition or similar things.

But this method isn’t restricted to direct text based channels. Also web-servers and
web sites can be tested by using HI'TP GET and POST requests for communication.

2.3 GUI testing

test suite

| conmmands
results and dat a

wi ndowi ng system wi ndowi ng system
I i i nj ect nmessagegy
aul U1/ wi dget | i brar y€——
nt er cept t est
I i nessages suite
Appl i cation Application

Figure 2.3: capture/replay based vs. indirect tests

Testing graphical user interfaces has many problems. Although there exists tools for
testing GUIs by replaying previously captured actions like keystrokes and mouse events
and comparing screenshots of windows, they can’t cope well with even lightly changed
arrangement of the GUI elements. So the test cases have to be captured again after
every change of the user interface. Stream based tests work around this problem by using
regular expressions for matching the results.

A better way for automated testing of graphical user interfaces is to generate events
in the application itself. So for example buttons can be “clicked” by sending a message
to the button and data for checking the results of a test case can be obtained by querying
the properties of widgets. Thereby the test become independent to the arrangement of
the widgets on the screen. Of course this needs the support of the used widget library.
In contrast capture/replay based tools often only need the XTEST extension of the used
X-Server to emit X-Events for communicating with GUIs.

2.4 Embedded test code and interfaces

User I nterfacHg

+

enbedded conmands
test interfacq end dat a

t est

Appl i cation —Psuite
results

Figure 2.4: embedded test interfaces

In the case where simple batch or stream based tests over the user interface of the appli-
cation aren’t possible because the interface doesn’t provide enough access or when a GUI
should be tested, but the used widget set doesn’t provide an applicable test interface,
embedded additional testing interfaces in the application are very helpful.

It’s a good idea, to split the tests in an stream interface embedded in the application
and a normal extern test suite like DejaGnu, which provides the test data and checks the
results. So test of the user interface and unit test can be incorporated in one single testing
framework. Since Tcl is an embeddable scripting language, it could easily be used as a
generic interface to the application supporting normal usage and testing.

3 DejaGnu

3.1 Introduction

i nput L » Application

data

expect ed > conpar e/ —

results mat ch

v

report

Figure 3.1: principle of DejaGnu

DejaGnu is a collection of functions for Tcl and Expect for testing other programs and
tools. Each program is tested by one or more test suites, which do the tests expressed as
expect-scripts. Most times this tests can be done by sending the application a command
and data and matching the result against the expected result. For the matching of the
results the advanced regular expressions of Tcl can be used.

DejaGnu is based on Expect, which itself is written in Tcl. All interaction with the
application is done over Expect procedures, which use generic communication channels.
So it’s even possible to test applications on remote machines.

3.2 Features

Since DejaGnu is based on Expect, it can be used to test batch oriented and also interactive
programs, as long as they provide a stream based interface. This are mainly console based
programs and tools but also libraries can be tested by using little wrappers as mentioned
in 2.4. Here some features:

easy to write tests for batch oriented and for interactive programs

provides layer of abstraction, necessary for cross-platform testing

modular communication setup for remote testing

unified, machine parse-able but also human readable output format

conforms to POSIX 1003.3 standard for regression test frameworks

3.3 History

DejaGnu was mainly developed by Cygwin Support and used on BSD, but later ported
to Linux and other operating systems. At present development is in progress for more
support of realtime operating system and to integrate ExpectTk for capture/replay based
GUI testing. By now DejaGnu is actively used in development of GDB (GNU Debugger),
GCC-3.x (GNU Compiler Collection) and Cygwin (UNIX-like environment for Win32).

In 1987 Tecl (Tool command language) was developed by John Ousterhout as an em-
beddable command language for IC design tools in Berkeley. In this time graphical user
interfaces weren’t so widespread yet and they had several tools there, each with an own
weak command language. The development of Tl had following three goals in mind (cited
from Tcl-Homepage):

e The language must be extensible: it must be very easy for each application to add
its own features to the basic features of the language, and the application-specific
features should appear natural, as if they had been designed into the language from
the start.

e The language must be very simple and generic, so that it can work easily with many
different applications and so that it doesn’t restrict the features that applications
can provide.

e Since most of the interesting functionality will come from the application, the pri-
mary purpose of the language is to integrate or ” glue together” the extensions. Thus
the language must have good facilities for integration.

By now Tcl is a very popular and widespread language, used for cross platform script-
ing and embedded command interfaces. Many people are also attracted from the Tk-
extension, which provides an easy way to create graphical user interfaces.

Expect was first written as a tool for simple telnet automation by Scott Paisley and
Don Libes. Later Don Libes was very impressed by Tcl’s capabilities and generalized
and extended the program forming expect as known now. It’s now useful for automating
interactive applications such as telnet, ftp, passwd, fsck, rlogin, tip, etc.

3.4 Supplied procedures

DejaGnu inherits a whole bunch of procedures from TCL and Expect and also provides a
wide range of new functions for all forms of cross platform and netwide testing. As there
are too many of them, only a few of the more used will be named here as examples. The
users manual tries to document all of them and is a better reference than this tutorial.

spawn starts a program

pass declares a test to have passed

fail declares a test to have failed

note appends an informational message to the logfile
send sends a string to the application

expect | analyzes the output of the application
getdirs | get a list of files and directories matching a pattern
find file search
diff finds differences of two or three files
There are some system and tool dependent procedures, which are used by DejaGnu if
provided by the tester:

tool_start starts the tool and initializes it; for a batch oriented tool it should be
executed, leaving the output in the variable comp_output

tool load loads something for a particular test case into the tool

tool exit cleaning up before DejaGnu exits

tool_version | prints the version number for use in the summary report

4 An example: Mergesort

4.1 The program

For showing how to perform tests we naturally need something to be tested. As example
the simple mergesort algorithm will be used. The algorithm has some appropriate proper-
ties making it a good example. It’s very simple but consists of three distinct units which
could be tested. Apart from that honestly merge sort shouldn’t be used in real systems
since there are faster sorting algorithms.

merge This function merges two sorted, adjacent ranges of the array into a single, sorted
array. After that the region of the two ranges is overwritten by the sorted array. Since
we will need temporary space here we provide it with a function parameter

split The splitting function gets a range and divides this into two halves, calls itself
recursively for each half, if it contains more than one element and after that merges the
two adjacent halves with the merge function.

mergesort This should be the end user interface to the sorting function. Here the
temporary memory is allocated and then the splitting function called with the initial
parameters.

So we can now define an interface and the internal structure of our unit as seen below.
The variable data contains the table to be sorted as an array of size pointers to the real
elements. The compare function will be used to compare two given pointers to elements.
It’s return value should be negative if a is less than b, zero if booth are equal and otherwise
positive. The array should be sorted with lowest elements first by the help of the compare
function.

File: libsort.h

1 #ifndef LIBSORT_H__
#define LIBSORT_H__
void mergesort(void** data, int size,
5 int (*compare) (void *a, void *b));

/* internal function */
void merge(int lstart, int rstart, int stop, void **data, void *xtemp,
int (*cmp) (void*,voidx));

10 void split(int start, int stop, void **data, void *xtemp,

10

int (*cmp) (void*,voidx));

#endif

It would be hard to test the three functions in real isolation, but the calling depen-
dencies suggest to test them in a particular order. mergesort calls split and split uses
merge. So merge should be tested first, since all other functions are bound to fail if merge
doesn’t work correctly.

4.2 The test driver

After we specified the interface to the units and the test cases, we can now start coding a
test driver, which we later use to communicate between the test suite and our real code.
The program will read all parameters from argv into an array and then call the specified
function with the right parameters. After that, the resulting array is printed out to be
checked by the test suite.

File: sorttest.c

#include <stdio.h>
#include <string.h>
#include "libsort.h"

int compare(int *a, int *b)
{

return *a - *b;
}

int main(int argc, char *argvl[])
{
int size = argc - 2;
int **data = (int **)malloc(sizeof (int *) * size);

9

15

20

25

30

35

40

45

void **temp = (void *x)malloc(sizeof(void *) * size);
int **realdata;
int 1i;

/* reading the data */

for (i=0; i<size; i++) {
datal[i] = (int *)malloc(sizeof(int));
*datal[i] = atoi(argv[i + 2]);

/* run the test */
switch (atoi(argv[1]))

{

case 0: /x merge */
realdata = data + 3; size —-= 3;
merge (xdata[0], *data[l], *data[2],

realdata, temp, compare);

break;

case 1: /x split */
realdata = data + 2; size -= 2;
split(xdata[0], *data[l], realdata, temp, compare);
break;

case 2: /* mergesort */
realdata = data + 1; size —= 1;
mergesort (realdata, *datal[O], compare);
break;

default:
printf ("unknown function!\n");

+

/* generate output */
for (i=0; i<size; i++) printf("%i ", *realdatali]);
printf("\n");

return O;

4.3 Determining possible test cases and writing a test suite

Sometimes test cases can be generated from the functionality description of the unit to
be written. But often a little bit black magic and guessing is needed to find test cases
which probably uncover possible errors. There also exists a whole testing methodology
with several approaches to test case generation, but this may be to much for this tutorial.

10

So we keep guessing and pick some special cases for our input data and find the expected
results by using common sense. The following table shows some test cases.

unit parameters data expected
result

merge(sl, s2, stop, data) |0 1 2 12 12

012 21 12

045 12340 01234

015 40123 01234

456 432165 432156
split(start, stop, data) 01 5 5

0 2 2 -2 -2 2

03 321 123

36 321654 321456
mergesort(size, data) 4 1111 1111

4 1234 1234

4 4 321 1234

3 -2 -5 -6 -6 -5 -2

3 -6 -5 -2 -6 -5 -2

With the help of the test driver and the found test cases we can now write a test
suite which later will check our sorting functions. For simplicity the test suite consists
of two parts. There is an array which contains the test data. The first column names
the test case, the second contains to command line parameters for sorttest and the last
column is a regular expressions pattern which must match the output of sorttest to
pass the test. The second part of the test suite is a loop which takes each test case from
the array and executes it. But let’s look at the code first. The file must be placed in the
subdirectory testsuite/sorttest/ to work.

File: testsuite/sorttest/mergesort.exp

1 set testdata {

{"merge1” "0 0 12 12" ""1 2.%$"}
{"merge2" "0 0 12 2 1" ""1 2.%$"}
{"merge3" "0 045 12340" "01234.%x$"}

5 {"merge4" "0 015 40123" "01234.%x$"}
{"merge5" "0 456 432165" "432156.%x$"}
{"splitl" "1 0 1 5" "5.x$"}

{"split2" "1 0 2 2 -2" ""-2 2.%$"}
{"split3" "1 03 3 2 1" "~1 2 3.x$"}
10 {"split4" "1 36 3 21654" ""321456.%x$"}
{"sort1" "2 4 111 1" "1 11 1.%x$"}
{"sort2" "2 4 12 34" ""1 2 3 4.%x$"}
{"sort3" "2 4 43 2 1" ""1 2 3 4.x$"}
{"sort4" "2 3 -2 -5 -6" ""-6 -5 -2.%3$"}
15 {"sorts" "2 3 -6 -5 -2" "“-6 -5 -2.%$"}

11

20

25

global SORTTEST
foreach pattern $testdata {
eval "spawn $SORTTEST [lindex $pattern 1]"
expect {
-re [lindex $pattern 2] { pass [lindex $pattern 0] }
default { fail [lindex $pattern 0] }

Note that $testdata is a two dimensional array. The lines contain the different test cases
and the columns contain their data. The eval statement is used, because the parameters
for the program to be started are created by the normal Tcl parameter splitting at white
spaces. So spawn would pass all parameters retrieved by lindex as a single parameter.
To avoid this in favor for an easier command line parsing in the test driver, firstly the
spawn command is created as string and then split up and executed through eval. The
used commands are shortly explained in the following table.
command meaning
foreach var array cycles through the body for each element of the array,
containing it in var
spawn program parameters | spawn a new process of a program with the given

parameters
lindex array index returns the value of a array at index
eval string evaluates a string as Tcl command
expect analyzes the output of the last spawn process by the

given rules

4.4 The sorting code

As the interface is defined now and the test cases ready, we should really start with the
actual code. This is something one could easily do oneself, but following code will also
just do right.

File: libsort.c

#include <stdlib.h>
#include <unistd.h>
#include "libsort.h"

5) void merge(int lstart, int rstart, int stop, void #*xdata, void *xtemp,

int (kcmp) (void*,voidx))

{
int 1p = lstart;
int rp = rstart;
10 int pos;

12

15

20

25

30

35

40

45

50

for (pos=0; lp<rstart && rp<stop;)
if (cmp(datallp], datalrp])<O0)

{
temp [pos++] = datal[lp++];
} else {
temp [pos++] = datal[rp++];
}
while (1p < rstart)
temp [pos++] = datal[lp++];

while (rp < stop)
temp [pos++] = datal[rp++];

memcpy(data + lstart, temp, sizeof(void **) * pos);

void split(int start, int stop, void #**data, void *xtemp,

{

int (*cmp) (void*,voidx*))
int middle = (stop - start) / 2;

/* recursion step */
if (middle-start>1)
split(start, middle, data, temp, cmp);
if (middle > start &% stop-middle>1)
split(middle, stop, data, temp, cmp);

/* merge the two halfes */
merge (start, middle, stop, data, temp, cmp);

void mergesort(void** data, int size,

{

int (*compare) (void *a, void *b))

/* setup of configuration */

void **temp = (void #*x*)malloc(sizeof (void *) * size);

/* start mergesorting */
split (0, size, data, temp, compare);

/* clear configuration */
free(temp) ;

13

1

10

4.5 Setting up configure and the makefile

Although it’s also possible running a test suite with runtest, it’s more easier to start
it via a makefile. Since GNU Automake directly supports DejaGnu by the “check” tar-
get in Makefiles, we will activate this feature by adding the keyword “dejagnu” to the
AUTOMAKE_QPTIONS variable. So in order to run the test suite only make check needs to
be executed.

In order to use the powerful autoconf/automake scheme, we have to create a configure.in
file which may look like following one:

File: configure.in

AC_PREREQ(2.5)
AC_INIT(libsort.c)
AM_CDNFIG_HEADER(config.h)
AM_INIT_AUTOMAKE(libsort,0.0.1)
AC_PROG_CC

AC_OUTPUT (Makefile)

Then we need the Makefile.am file:

File: Makefile.am

AUTOMAKE_QOPTIONS= dejagnu

bin_PROGRAMS sorttest
sorttest_SOURCES sorttest.c libsort.c
INCLUDES =

LDADD =

CLEANFILES = %~

DISTCLEANFILES .deps/*.P

EXTRA_DIST= testsuite

RUNTESTDEFAULTFLAGS = --tool sorttest SORTTEST=‘pwd‘/sorttest \
--srcdir $$srcdir/testsuite

4.6 Time for checking

Now, as we just wrote the last piece of code, we can try all out. Following commands will
generate the configure script and other files:

aclocal

autoheader

autoconf

automake --add-missing --include-deps —-foreign

14

10

15

In order to compile the program and run the tests, following commands are necessary:

./configure
make
make check

The last command make check started DejaGnu to run the test suite. A summary
of the test results is shown and if all went right, one should see something similar to the
following text, which also can be found in DejaGnu’s summary file sorttest.sum.

Running probe/testsuite/sorttest/mergesort.exp ...
FAIL: split3
FAIL: split4

FAIL: sort2
FAIL: sort3
FAIL: sort4
=== gsorttest Summary ===
of expected passes 9
of unexpected failures 5

make[1]: *** [check-DEJAGNU] Error 1
make[1]: Leaving directory ‘probe’
make: *** [check-am] Error 2

As probably everyone could see, the test suite discovered some errors in our code,
which is also reflected by make’s messages and return value. To see the test input and
corresponding outputs, the sorttest.log file contains a complete log of the test run.

File: sorttest.log

Test Run By randolf on Thu Jul 25 17:42:24 2002
Native configuration is 1i686-pc-linux-gnu

=== gorttest tests ===

Schedule of variations:
unix

Running target unix
Using /usr/share/dejagnu/baseboards/unix.exp
as board description file for target.
Using /usr/share/dejagnu/config/unix.exp
as generic interface file for target.
ERROR: Couldn’t find tool config file for unix.
Running probe/testsuite/sorttest/mergesort.exp ...

15

12
PASS: mergel

12
PASS: merge2
20 01234
PASS: merge3
01234
PASS: merge4
432156
25 PASS: mergeb
5
PASS: splitl
-2 2
PASS: split2
30 213
FAIL: split3
321216
FAIL: split4d
1111
35 PASS: sortl
1223
FAIL: sort2
3424
FAIL: sort3
40 -5 -6 -2
FAIL: sort4d
-6 -5 -2
PASS: sortb
testcase probe/testsuite/sorttest/mergesort.exp completed in 1 seconds
45
=== gorttest Summary ===
of expected passes 9
of unexpected failures 5
50 runtest completed at Thu Jul 25 17:42:25 2002

All merge tests passed and also the first two split test cases, so it’s very unlikely that
merge contains errors. First problems occur in split, which should be examined further
to find the bugs. Sometimes test cases can also help to identify the cause of errors, but
normally test suites can’t replace real debugging methodologies. Thus tests help to find
bugs, but not to correct them.

16

5 Miscellaneous stuff

5.1 Own experiences

I was a little bit scared first, because I couldn’t find many examples to work me into
DejaGnu. At present the official documentation seems complex and is more a reference.
It’s a bit difficult to learn DejaGnu with it, because the function descriptions aren’t
ordered by their importance to the beginner.

But to be fair, DejaGnu really isn’t very complicated. The syntax inherited from Tcl
can be explained in ten lines and there are only a few commands, one has to know in
order to use it. The documentation is also getting better every day.

In my view DejaGnu is really a good framework for general testing. Because it isn’t
bind to an graphical interface, one has the ability to use a big range of other tools greatly
enhancing DejaGnu’s flexibility. Also it isn’t bound to a specific programming language or
application programming interface, but allows specialization towards the needed features
for the specific task.

5.2 File downloads

The whole package with all files and examples is freely available and newer versions will be
published at my homepage (http://home.wtal.de/meph/). Contributions and corrections
are very welcomed. Feel free to email me (R.Rotta@Qgmx.de).

5.3 Internet resources

http://c2.com/cgi/wiki?ExtremeProgramming | all about eXtreme Programming
http://c2.com/cgi/wiki?Functional Tests a few word about functional tests
http://c2.com/cgi/wiki?Unit Tests and about unit tests
http://c2.com/cgi/wiki?TestingFramework overview about testing frameworks
http://www.scriptics.com Tel

http://expect.nist.gov Expect

http://www.aptest.com /resources.html a collection of many commercial tools
http://www.testingfags.org/tools.htm a list with even more tools

17

Contents

1 Regression tests

1.1 What’s that?
1.2 Why should I test?
1.3 So for what testing frameworks?o

2 Interfaces for testing

2.1 Batch oriented tests
2.2 Stream based tests
2.3 GUItesting
2.4 Embedded test code and interfaces
3 DejaGnu
3.1 Introduction
3.2 Features
3.3 History e
3.4 Supplied procedures
4 An example: Mergesort
4.1 The program
4.2 The test driver
4.3 Determining possible test cases and writing a test suite
4.4 Thesorting code L
4.5 Setting up configure and the makefile
4.6 Time for checking
5 Miscellaneous stuff
5.1 OWn eXperiences i
5.2 Filedownloads
5.3 Imternet resources

18

