A source-level estimation and optimization methodology
for execution time and energy consumption
of embedded software

1. The need: Why this research was needed

+ 1.1 Requirements:

designers need fast, dynamic, fine-detail,
source-level techniques to estimate
the energy consumed by their software;

Focus:

I focus on the the core of single-issue CPUs
(no memory hierarchy, no VLIW, ...)

1.2,

State of the Art:

current techniques do not satisty
the above requirements;

1.3

1. fast
2. dynamic

3. source-le

I.

vel

4. tine-detail

fast

size and complexity of
modern embedded
applications is increasing

quickly;

instruction-set simulation is
unaffordable for apps of
sufficient complexity (e.g.
video decoders);

whichever technique is cycle-
accurate, or close to cycle
accuracy

is doomed to obsolescence
very soon;

estimation techniques with a

high performance are needed,

even at the expenses of
inferior accuracy;

2. dynamic

+ modern applications are becoming
more and more dynamic in nature;

the behavior of multimedia en-/de-
coders depends more and more on
the contents of the streams they
process;

object-based encoding

(MPEG-4)

uncompressed, I,P,B
constant resolution (MPEG-2)
workload variability is high and

increasing;

the gap between typical and worst
case 1s very large;

static techniques are worst-case
techniques, and lead to expensive,
oversized systems which are
underutilized most of the time;

3. source-level

many energy estimation flows operate
at the assembly level, but designers do
not code in assembly any more;

designers use high-level languages
instead, estimation flows should
provide information at the same
abstraction level;

compilation is a (more and more)
complex process; lot of skill and
experience required to relate
instruction-level estimates to the
source-level causes;

source-level optimizing
transformations have been showed to
lead to the highest gains; their steering
need source-level analysis;

2.. Theory: how this technique works

2.2. Determining single-execution costs

- 2.1 Divide and conquer:

2.1. Divide and conquer

4. tine detail

most of the time and
energy is spent in small
computational kernels;

“small” is much smaller
than a program and a
function, potentially
smaller than inner loops;

many estimation techniques
(even source-level ones)
cannot “look inside
functions”
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1.3 Current techniques do not s
these requirements

Static Timing Analysis (STA) techniques cannot deal with dynamism;
[Puschner8o,..., Chenor1]

Instruction-Set Simulation (ISS) is slow and at a low level:
[Brooksoo, Sinhaor, Qino3]

- ISS + gprof provide estimates only at a function level;
[Simunico1]

Atomium/PowerEscape is source-level,

but only for memory aspects (not our focus);
[Bormansgg, Arnoutos]

SoftExplorer is a static technique;
[Senno2z]

Compilation-based approaches do not provide link to source level;
[Lajologg]

SIT is source level (good!) but still unable to resolve chosen clusters;
[Ravasio3]

Black-box techniques do not provide any link with source code;
[Muttrejao4]

2.3. Determining executi
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4. Uses and developments

4.1 Automated source optimization

1. Automated
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4. Estimating

Instruction-level
profiles

C++ sources
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energy reduction:
execution time reduction:
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4.2 Support for VWR

+ Very wide register (VWR)
architectures achieve
extreme low power via:

a wide data-path (e.g. 256 bit) and
very wide registers (e.g. 2048 bit)
with SIMD instructions;

a software controlled scratchpad
in place of a L1 cache;

a loop buffer (32 instructions);

Data Memory Hierarchy
\
Scratchpad
2048
Register file
AR
o
/

Loop buffer SIMD Datapath

We added features to:

map code to different executors

mark concurrent code

define intrinsics for scratchpad transfer costs;

define intrinsics for SIMD operations;

support for simulation and estimation
at the same time;

all these features are ANSI C-transparent;

4.3 Support for VLIW

trace-based:

model exactly the per-trace compilation

results of VLIW compilers;

incremental rebuild:

rebuild only the intermediate products

actually needed by changes made

in the source code, architecture, input data;

keep the current efficiency;

obtain trace-based profiles by current

node-based profiles;
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4.4 Extension to C++

Selected Pub

The extension to C++ is
feasible with acceptable
effort;

Book chapters:

consumption at source ¢
+ Tasks requ1red: P. Marchal, D. P. Scarpa

. Yan
lexer adaptation &

(28 new keywords, negligible
effort);

parser syntax adaptation

213 >> 560 syntax rules;
- Journal papers:

new type system and scoping

rules (significant effort); with Carlo Brandolese,

parser needs some semantic-
level disambiguation techniques;

overloading / templates / late
binding

(current instrumentation
technique is sufficient to
determine which function /
method has been actually

called);

[accepted];

with Carlo Brandolese,

IEEE Transactions on C

Conference papers:

extension of theoretical abstract
translation model

(significant effort); ) ,
8 ’ single-issue processor co

CODES+ISSS’ 06, Seoul,

Required effort: 1 “me-year”

F. Catthoor, D. Verkest,

“Software Simultaneous

Parallelism”,

[submitted];

lications

“Estimation of the execution time and energy

ode”,

in F. Catthoor, J. I. Gomez, S. Himpe, Z. Ma,

zza, C. Wong, P.

“Systematic methodology for real-time cost-
effective mapping of dynamic concurrent task-
based systems on heterogeneous platforms”,

Springer Verlag [accepted];

‘A source-level
software analysis methodology able to resolve
clusters of operations and finer details”,
Journal on Low-power Electronics (JOLPE)

“Energy estimation for Embedded Software”,

omputers;

with C. Brandolese, “A fast, dynamic, source-
level and fine-detail technique to estimate the
energy consumed by embedded software on

res”,
Korea [submitted];

with P. Raghavan, D. Novo, C. Brandolese,

Multi-Threading, a

technique to exploit Task-level Parallelism to
improve Instruction and Data-level

PATMOS 06, Montpellier, France



