A source-level estimation and optimization methodology
for execution time and energy consumption
of embedded software

1. The need: Why this research was needed

+ 1.1 Requirements:

designers need fast, dynamic, fine-detail,
source-level techniques to estimate
the energy consumed by their software;

Focus:

I focus on the the core of single-issue CPUs
(no memory hierarchy, no VLIW, ...)

1.2,

State of the Art:

current techniques do not satisty
the above requirements;

1.3

1. fast
2. dynamic

3. source-le

I.

vel

4. tine-detail

fast

size and complexity of
modern embedded
applications is increasing

quickly;

instruction-set simulation is
unaffordable for apps of
sufficient complexity (e.g.
video decoders);

whichever technique is cycle-
accurate, or close to cycle
accuracy

is doomed to obsolescence
very soon;

estimation techniques with a

high performance are needed,

even at the expenses of
inferior accuracy;

2. dynamic

+ modern applications are becoming
more and more dynamic in nature;

the behavior of multimedia en-/de-
coders depends more and more on
the contents of the streams they
process;

object-based encoding

(MPEG-4)

uncompressed, I,P,B
constant resolution (MPEG-2)
workload variability is high and

increasing;

the gap between typical and worst
case 1s very large;

static techniques are worst-case
techniques, and lead to expensive,
oversized systems which are
underutilized most of the time;

3. source-level

many energy estimation flows operate
at the assembly level, but designers do
not code in assembly any more;

designers use high-level languages
instead, estimation flows should
provide information at the same
abstraction level;

compilation is a (more and more)
complex process; lot of skill and
experience required to relate
instruction-level estimates to the
source-level causes;

source-level optimizing
transformations have been showed to
lead to the highest gains; their steering
need source-level analysis;

2.. Theory: how this technique works

2.2. Determining single-execution costs

- 2.1 Divide and conquer:

2.1. Divide and conquer

4. tine detail

most of the time and
energy is spent in small
computational kernels;

“small” is much smaller
than a program and a
function, potentially
smaller than inner loops;

many estimation techniques
(even source-level ones)
cannot “look inside
functions”

Why attributes t,k,e are needed

Daniele

P. Scarpazza

scarpaz@scarpaz.com
Dipartimento di Elettronica e Informazione

Politecni

1.3 Current techniques do not s
these requirements

Static Timing Analysis (STA) techniques cannot deal with dynamism;
[Puschner8o,..., Chenor1]

Instruction-Set Simulation (ISS) is slow and at a low level:
[Brooksoo, Sinhaor, Qino3]

- ISS + gprof provide estimates only at a function level;
[Simunico1]

Atomium/PowerEscape is source-level,

but only for memory aspects (not our focus);
[Bormansgg, Arnoutos]

SoftExplorer is a static technique;
[Senno2z]

Compilation-based approaches do not provide link to source level;
[Lajologg]

SIT is source level (good!) but still unable to resolve chosen clusters;
[Ravasio3]

Black-box techniques do not provide any link with source code;
[Muttrejao4]

2.3. Determining executi

co di Milano

atisty

Fast MSrc Fine
MDYHXFine
Fast Dyn Src M

(Fast Dyn Src Fine)

Fast DX Src Fine
Fast Dyn St
Fast Dyn Src Bife
Fast Dyn SecThe€

on counts

struct tag
[1
t = [struct tag
= . _ Attribute Computation Defined for which AST nodes . int fieldl; ci = W(t) mov
Ci Ili Ci Input if ((a &&((b < t<):+d)) [l el] g & (h|]i)) & j) { Full i type system needed char field? [sizeof (type x)*5]; c§=o . opt1mal strategy to select probe msertion points
= (a == b+c); . . (attri ute t) } s1, s2; cf =0
cost of executing execution single-execution source ¢ total cost synthesized expressions and statements SR T es only one probe per each generalized basic block (g.b.b.);
the i-th node in the AST count cost code o) _ p , p int main ()))
- ci inherent cost synthesized expressions and statements the operands’ types o a gb.b. is a maximal set of nodes, all executed the same
- . hesized . d . . t = [struct tag] t = [struct tag] .]]
cc conversion cost synthesize expressions and statements - Full constant expression U, W(O) = ... W(O) = ... number of times (possibly larger than basic blocks); example:
cf flow control cost inherited expressions and statements . . ’
D . ol evaluation needed (attributes k,e) Jxsection 1%/ p—
[] - . .
CXCCllthIl COStS Abstract e constant value synthesized expressions time (zero r.untime cost) ' _ Why attribute v (valueness) is needed { {
t real result type synthesized expressions and appear in type declarations, and influence rxHp = HrEg; double Tl B /*section 2*/ /*section 2*/
via an attribute erammar Syntax v valueness inherited expressions operator Costs; B .. L
5 ’ tree r restricted result type inherited expressions } else { } else {
founded on an (: =n -°C b register-boundedness synthesized expressions Why attribute r (restricted type) is needed /*section 3*/ /*section 3*/
abstract translation model B 1 1 1 f translation flavor inherited expressions and statements a = s (5a) m = b) ZR } }
B ; _ i ather t =[double] t =[double]
Atoms ,— Execution count I executxgn cost [Fatl ‘ ‘ ‘ r = [double] r = [double] / *section 4% / " - i*
Node 0, =4327 S LogicTop Syntax @ @ @ @ @ @ @ @ @ @ @ ci=1 LValueStar + 1 LValueStarNext ci=1 RValueStar + 1 RValueStarNext / sectilon /
: N \ ‘ -R -R
« 2.3 Determine 7 N e e
. - — t = [pointer][double] t = [pointer][double] . .
3 . Ab _ . - 1\ el]éxecutlon cost - \ T r = [pointer][double] r =[pointer][double] * tfanSp arent, prObe_lnSertlng
stract Abstract translation mode =n_-c_= 4327 LogicTop B _ ci=1 RValueStar ci=1 RValueStar .
execution counts ; s f .
. . - _ - - source-to-source transrormations:
INStructions | LogicLeaf - 1ju £ = [struct tag] v=R v=R
b instrumentin the OI'i inal LzzZTZi) =1111$11 0.5 jump ‘ (Current v=L r = [struct tag] t = [pointer][pointer][double] t = [pointer][pointer][double]
Y) g) g Switch =2 alul + 1 jump A Execution cost Gt t = [struct tag] ci=0 r = [pointer][pointer][double] r = [pointer][pointer][double] 3 expressions; e (_prof j_]_e_ (137) , e)
program 1in an efﬁCICnt Way If = Ijump C =n_-c_=4327 alul + 2163.5 jump - r = [struct tag] ci=1 RValueStar ci=1 RValueStar
- - Time L - e ¢i=1LValueStar + v =R v =R ©s statements: s; { profile (137); s; }
and running the instrumented d — Target Platform Characterization L Igwm-v LValueStarNext f:[[iffuc]t tag] t = [pointer][pointer][pointer][double] t = [pointer][pointer][pointer][double] — -
: an - = r‘= ype r = [pointer][pointer][pointer][double] r = [pointer][pointer][pointer][double] . . : :
program STy I'eal lnput data alul = (178 mA, 1.715 cycles) t = [pointer][struct tag] ci=1LValueStar + ci=1 RValueStar ci=1 RValueStar ¢ functions: int f(args) int f (args)
energy famp =~ (7o mA. 1o cycles) ——fm| Execution cost e 7 = [pointer][struct tag] (W(r)-1) LValueStarNext N { { __profile_ (151);
- L T - v =
B = .. CI =n _-c = (1311 ms, 471.8 mJ) (Children nodes =0 fil?pointer][struct tag] t = [pointer][pointer][pointer][pointer][double] } U érofllé (152) ;
Exfolelelolololololelole PRy
ci=0
o ®
- 3.1 ANSI-C compliant flow 3.1 ANSI C compliant tool flow available 33 Accuracy feSUItS
ll I Iplel I lentatlon avallable Program sources for BlockSize = 2; BlockSize <= HumSamples; #284: 77.24 — 77.39 Operator - . Slm_It (reference)
| . CPU=0 (Pivot is #408) . |]estools
* float delta engle, =mZ, =ml, ecmZ2, oml, w, =&ar[3 k=D53I';§ b=Di tFTI[fL%atgl SlmIt eStOOlS error
. - n= .C= oatsu
. . . ~ = 8&*alul
+ 3.2.New experiments — Setup: Step 1: Analyzing 2CC setn sngie — amgle numeraver / (Flese)siecxsises| oo 1138374 cyp=4.26357us E(m]) T(ms) E(m]) T (ms) E T 10000
v | mmz = sinf P delta_angie E;E; El.gszlussmj ':E_T_r: 23;22:;”5 o o
Simulator: SlmIt—ARM v2.0.3 decorated syntax tree Z =aml = sing -deltz_angle tE=2s .1TJ24E__:1 ﬁ Dperrr:tnr* adpcm-s 46,1 166,3 4.1,9 156,4 '9,1/0 '6,0/0
. . 3 emz = cosf -2 * deltaz_sngle IE:F‘U=.DJI:JF" ti J-.:%4D8] _ _ o _ o
with cache latency = o [Qinos] S | ' : . eml = cosf (-delts_angle k=0_v=FR. b=0. t—"[float] adpcm l 910,2 3289,9 722,1 27105 20,7% -17,6%
tep 2. nstrumentlng w = z cml ; n=53248, c = 1 FloatMul : _ _ o _ o,
Platform: SA-1100 @ 206 MHz, 1.5 Vdd ; e — Eltcount i 65,7 242,2 55,0 ZO4>O 10,3% 16’2/"
=1 =4 : ° 0
. . . for | i=0; i« NumSamples; i+= BlockSize | = = ltCOunt- 81 248 I 2 "O /O +O /O
Parameters: avg. currents for each instruction, instrumented source code { F e =55'_9D952;52?";JUEC"IT gl blowfish 9°L,9 3029, 9771 3549 ’50 >
from JouleTrack [Sinhao1] Y art3] = cm3; #276: 77,20 77,25 ldentier " OWI1S 106730 3742,7 748,3 3371,0 -209,0% -9,9% _
-) CPU=D0 (Pivot is #408
Compiler: gee v2.95 -02/-03 Step 3: Compiling i e =0_v=R. b=1. ¢=0. t="loat] CRC32 383 1322 ¥4 120,6 -75% -2,0% Hooo
. O - - 1 n=53248 >
Benchmacks: from MiBench ol . v - . TS — CcE = 0m) CcT = 0ms FFT-s 207,9 764,6 207,1 7703 -0,4% +0,7% 80
enchmarks: from MiBenc [Guthauso1] instrumented object code <proﬁhng hbrary> 3 21011 = =ml #279: 77.26 - 77.31 Operator [1 o o 3
| | Soneooo FFT-1 3213,2 11851,5 3264,8 121425 +1,6% +2,3% 8
y for | j=i, n=0; n < BlockEnd; j++, nt++) ZSS;?S == l F{=‘l." |Da| d - o o
N ' Resul Step 4: Linking A T ol L ueindes IFFT-s 2051 7551 2073 77L0 +L1% +2,1%
° — . ' Cyp = 0.0142442u] c;7 = 0.0484496us _ o o
3.3. INEW experiments esults: | crio] = oferil) - asi2]; i ovestrann T 0 asranime IFFT-1 3181,8 11744,7 3266,2 12147,8 +2,9% +3,4%
erli]l = arlll; CcE = 0.0755474m| CcT = 0.257954 1 o o
. 1 it = eroy. e S, jpeg 87,0 309,9 L2 328,5 +3,8% +6,0%
accuracy: average modulo error <8%; : : ' ' FaTT Jlas 77 20 identifier tar . o o
correlation with reference > 0.995: Step 5: Running the instrumented executable e rljndael 63,8 221,3 L4 257,53 +12,0% +I6,3/o
. 5 1 2i[0] = w*zill] - ail[Z]; =5f3248f . . o o |
f . lat; . h han ISS l—l z ailz] = ailll; Cor = OmJ CcT = 0ms sha-s 22,1 78,9 21,9 78,6 -0,9/0 -0,4_/0 100
errormance: simulation times 10 OX shorter than 5 2 ail = ail0l: 3 . 77 —-77.30 "1t
P 35 5 11 a1 #278:77.28 30 Constant "1 sha-l 22.0,4 820,0 224,7 818,3 —Z,I% —O,Z%
only 2.2x slower than normal; execution counts <abstract instr. costs>
! Key: [data Quality of result:
» Step 6: Post-processing . _
tool — _ —_ o
time, energy statistics Q library N < 10 i
seudo- * p(TT)=O 87 IT_T|=565% = &390 2 | N‘I—' ‘I—' oK o ‘r'u © =
compiler ’ 99°7> T 88 588 ZEO0 L. EREefs B 2L, G- 70

4. Uses and developments

4.1 Automated source optimization

1. Automated

Previous approaches

Initial source code

source-code

v

Front-end

v

optimization

Influence metrics

v

Transformation
steering

2. Support for VWR

v

architectures

Transformation
application

Optimized
source code

v

3. Support for VLIW

Compiler

long exploration loop

v

architectures

Optimized
object code

v

Instruction set
simulator

v

4. Estimating

Instruction-level
profiles

C++ sources

Results:

energy reduction:
execution time reduction:

AcFilter

100% -7

90%

80%

70% T

Dijkstra

100%

90%

80%

70% :

This approach

Initial source code

v

Source-level
estimation

v

Source-level
profiles

v

Influence metrics

v

Transformation
steering

v

short exploration loop

Transformation
application

Optimized
source code

v

Compiler

v

Optimized
object code

-5.I

— -22.0%

-7.8 —-22.3%

100%

Hough

90%

80%

70% T

100%

FFT

90%

80%

70% T

4.2 Support for VWR

+ Very wide register (VWR)
architectures achieve
extreme low power via:

a wide data-path (e.g. 256 bit) and
very wide registers (e.g. 2048 bit)
with SIMD instructions;

a software controlled scratchpad
in place of a L1 cache;

a loop buffer (32 instructions);

Data Memory Hierarchy
\
Scratchpad
2048
Register file
AR
o
/

Loop buffer SIMD Datapath

We added features to:

map code to different executors

mark concurrent code

define intrinsics for scratchpad transfer costs;

define intrinsics for SIMD operations;

support for simulation and estimation
at the same time;

all these features are ANSI C-transparent;

4.3 Support for VLIW

trace-based:

model exactly the per-trace compilation

results of VLIW compilers;

incremental rebuild:

rebuild only the intermediate products

actually needed by changes made

in the source code, architecture, input data;

keep the current efficiency;

obtain trace-based profiles by current

node-based profiles;

architecture description original C source code input data
loop preconditioner
C source code + LU +SIMD
+ IVR + fixed wordlength
‘ e3tools

‘ decorated AST ‘ ‘ exact node profiles

trace source generator ‘

ol ol 9l 2] @ v
o o o o o o
S 28 2|8 |2
E, T assembly model 2l all 3l 3l 3 3
2] n (93] 93] 2] 2]
[}]]] [[}
o o 9 o o o
|| 8| 8| &|| ® s
= — = = = =
- - - - - -
1 per-trace compile
— —~ — — — —~
]] 31] 31]
SlE1.E].8]1.8| |&
B||&||&8||&8||a| |5
5] L 5] L (PN 5]
& & O Q Q &
[[[9] [[
—~ —~ ~ —~ ~ —~
- - A - A -

assembly translation
instruction counter

cost accumulator

final E, T estimates

|
|
‘ flow graph solver ‘
|

‘ exact trace profiles

4.4 Extension to C++

Selected Pub

The extension to C++ is
feasible with acceptable
effort;

Book chapters:

consumption at source ¢
+ Tasks requ1red: P. Marchal, D. P. Scarpa

. Yan
lexer adaptation &

(28 new keywords, negligible
effort);

parser syntax adaptation

213 >> 560 syntax rules;
- Journal papers:

new type system and scoping

rules (significant effort); with Carlo Brandolese,

parser needs some semantic-
level disambiguation techniques;

overloading / templates / late
binding

(current instrumentation
technique is sufficient to
determine which function /
method has been actually

called);

[accepted];

with Carlo Brandolese,

IEEE Transactions on C

Conference papers:

extension of theoretical abstract
translation model

(significant effort);) ,
8 ’ single-issue processor co

CODES+ISSS’ 06, Seoul,

Required effort: 1 “me-year”

F. Catthoor, D. Verkest,

“Software Simultaneous

Parallelism”,

[submitted];

lications

“Estimation of the execution time and energy

ode”,

in F. Catthoor, J. I. Gomez, S. Himpe, Z. Ma,

zza, C. Wong, P.

“Systematic methodology for real-time cost-
effective mapping of dynamic concurrent task-
based systems on heterogeneous platforms”,

Springer Verlag [accepted];

‘A source-level
software analysis methodology able to resolve
clusters of operations and finer details”,
Journal on Low-power Electronics (JOLPE)

“Energy estimation for Embedded Software”,

omputers;

with C. Brandolese, “A fast, dynamic, source-
level and fine-detail technique to estimate the
energy consumed by embedded software on

res”,
Korea [submitted];

with P. Raghavan, D. Novo, C. Brandolese,

Multi-Threading, a

technique to exploit Task-level Parallelism to
improve Instruction and Data-level

PATMOS 06, Montpellier, France

