
1. The need: Why this research was needed

2. Theory: how this technique works

3. Results: The technique is accurate and fast

4. Uses and developments

A source-level estimation and optimization methodology
for execution time and energy consumption 
of embedded software

● 1.1 Requirements: 
designers need fast, dynamic, fine-detail, 
source-level techniques to estimate 
the energy consumed by their software;

● 1.2 Focus:
I focus on the the core of single-issue CPUs
(no memory hierarchy, no VLIW, ...)

● 1.3 State of the Art:
current techniques do not satisfy 
the above requirements;

1. fast

2. dynamic

3. source-level

4. fine-detail

1. fast

● size and complexity of 
modern embedded 
applications is increasing 
quickly;

● instruction-set simulation is 
unaffordable for apps of 
sufficient complexity (e.g. 
video decoders);

● whichever technique is cycle-
accurate, or close to cycle 
accuracy
is doomed to obsolescence 
very soon;

● estimation techniques with a 
high performance are needed, 
even at the expenses of 
inferior accuracy;

2. dynamic
● modern applications are becoming 

more and more dynamic in nature;

● the behavior of multimedia en-/de-
coders depends more and more on 
the contents of the streams they 
process;

● workload variability is high and 
increasing;

● the gap between typical and worst 
case is very large;

● static techniques are worst-case 
techniques, and lead to expensive, 
oversized systems which are 
underutilized most of the time;

uncompressed,
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3. source-level
● many energy estimation flows operate 

at the assembly level, but designers do 
not code in assembly any more;

● designers use high-level languages 
instead, estimation flows should 
provide information at the same 
abstraction level;

● compilation is a (more and more) 
complex process; lot of skill and 
experience required to relate 
instruction-level estimates to the 
source-level causes; 

● source-level optimizing 
transformations have been showed to 
lead to the highest gains; their steering 
need source-level analysis;

4. fine detail
● most of the time and 

energy is spent in small 
computational kernels;

● “small” is much smaller 
than a program and a 
function, potentially 
smaller than inner loops;

● many estimation techniques 
(even source-level ones)
cannot “look inside 
functions”

● Static Timing Analysis (STA) techniques cannot deal with dynamism; Fast Dyn Src Fine
[Puschner89,..., Chen01]

● Instruction-Set Simulation (ISS) is slow and at a low level: Fast Dyn Src Fine
[Brooks00, Sinha01, Qin03]

● ISS + gprof provide estimates only at a function level; Fast Dyn Src Fine
[Simunic01]

● Atomium/PowerEscape is source-level, Fast Dyn Src Fine
but only for memory aspects (not our focus);
[Bormans99, Arnout05]

● SoftExplorer is a static technique; Fast Dyn Src Fine
[Senn02]

● Compilation-based approaches do not provide  link to source level; Fast Dyn Src Fine
[Lajolo99]

● SIT is source level (good!) but still unable to resolve chosen clusters; Fast Dyn Src Fine
[Ravasi03]

● Black-box techniques do not provide any link with source code; Fast Dyn Src Fine
[Muttreja04]

1.3 Current techniques do not satisfy 
these requirements
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● 2.2 Determine single-
execution costs
via an attribute grammar, 
founded on an 
abstract translation model

● 2.3 Determine 
execution counts
by instrumenting the original 
 program in an efficient way
and running the instrumented 

  program over real input data
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● 3.1 ANSI-C compliant flow 
implementation available

● 3.2.New experiments – Setup:
Simulator: SimIt-ARM v2.0.3 

with cache latency = 0 [Qin03]

Platform: SA-1100 @ 206 MHz, 1.5 Vdd

Parameters: avg. currents for each instruction, 
from JouleTrack [Sinha01]

Compiler: gcc v2.95 -O2/-O3 

Benchmarks: from MiBench [Guthaus01]

● 3.3. New experiments – Results:
accuracy: average modulo error <8%; 

correlation with reference > 0.995;

performance: simulation times 10,350x shorter than ISS;
only 2.2x slower than normal;

Program sources

Step 1: Analyzing

Step 2: Instrumenting

Step 3: Compiling

Step 4: Linking

Step 5: Running the instrumented executable

decorated syntax tree

instrumented source code

instrumented object code

execution counts

Step 6: Post-processing

time, energy statistics
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3.1 ANSI C-compliant tool flow available 3.3. Accuracy results

Quality of result:

● (E,E) = 0,9960,   |Eρ ­E| = 7,49%

● (T,T) = 0,9987,   |Tρ ­T| = 5,65%,

SimIt e3tools error
E (mJ) T (ms) E (mJ) T (ms) E T

adpcm-s 46,1 166,3 41,9 156,4 -9,1% -6,0%
adpcm-l 910,2 3289,9 722,1 2710,5 -20,7% -17,6%
bitcount-s 65,7 242,8 55,0 204,0 -16,3% -16,0%
bitcount-l 981,9 3628,6 977,1 3649,2 -0,5% +0,6%
blowfish 1067,0 3742,7 748,3 3371,0 -29,9% -9,9%
CRC32 38,3 132,2 35,4 129,6 -7,5% -2,0%
FFT-s 207,9 764,6 207,1 770,3 -0,4% +0,7%
FFT-l 3213,2 11851,5 3264,8 12142,5 +1,6% +2,5%
IFFT-s 205,1 755,1 207,3 771,0 +1,1% +2,1%
IFFT-l 3181,8 11744,7 3266,2 12147,8 +2,7% +3,4%
jpeg 87,9 309,9 91,2 328,5 +3,8% +6,0%
rijndael 63,8 221,3 71,4 257,3 +12,0% +16,3%
sha-s 22,1 78,9 21,9 78,6 -0,9% -0,4%
sha-l 229,4 820,0 224,7 818,3 -2,1% -0,2%
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P. Marchal, D. P. Scarpazza, C. Wong, P. 
Yang,
“Systematic methodology for real-time cost-
effective mapping of dynamic concurrent task-
based systems on heterogeneous platforms”, 
Springer Verlag [accepted];

● Journal papers:

● with Carlo Brandolese, “A source-level 
software analysis methodology able to resolve 
clusters of operations and finer details”, 
Journal on Low-power Electronics (JOLPE) 
[accepted];

● with Carlo Brandolese, 
“Energy estimation for Embedded Software”, 
IEEE Transactions on Computers;

● Conference papers:

● with C. Brandolese, “A fast, dynamic, source-
level and fine-detail technique to estimate the 
energy consumed by embedded software on 
single-issue processor cores”, 
CODES+ISSS’06, Seoul, Korea [submitted];

● with P. Raghavan, D. Novo, C. Brandolese, 
F. Catthoor, D. Verkest, 
“Software Simultaneous Multi-Threading, a 
technique to exploit Task-level Parallelism to 
improve Instruction and Data-level 
Parallelism”, 
PATMOS’06, Montpellier, France 
[submitted];

1. Automated 
source-code 
optimization

2. Support for VWR 
architectures

3. Support for VLIW 
architectures

4. Estimating 
C++ sources
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Results:
energy reduction: -5.1 – -22.0%
execution time reduction: -7.8 – -22.3%

4.1 Automated source optimization 4.2 Support for VWR
● Very wide register (VWR) 

architectures achieve 
extreme low power via:
● a wide data-path (e.g. 256 bit) and

very wide registers (e.g. 2048 bit) 
with SIMD instructions;

● a software controlled scratchpad
in place of a L1 cache;

● a loop buffer (32 instructions);

● We added features to:

1. map code to different executors

2. mark concurrent code

3. define intrinsics for scratchpad transfer costs;

4. define intrinsics for SIMD operations;

support for simulation and estimation 
at the same time;
all these features are ANSI C-transparent;

Scratchpad

SIMD Datapath

Data Memory Hierarchy

Loop buffer

Register file

256

256

256

2048

● trace-based:
model exactly the per-trace compilation 
results of VLIW compilers;

● incremental rebuild: 
rebuild only the intermediate products 
actually needed by changes made 
in the source code, architecture, input data;

● keep the current efficiency;
obtain trace-based profiles by current
node-based profiles;

4.3 Support for VLIW
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C source code + LU +SIMD
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● The extension to C++ is 
feasible with acceptable 
effort;

● Tasks required:
● lexer adaptation

(28 new keywords, negligible 
effort);

● parser syntax adaptation
213 >> 560 syntax rules;

● new type system and scoping 
rules (significant effort);

● parser needs some semantic-
level disambiguation techniques;

● overloading / templates / late 
binding
(current instrumentation 
technique is sufficient to 
determine which function / 
method has been actually 
called);

● extension of theoretical abstract 
translation model
(significant effort);

● Required effort: 1 “me-year”

4.4 Extension to C++

2.3. Determining execution counts

● optimal strategy to select probe insertion points
– only one probe per each generalized basic block (g.b.b.);

– a g.b.b. is a maximal set of nodes, all executed the same 
number of times (possibly larger than basic blocks); example:

/*section 1*/ ...
if (f())
{ 

/*section 2*/
...

} else {
/*section 3*/ 
... 

}
/*section 4*/
...

● transparent, probe-inserting 
source-to-source transformations:

– expressions: e ( __profile__(137), e )
– statements: s; { __profile__(137); s; }
– functions: int f(args) int f(args) 

{ { __profile__(151);  
...     { ... }

}   __profile__(152);  
            }

/*section 1*/ ...
if (f())
{ 

/*section 2*/
...

} else {
/*section 3*/ 
... 

}
/*section 4*/
...

2.2. Determining single-execution costs
Attribute         Computation     Defined for which AST nodes

c  total cost synthesized expressions and statements

ci inherent cost synthesized expressions and statements
cc conversion cost synthesized expressions and statements
cf flow control cost inherited expressions and statements

k constancy synthesized expressions
e constant value synthesized expressions
t real result type synthesized expressions
v valueness inherited expressions
r restricted result type inherited expressions
b register-boundedness synthesized expressions
f translation flavor inherited expressions and statements

● Full C type system needed 
(attribute t)
cost of operations and conversions depend on 
the operands' types

● Full constant expression 
evaluation needed (attributes k,e)
constant expressions are resolved at static 
time (zero runtime cost)
and appear in type declarations, and influence 
operator costs;

s1 s2

=

t = [struct tag]
W(t) = ...

t = [struct tag]
W(t) = ...

t = [struct tag]
ci = W(t) mov
cc = 0
cf =0

Why attribute r (restricted type) is needed
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*a = s;

v= L
t = [struct tag]
r = [struct tag]
ci = 1 LValueStar  + 
      (W(r)-1) LValueStarNext

v= L
t = [struct tag] 
r = [type] 
ci = 1 LValueStar  + 
      (W(r)-1) LValueStarNext

v= R
t = [pointer][struct tag]
r = [pointer][struct tag]
ci= 0

v= R
t = [struct tag]
r = [struct tag]
ci = 0

v= L
t = [type]
r = [type]
ci = 1 DotOffset

v= R
t = [pointer][struct tag]
r = [pointer][struct tag]
ci = 0

Why attribute v (valueness) is needed
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q

v = L
t = [double]
r = [double]
ci= 1 LValueStar + 1 LValueStarNext

v = R
t = [pointer][double]
r = [pointer][double]
ci= 1 RValueStar 

v = R
t = [pointer][pointer][double]
r = [pointer][pointer][double]
ci= 1 RValueStar 
v = R
t = [pointer][pointer][pointer][double]
r = [pointer][pointer][pointer][double]
ci= 1 RValueStar 

v = R
t = [pointer][pointer][pointer][pointer][double]
r = [pointer][pointer][pointer][pointer][double]
ci= 1 RValueStar 

v = R
t = [double]
r = [double]
ci= 1 RValueStar + 1 RValueStarNext

v = R
t = [pointer][double]
r = [pointer][double]
ci= 1 RValueStar

v = R
t = [pointer][pointer][double]
r = [pointer][pointer][double]
ci= 1 RValueStar
v = R
t = [pointer][pointer][pointer][double]
r = [pointer][pointer][pointer][double]
ci= 1 RValueStar

****p = ***q; double **** p 
double  *** q;

struct tag
{
  int  field1;
  char field2 [sizeof(type_x)*5];
} s1, s2;

int main() 
{

...
s1 = s2;
...

}

Why attributes t,k,e are needed
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