
1. The need: Why this research was needed

2. Theory: how this technique works

3. Results: The technique is accurate and fast

4. Uses and developments

A source-level estimation and optimization methodology
for execution time and energy consumption
of embedded software

● 1.1 Requirements:
designers need fast, dynamic, fine-detail,
source-level techniques to estimate
the energy consumed by their software;

● 1.2 Focus:
I focus on the the core of single-issue CPUs
(no memory hierarchy, no VLIW, ...)

● 1.3 State of the Art:
current techniques do not satisfy
the above requirements;

1. fast

2. dynamic

3. source-level

4. fine-detail

1. fast

● size and complexity of
modern embedded
applications is increasing
quickly;

● instruction-set simulation is
unaffordable for apps of
sufficient complexity (e.g.
video decoders);

● whichever technique is cycle-
accurate, or close to cycle
accuracy
is doomed to obsolescence
very soon;

● estimation techniques with a
high performance are needed,
even at the expenses of
inferior accuracy;

2. dynamic
● modern applications are becoming

more and more dynamic in nature;

● the behavior of multimedia en-/de-
coders depends more and more on
the contents of the streams they
process;

● workload variability is high and
increasing;

● the gap between typical and worst
case is very large;

● static techniques are worst-case
techniques, and lead to expensive,
oversized systems which are
underutilized most of the time;

uncompressed,
constant resolution

I,P,B
(MPEG-2)

object-based encoding
(MPEG-4)

3. source-level
● many energy estimation flows operate

at the assembly level, but designers do
not code in assembly any more;

● designers use high-level languages
instead, estimation flows should
provide information at the same
abstraction level;

● compilation is a (more and more)
complex process; lot of skill and
experience required to relate
instruction-level estimates to the
source-level causes;

● source-level optimizing
transformations have been showed to
lead to the highest gains; their steering
need source-level analysis;

4. fine detail
● most of the time and

energy is spent in small
computational kernels;

● “small” is much smaller
than a program and a
function, potentially
smaller than inner loops;

● many estimation techniques
(even source-level ones)
cannot “look inside
functions”

● Static Timing Analysis (STA) techniques cannot deal with dynamism; Fast Dyn Src Fine
[Puschner89,..., Chen01]

● Instruction-Set Simulation (ISS) is slow and at a low level: Fast Dyn Src Fine
[Brooks00, Sinha01, Qin03]

● ISS + gprof provide estimates only at a function level; Fast Dyn Src Fine
[Simunic01]

● Atomium/PowerEscape is source-level, Fast Dyn Src Fine
but only for memory aspects (not our focus);
[Bormans99, Arnout05]

● SoftExplorer is a static technique; Fast Dyn Src Fine
[Senn02]

● Compilation-based approaches do not provide link to source level; Fast Dyn Src Fine
[Lajolo99]

● SIT is source level (good!) but still unable to resolve chosen clusters; Fast Dyn Src Fine
[Ravasi03]

● Black-box techniques do not provide any link with source code; Fast Dyn Src Fine
[Muttreja04]

1.3 Current techniques do not satisfy
these requirements

()

● 2.1 Divide and conquer:

 C
i
 = n

i
 ∙ c

i

● 2.2 Determine single-
execution costs
via an attribute grammar,
founded on an
abstract translation model

● 2.3 Determine
execution counts
by instrumenting the original
 program in an efficient way
and running the instrumented

 program over real input data

cost of executing
the i-th node in the AST

execution
count

single-execution
cost

2.1. Divide and conquer

&&

|| j

|| &&

if

g ||&&

a <

e

=

d ==

a +

b c

=

g =

e <<

f 2

h i

b +

c d

if ((a && (b < c+d) || e || g && (h||i)) && j) {
d = (a == b+c);

} else {
g = e = f << 2;

}

Input
source
code

Abstract
syntax
tree

&&
Node
N

17

Execution cost
C

17
=n

17
∙ c

17
= 4327 LogicTop

1-execution cost
c

17
=1 LogicTop

Execution count
n

17
=4327Atoms

Abstract
instructions

Abstract translation model
... = ...
LogicLeaf = 1 jump
LogicTop = 1 alul + 0.5 jump
Switch = 2 alul + 1 jump
If = 1 jump
... = ...

Execution cost
C

17
=n

17
∙ c

17
= 4327 alul + 2163.5 jump

Time
and
energy

Target Platform Characterization
... = ...
alul = (178 mA, 1.715 cycles)
jump = (170 mA, 1.0 cycles)
... = ...

Execution cost
C

17
=n

17
∙ c

17
= (1.311 ms, 471.8 mJ)

Ci
= ni ∙ ci

● 3.1 ANSI-C compliant flow
implementation available

● 3.2.New experiments – Setup:
Simulator: SimIt-ARM v2.0.3

with cache latency = 0 [Qin03]

Platform: SA-1100 @ 206 MHz, 1.5 Vdd

Parameters: avg. currents for each instruction,
from JouleTrack [Sinha01]

Compiler: gcc v2.95 -O2/-O3

Benchmarks: from MiBench [Guthaus01]

● 3.3. New experiments – Results:
accuracy: average modulo error <8%;

correlation with reference > 0.995;

performance: simulation times 10,350x shorter than ISS;
only 2.2x slower than normal;

Program sources

Step 1: Analyzing

Step 2: Instrumenting

Step 3: Compiling

Step 4: Linking

Step 5: Running the instrumented executable

decorated syntax tree

instrumented source code

instrumented object code

execution counts

Step 6: Post-processing

time, energy statistics

Key: data

tool

library

abstract instr. costs

profiling library

~gcc

pseudo-
compiler

3.1 ANSI C-compliant tool flow available 3.3. Accuracy results

Quality of result:

● (E,E) = 0,9960, |Eρ ­E| = 7,49%

● (T,T) = 0,9987, |Tρ ­T| = 5,65%,

SimIt e3tools error
E (mJ) T (ms) E (mJ) T (ms) E T

adpcm-s 46,1 166,3 41,9 156,4 -9,1% -6,0%
adpcm-l 910,2 3289,9 722,1 2710,5 -20,7% -17,6%
bitcount-s 65,7 242,8 55,0 204,0 -16,3% -16,0%
bitcount-l 981,9 3628,6 977,1 3649,2 -0,5% +0,6%
blowfish 1067,0 3742,7 748,3 3371,0 -29,9% -9,9%
CRC32 38,3 132,2 35,4 129,6 -7,5% -2,0%
FFT-s 207,9 764,6 207,1 770,3 -0,4% +0,7%
FFT-l 3213,2 11851,5 3264,8 12142,5 +1,6% +2,5%
IFFT-s 205,1 755,1 207,3 771,0 +1,1% +2,1%
IFFT-l 3181,8 11744,7 3266,2 12147,8 +2,7% +3,4%
jpeg 87,9 309,9 91,2 328,5 +3,8% +6,0%
rijndael 63,8 221,3 71,4 257,3 +12,0% +16,3%
sha-s 22,1 78,9 21,9 78,6 -0,9% -0,4%
sha-l 229,4 820,0 224,7 818,3 -2,1% -0,2%

ˆ

ˆ ˆ

ˆ

a
d
-

p
cm

.1 b
it
-

co
u

n
t-
s

b
lo
w

fi
sh C
R

C
3
2

F
FT
.

1 F
FT
.

1
-l

IF
FT

-s IF
FT

-l jp
e
g

ri
-

jn
-

d
a
e
l

sh
a
-

s sh
a
-

l su
-

sa
n

10

100

1000

10000
E

ne
rg

y
m

J

Sim-It (reference)
e3tools

Selected Publications

● Book chapters:

● “Estimation of the execution time and energy
consumption at source code”,
in F. Catthoor, J. I. Gomez, S. Himpe, Z. Ma,
P. Marchal, D. P. Scarpazza, C. Wong, P.
Yang,
“Systematic methodology for real-time cost-
effective mapping of dynamic concurrent task-
based systems on heterogeneous platforms”,
Springer Verlag [accepted];

● Journal papers:

● with Carlo Brandolese, “A source-level
software analysis methodology able to resolve
clusters of operations and finer details”,
Journal on Low-power Electronics (JOLPE)
[accepted];

● with Carlo Brandolese,
“Energy estimation for Embedded Software”,
IEEE Transactions on Computers;

● Conference papers:

● with C. Brandolese, “A fast, dynamic, source-
level and fine-detail technique to estimate the
energy consumed by embedded software on
single-issue processor cores”,
CODES+ISSS’06, Seoul, Korea [submitted];

● with P. Raghavan, D. Novo, C. Brandolese,
F. Catthoor, D. Verkest,
“Software Simultaneous Multi-Threading, a
technique to exploit Task-level Parallelism to
improve Instruction and Data-level
Parallelism”,
PATMOS’06, Montpellier, France
[submitted];

1. Automated
source-code
optimization

2. Support for VWR
architectures

3. Support for VLIW
architectures

4. Estimating
C++ sources

Front-end

Transformation
steering

Compiler

Instruction set
simulator

Instruction-level
profiles

Initial source code

Transformation
application

Influence metrics

Optimized
 source code

lo
ng

 e
xp

lo
ra

ti
on

 lo
op

Optimized
 object code

Source-level
estimation

Compiler

Initial source code

Transformation
steering

Optimized
 source code

Optimized
 object code

Source-level
profiles

Transformation
applicationsh

or
t e

xp
lo

ra
ti

on
 lo

op

Previous approaches This approach

Influence metrics

0 1 2 3 4 5 6 7
70%

80%

90%

100%
AcFilter

Time
Energy

0 1 2 3 4 5
70%

80%

90%

100%
Hough

Time
Energy

0 1 2 3 4 5
70%

80%

90%

100%
Dijkstra

Time
Energy

0 1 2 3 4
70%

80%

90%

100%
FFT

Time
Energy

Results:
energy reduction: -5.1 – -22.0%
execution time reduction: -7.8 – -22.3%

4.1 Automated source optimization 4.2 Support for VWR
● Very wide register (VWR)

architectures achieve
extreme low power via:
● a wide data-path (e.g. 256 bit) and

very wide registers (e.g. 2048 bit)
with SIMD instructions;

● a software controlled scratchpad
in place of a L1 cache;

● a loop buffer (32 instructions);

● We added features to:

1. map code to different executors

2. mark concurrent code

3. define intrinsics for scratchpad transfer costs;

4. define intrinsics for SIMD operations;

support for simulation and estimation
at the same time;
all these features are ANSI C-transparent;

Scratchpad

SIMD Datapath

Data Memory Hierarchy

Loop buffer

Register file

256

256

256

2048

● trace-based:
model exactly the per-trace compilation
results of VLIW compilers;

● incremental rebuild:
rebuild only the intermediate products
actually needed by changes made
in the source code, architecture, input data;

● keep the current efficiency;
obtain trace-based profiles by current
node-based profiles;

4.3 Support for VLIW

 trace source generator

original C source code

per-trace compile

assembly translation
instruction counter

e3tools

cost accumulator

C source code + LU +SIMD
+ IVR + fixed wordlength

tr
ac

e
so

ur
ce

tr
ac

e
so

ur
ce

tr
ac

e
so

ur
ce

tr
ac

e
so

ur
ce

tr
ac

e
so

ur
ce

tr
ac

e
so

ur
ce

input data

decorated AST

exact trace profiles

flow graph solver

tr
ac

e
bi

na
ry

...

tr
ac

e
bi

na
ry

tr
ac

e
bi

na
ry

tr
ac

e
bi

na
ry

tr
ac

e
bi

na
ry

tr
ac

e
bi

na
ry

exact node profiles

loop preconditioner

final E, T estimates

E, T assembly model

architecture description

...

● The extension to C++ is
feasible with acceptable
effort;

● Tasks required:
● lexer adaptation

(28 new keywords, negligible
effort);

● parser syntax adaptation
213 >> 560 syntax rules;

● new type system and scoping
rules (significant effort);

● parser needs some semantic-
level disambiguation techniques;

● overloading / templates / late
binding
(current instrumentation
technique is sufficient to
determine which function /
method has been actually
called);

● extension of theoretical abstract
translation model
(significant effort);

● Required effort: 1 “me-year”

4.4 Extension to C++

2.3. Determining execution counts

● optimal strategy to select probe insertion points
– only one probe per each generalized basic block (g.b.b.);

– a g.b.b. is a maximal set of nodes, all executed the same
number of times (possibly larger than basic blocks); example:

/*section 1*/ ...
if (f())
{

/*section 2*/
...

} else {
/*section 3*/
...

}
/*section 4*/
...

● transparent, probe-inserting
source-to-source transformations:

– expressions: e (__profile__(137), e)
– statements: s; { __profile__(137); s; }
– functions: int f(args) int f(args)

{ { __profile__(151);
... { ... }

} __profile__(152);
 }

/*section 1*/ ...
if (f())
{

/*section 2*/
...

} else {
/*section 3*/
...

}
/*section 4*/
...

2.2. Determining single-execution costs
Attribute Computation Defined for which AST nodes

c total cost synthesized expressions and statements

ci inherent cost synthesized expressions and statements
cc conversion cost synthesized expressions and statements
cf flow control cost inherited expressions and statements

k constancy synthesized expressions
e constant value synthesized expressions
t real result type synthesized expressions
v valueness inherited expressions
r restricted result type inherited expressions
b register-boundedness synthesized expressions
f translation flavor inherited expressions and statements

● Full C type system needed
(attribute t)
cost of operations and conversions depend on
the operands' types

● Full constant expression
evaluation needed (attributes k,e)
constant expressions are resolved at static
time (zero runtime cost)
and appear in type declarations, and influence
operator costs;

s1 s2

=

t = [struct tag]
W(t) = ...

t = [struct tag]
W(t) = ...

t = [struct tag]
ci = W(t) mov
cc = 0
cf =0

Why attribute r (restricted type) is needed

=

b.

m*

a

(*a).m = b;

=

s

*

a

*a = s;

v= L
t = [struct tag]
r = [struct tag]
ci = 1 LValueStar +
 (W(r)-1) LValueStarNext

v= L
t = [struct tag]
r = [type]
ci = 1 LValueStar +
 (W(r)-1) LValueStarNext

v= R
t = [pointer][struct tag]
r = [pointer][struct tag]
ci= 0

v= R
t = [struct tag]
r = [struct tag]
ci = 0

v= L
t = [type]
r = [type]
ci = 1 DotOffset

v= R
t = [pointer][struct tag]
r = [pointer][struct tag]
ci = 0

Why attribute v (valueness) is needed

=

*

*

*

*

*

*

*

p

q

v = L
t = [double]
r = [double]
ci= 1 LValueStar + 1 LValueStarNext

v = R
t = [pointer][double]
r = [pointer][double]
ci= 1 RValueStar

v = R
t = [pointer][pointer][double]
r = [pointer][pointer][double]
ci= 1 RValueStar
v = R
t = [pointer][pointer][pointer][double]
r = [pointer][pointer][pointer][double]
ci= 1 RValueStar

v = R
t = [pointer][pointer][pointer][pointer][double]
r = [pointer][pointer][pointer][pointer][double]
ci= 1 RValueStar

v = R
t = [double]
r = [double]
ci= 1 RValueStar + 1 RValueStarNext

v = R
t = [pointer][double]
r = [pointer][double]
ci= 1 RValueStar

v = R
t = [pointer][pointer][double]
r = [pointer][pointer][double]
ci= 1 RValueStar
v = R
t = [pointer][pointer][pointer][double]
r = [pointer][pointer][pointer][double]
ci= 1 RValueStar

****p = ***q; double **** p
double *** q;

struct tag
{
 int field1;
 char field2 [sizeof(type_x)*5];
} s1, s2;

int main()
{

...
s1 = s2;
...

}

Why attributes t,k,e are needed

Daniele P. Scarpazza
scarpaz@scarpaz.com

Dipartimento di Elettronica e Informazione
Politecnico di Milano

