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Solving Recurrence with Generating Functions

The first problem is to solve the recurrence relation system a0 = 1, and an = an−1 +n

for n ≥ 1.

Let A(x) =
∑
n≥0 anx

n. Multiply both side of the recurrence by xn and sum over
n ≥ 1. This gives ∑

n≥1

anx
n = x

∑
n≥1

an−1x
n−1 +

∑
n≥1

nxn.

Note that ∑
n≥1

nxn =
∑
n≥0

nxn

= x
d

dx
(
∑
n≥0

xn)

= x
d

dx

1
1− x

= x
1

(1− x)2 .

Thus, in term of A(x), we obtain

A(x)− 1 = xA(x) +
x

(1− x)2 .

Rearranging terms, we get

(1− x)A(x) = 1 +
x

(1− x)2 .

Hence,

A(x) =
1

1− x +
x

(1− x)3 .

We can now get an by expanding A(x) as a series

A(x) =
∑
n≥0

xn + x
∑
n≥0

(
−3
n

)
(−1)nxn.

This gives, for all n ≥ 0,

an = 1 +

(
−3
n− 1

)
(−1)n−1
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= 1 +

(
n− 1 + 3− 1

n− 1

)

= 1 +

(
n+ 1
n− 1

)

= 1 +

(
n+ 1

2

)
.

This is the same answer as we obtained earlier by different means.

The next problem for solution is the Rabbit Island problem. Before studying it, let us
note the following identity, valid for any distinct numbers b and c:

1
(1− bx)(1− cx)

=
1

b− c

(
b

1− bx −
c

1− cx

)
. (1)

It can be directly verified by taking common denominators of the terms on the right-
hand-side, and simplyfing the expression. A more systematic way to do this is to solve
the system of equations for variables λ, µ,

λ+ µ = 1, λb+ µc = 0.

The solution satisfyies the equation

1 = λ(1− bx) + µ(1− cx),

and gives

1
(1− bx)(1− cx)

=
λ(1− bx) + µ(1− cx)

(1− bx)(1− cx)

=
λ

1− cx +
µ

1− bx.

This is a special case of the partial fraction decomposition. You might find it challenging
to extend the discussion to show that, if b, c, d are distinct,

1
(1− bx)(1− cx)(1− dx)

=
λ

1− dx +
µ

1− cx +
γ

1− bx,

with sosme appropriate choice of λ, µ, γ.

In the Rabbit Island problem, we need to solve the recurrence a0 = a1 = 1, and
an = an−1 + an−2 for n ≥ 2. Let A(x) =

∑
n≥0 anx

n. As in the previous problem, let us
multiply the recurrence by xn and sum over n ≥ 2. This gives∑

n≥2

anx
n = x

∑
n≥2

an−1x
n−1 + x2

∑
n≥2

an−2x
n−2.
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In terms of A(x), we have A(x)− 1− x = x(A(x) − 1) + x2A(x). This leads to

A(x) =
1

1− x− x2 . (2)

It remains to expand A(x) into a power series, so that we can identify an.

Now note that

1− x− x2 = 1− x+
x2

4
− 5x2

4

=
(

1− x

2

)2
−
(√

5x
2

)2

=

(
1− x

2
−
√

5x
2

) (
1− x

2
+
√

5x
2

)
= (1− bx)(1− cx),

where b = (1 +
√

5)/2 and c = (1−
√

5)/2. Using (1) and (2), we can expand A(x) as

A(x) =
1

(1− bx)(1− cx)

=
b

b− c
1

1− bx −
c

b− c
1

1− cx

=
b

b− c
∑
n≥0

(bx)n − c

b− c
∑
n≥0

(cx)n

=
1√
5

∑
n≥0

(bn+1 − cn+1)xn.

Thus, for all n ≥ 0, we have

an =
1√
5

(1 +
√

5
2

)n+1

−
(

1−
√

5
2

)n+1
 .

For n = 0, 1, this formula gives a0 = 1, a1 = 1, as was to be expected.

The numbers an are called Fibonacci numbers, and often denoted by Fn. Note that
b = 1.6 · · · and c = −0.6 · · ·. Thus, cn+1 is numerically a very small number, while bn+1 is
large. For reasonably large n, say n > 10, Fn can be obtained by evaluating 1√

5

(
1+
√

5
2

)n+1
,

and rounding it to the closest integer.

The third problem we tackle is the recurrence a0 = 0, a1 = 1, and an =∑
1≤i≤n−1 aian−i for n ≥ 2. The quantity an is the number of ways to parenthesize

an expression y1 + y2 + · · ·+ yn.

Let A(x) =
∑
n≥0 anx

n =
∑
n≥1 anx

n. The recurrence relation gives∑
n≥2

anx
n =

∑
n≥2

∑
1≤i≤n−1

aix
ian−ix

n−i
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= (
∑
i≥1

aix
i)(
∑
j≥1

ajx
j)

= (A(x))2.

This means A(x) − x = (A(x))2, and hence A(x)2 −A(x) + x = 0. Solving the quadratic
equation for A(x), we obtain two possible solutions: A(x) = (1 +

√
1− 4x)/2 and A(x) =

(1−
√

1− 4x)/2. The former solution can be discarded, since it would give a0 = A(0) = 1,
which contradicts our assumption a0 = 0. Thus,

A(x) =
1−
√

1− 4x
2

=
1
2
− 1

2
(1− 4x)1/2

=
1
2
− 1

2

∑
n≥0

(
1/2
n

)
(−4x)n.

We infer from it a0 = 0, and for n ≥ 1,

an = −1
2

(
1/2
n

)
(−4)n.

Note that, for n ≥ 2(
1/2
n

)
=

1
n!

1
2

(
1
2
− 1

)(
1
2
− 3

)
· · ·
(

1
2
− (n− 1)

)
=

1
n!

1
2

(
−1

2

)(
−3

2

)
· · ·
(
−2n− 3

2

)
=

1
2n

1
n!

(−1)n−11 · 3 · · · (2n− 3)

=
1
2n

1
n!

(−1)n−1 1 · 2 · 3 · · · (2n− 2)
2 · 4 · · · (2n− 2)

=
1
2n

1
n!

(−1)n−1 (2n− 2)!
2n−1(n− 1)!

= (−1)n−1 2
4n

1
n

(
2n− 2
n− 1

)
.

This leads to

an = −1
2

(
1/2
n

)
(−4)n

= −1
2

(−4)n · (−1)n−1 2
4n

1
n

(
2n− 2
n− 1

)

=
1
n

(
2n− 2
n− 1

)
,
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for n ≥ 2. The above formula also holds for n = 1 since both sides are equal to 1. (Recall(
0
0

)
=

0!
0!0!

= 1.) The numbers an are often called the Catalan numbers.
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