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Abstract
The zJava project aims to develop automatic parallelization
technology for programs that use pointer-based dynamic
data structures, written in Java. The system exploits paral-
lelism among methods by creating an asynchronous thread
of execution for each method invocation in a program. At
compile-time, methods are analyzed to determine the data
they access, parameterized by their context. A description
of these data accesses is transmitted to a run-time system
during program execution. The run-time system utilizes this
description to determine when an invoked method may ex-
ecute as an independent thread. The goal of this paper is to
describe this run-time component of the zJava system and
to report initial experimental results. In particular, the pa-
per describes how the results of compile-time analysis are
used at run-time to detect and enforce dependences among
threads. Experimental results on a 4-processor Sun multi-
processor indicate that linear speedup may be obtained on
sample applications and hence, validate our approach.

1. Introduction

There has been considerable research during the past decade
on parallelizing compilers and automatic parallelization of
programs. Traditionally, this research focused on “scientific
applications” that consist of loops and array references, typ-
ical of Fortran programs [1, 2]. Regrettably, this focus has
limited the widespread use of automatic parallelization in
industry, where the majority of programs are written in C,
C++, or more recently in Java. These programs extensively
use pointer-based dynamic data structures such as linked
lists and trees, and often use recursion. These features make
it difficult to directly utilize parallelizing compiler technol-
ogy developed for array structures and simple loops.

The goal of the zJava (pronounced “zed Java”) project,
at the University of Toronto, is to investigate automatic par-
allelization technology for programs that use pointer-based
dynamic data structures and recursion, written in Java. The
zJava system uses a novel combined compile-time/run-time
approach to automatically exploit parallelism among meth-
ods in a Java program. Methods in the sequential program
are analyzed at compile time to determine the data they
access, parameterized by their context. A description of
these data accesses is transmitted to a run-time system at
class load time. The run-time system uses this description
to determine if and when an invoked method may execute
as an independent thread. Although such an approach in-

creases run-time overhead, it allows automatic paralleliza-
tion of pointer-based programs, where compile-time-only
approaches [3] have been limited.

The goal of this paper is to describe the run-time com-
ponent of the zJava system and to report initial experimen-
tal results. In particular, the paper describes how the results
of a compile-time analysis may be used at run time to de-
tect dependences among threads and enforce dependences.
The paper also presents experimental results from our im-
plementation of the run-time system on a 4-processor Sun
Ultra 4 machine. These initial results indicate that scalable
performance can be obtained, and hence, validate our ap-
proach.

The remainder of this paper is organized as follows.
Section 2. gives an overview of the zJava system and how it
exploits parallelism in sequential Java programs. Section 3.
describes data access summaries that are used to inform the
run-time system of data used by methods in a program. Sec-
tion 4. describes the zJava run-time system in details. Sec-
tion 5. presents our experimental evaluation of the system.
Section 6. describes related work. Finally, Section 7. gives
concluding remarks.

2. The zJava System
2.1 Model of Parallelism and Data Sharing

The zJava system executes sequential Java programs, au-
tomatically extracting, packaging and synchronizing paral-
lelism among methods. The main method of the program is
considered the main thread and it starts executing sequen-
tially. For each method invocation, an independent thread is
created to asynchronously execute the body of the method.
This thread may run on a separate processor, concurrently
with the thread that created it and with other threads in the
system. It may in turn create child threads by invoking more
methods. In general, the execution of the program may
be viewed as a set of threads executing concurrently, with
each thread sequentially executing the body of its associ-
ated method, and creating more threads whenever it invokes
methods. A thread terminates when it reaches the end of
its method. The program terminates when all threads termi-
nate.

Threads communicate in two ways. First, the actual
parameters of a method invocation become input to the new
thread, making it possible for a parent thread to pass values
to its child threads. Second, threads may communicate by



accessing (reading/writing) data in the shared memory. In
a Java program, global variables are accessible by all meth-
ods, and thus are shared by all threads. In addition, threads
may also share dynamically allocated data since a method
may pass references to this data to other methods. In gen-
eral, threads share data if they access the same data at some
address in shared memory.

The flow of data in the sequential execution of the pro-
gram results in data dependences among methods. Hence,
synchronization of corresponding threads is necessary to
preserve program correctness. The zJava system preserves
the program’s sequential semantics by enforcing serial ex-
ecution order for threads performing conflicting operations
on the same data. In other words, threads that write the same
shared data must be executed in the same order in which
they execute in the sequential program. Similarly, serial ex-
ecution order is preserved between a thread that writes data
and another thread that reads the same data. Threads ac-
cessing different data, or only reading the same data, may
execute concurrently.

2.2 System Overview

The zJava system extracts parallelism out of sequential Java
programs and execute the resulting parallel programs on top
of a standard Java Virtual Machine (JVM). A high-level
overview of the system is shown in Figure 1. It consists
of two main components: a compiler and a run-time system.
The compiler analyzes the input sequential program to de-
termine how shared variables and objects are used by every
method in the program. The compiler captures this informa-
tion in the form of symbolic access paths, and then collects
the paths into a data access summary for each method. The
compiler also transforms the input program into a parallel
threaded program that contains calls to routines in the run-
time system, which create and execute threads. The run-
time system also contains code to compute run-time data
dependences among threads from the data access summaries
of associated methods, which are communicated to the run-
time system when classes are loaded by the JVM. Threads
are then synchronized according to these dependences.

3. Data Access Summaries

The zJava compiler associates with every method a data ac-
cess summary. In this section, we first describe the symbolic
access path notation, which is used to succinctly record the
data accessed in a method. We then explain how data access
summaries are formed from symbolic access paths. Finally,
we give an example to illustrate these concepts.

A symbolic access path [4, 5] is a pair o.f consisting
of an object o, and a sequence of field names f = f1. . .fn.
Each successive field name fi is the name of a reference-
type instance variable defined within the object pointed to
by fi−1. The object o is the source and the object pointed to
by fn−1 is the destination of the path; fn in the destination
object is a field variable, which may be of any type.

The source of an access path in a method m may be
one of four kinds of objects:

1. a global object.
2. an object passed to m as an actual parameter, or the

receiver object itself (i.e., this).

 Classes
User

class MyApp {
  int x, y;
  ...
}

program, generates data

Parallelized

access summaries

01011010...

Analyzes and re-structures

JVM

 Run-time

Maintains sequential

use

Calls fork/join and
synchronization
routines

data dependences
threads based on their
execution order of

01011010...

zJava

 System

01011010...

Summaries
 Data Access

User
Program

Compiler
zJava

use

summariesoutput program

input program

Figure 1. Overview of the zJava parallelization system.

3. the object returned by a method called in the body of
m.

4. a local object constructed within m, but does not
escape m (i.e., the object’s lifetime ends when the
method exits [6]).

The zJava compiler need not generate symbolic access
paths for local objects that do not escape the method (kind
4 above) because they are not shared among threads. Fur-
ther, the compiler does not generate symbolic access paths
for objects returned by called methods (kind 3 above) be-
cause the run-time system uses a mechanism called future
to synchronize accesses to them without relying on data ac-
cess summaries, as will be discussed in Section 4.3.4. Con-
sequently, the compiler generates symbolic access paths for
only the first two kinds of objects.

It should be noted that objects created locally inside
a method, but do escape the method, can only escape it
through global variables, instance fields of parameters, or
return values. Hence, accesses to these escaping objects will
be captured by the symbolic access paths of these variables
and/or by futures.

The zJava compiler analyzes the body of a method to
generate a symbolic access path for every variable accessed
in the method, and these symbolic access paths are gener-
ated in terms of the formal parameters of the method. How-
ever, the actual parameters of the method vary from one
call site to another. Also, the actual parameters may not
be known until run time. Consequently, the actual source
objects of a method’s symbolic access paths may not be de-
termined until run time. Therefore we use a symbolic nota-
tion to represent the source object of each symbolic access
path, which we refer to as the anchor. The anchor “$n”
denotes the n-th parameter of the method. Hence, “$1” de-
notes the first parameter and “$2” denotes the second. The
special anchor “$0” denotes the receiver object, passed to
the method as the implicit parameter this. The source ob-
ject of a symbolic access path can be determined at run time
using its anchor and the context of the method call.

In some cases, it may not be possible to compute the



class Point {
static int nextId = 0;

int id;

float x, y;

Point midpoint(Point p) {
Point q = new Point();
Point r = new Point();
r.x = (this.x + p.x) / 2;
r.y = (this.y + p.y) / 2;
r.id = nextId++;
return r;

}
}

Figure 2. midpoint, a simple method.

($0.x, read)
($0.y, read)
($1.x, read)
($1.y, read)
(Point.nextId, write)

Figure 3. Data access summary for the midpointmethod.

length of the actual access path of a method because, for
example, it traverses a recursive data structure, such as a
linked list. The traversal is often terminated by a condi-
tional branch that is only evaluated at run time. At compile
time, we represent such an access with the symbolic access
path: $0.head{.next}*. The {.next} component in
the symbolic access path is a 1-limited representation of the
recursive traversal of the linked list using the next pointer
field.

Array elements are treated as individual fields in the
array object. It is also possible to aggregate multiple array
elements and denote the collection with a single access path,
e.g., $0.data.[0-9] specifies the first ten elements in
the array this.data. This has the advantage of allow-
ing multiple threads to concurrently read or write different
regions of the array if those regions do not overlap.

A data access summary specifies the read set and the
write set of a method m, i.e., the sets of variables which
m reads or writes, respectively. The summary consists of
a list of entries. Each entry in the list is a (symbolic access
path, access type) pair that specifies a shared variable v. The
access type value determines whether v belongs to the read
set or the write set of m. If v belongs to both the read and
write sets of m, the its access type is indicated as a write.

The data access summary of a method m includes the
data access summaries of all methods called by m. In other
words, if a method m′ called by m writes to a variable v,
then m is assumed to also write to v, even if it does not
directly write to the variable in its body. This is necessary
to ensure proper synchronization, as will be seen in Sec-
tion 4.3.2.

The Java code shown in Figure 2 is used to illustrate
symbolic access paths and data access summaries. Instances
of the Point class represent points in the Cartesian plane.
The midpoint method computes the mid-point between
the point represented by the receiver object and the point
represented by the parameter p, and returns the result as a
new Point object, complete with a unique serial identifier
(which is incremented for every Point object allocated).

The data access summary for the midpoint method
is shown in Figure 3. The first two entries indicate that the
fields x and y of the receiver object is read by the method.

The next two entries indicate that the same fields of the pa-
rameter p are also read. The last entry is an example of an
access to a static variable; the fully qualified name of the
variable is included as the anchor in the symbolic access
path. It is marked as “write” since the method reads and
then increments the value in the specified field. Accesses to
the variable q are not included in the data access summary,
because it is local to the method, and the object it points to
never escapes the method. Accesses to the variable r are
also not included in the data access summary, because it is
local to the method, and the object it points to only escapes
as a return value.

4. The Run-Time System

This section describes the components of the run-time sys-
tem and how they operate. The notion of regions, which are
used to represent and control accesses to shared variables
within the run-time system, is first defined. The main com-
ponent of the run-time system, called the registry, is then
introduced. Finally, the various operations performed by
the run-time system, including forking, synchronizing and
terminating threads, are described.

4.1 Regions

While the zJava compiler refers to variables with symbolic
access paths, the run-time system translates the access paths
into regions, which represent variables in the system and de-
scribe how they are shared. Each region corresponds to an
area in the program’s memory that potentially is accessed
by multiple, possibly concurrent, threads. Section 4.3.1 de-
scribes how regions are created from data access summaries.

4.2 The Registry

During the execution of the program, the zJava run-time sys-
tem maintains a set of data structures, that we collectively
refer to as the registry, to coordinate the creation of regions
and synchronization of threads. A region node rv corre-
sponds to a variable v, and represents the variable within
the registry. A thread node tτ describes a thread τ that has
been created by the run-time system, and contains the ID of
its parent thread, a pointer to the method which it executes,
and pointers to region nodes representing data accessed by
the thread.

The registry is structured as a table of region nodes
that represent all shared variables in use by the program at
a given point in time. Each region node points to a list of
thread nodes representing threads that access the associated
region during their lifetimes. This thread list is sorted by
serial execution order of the methods associated with the
threads, as will be described in Section 4.3.2. The region
node is also associated with a reader/writer lock, which en-
sures proper synchronization of concurrent threads. The
lock is designed so that multiple reader threads (threads that
access, but do not write to, a given region) can share the
reader lock and execute concurrently, while writer threads
(threads that do write to a given region) can only execute
one at a time.

Figure 4 shows a graphical view of a simple registry. It
contains three region nodes, corresponding to the variables
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Figure 4. The zJava registry maintains sorted thread lists for
shared regions.

x, y and z, and two thread nodes labeled τ and σ. Region x
is accessed by both threads, and σ must access it before τ .
Thread τ also accesses the region y, and σ also accesses the
region z.

The registry is updated dynamically; new thread nodes
and region nodes are created for newly spawned threads and
newly shared variables, respectively, and are inserted into
the registry. The registry is unaware of the existence of a
variable v until the spawning of a thread that registers v as
possibly shared, at which point a region node rv is allocated.
Thread nodes are deleted from the registry as threads ter-
minate, and region nodes are deleted when their associated
objects are garbage-collected.

4.3 Registry Operations
4.3.1 Region Creation

When a class is loaded by the JVM, the zJava run-time sys-
tem receives the data access summaries of all the methods of
that class. These data access summaries are stored in a look-
up table. The run-time system creates regions corresponding
to a summary when the associated method is invoked.

When a thread τ calls a method mσ , a child thread
σ is created. Compiler-inserted code in the parent thread
τ retrieves the data access summary for mσ from the sum-
mary look-up table, and creates regions from this summary
in two steps. The first step is to resolve each symbolic access
path in the data access summary of the method mσ. This is
done by replacing the anchors in the access path with ac-
tual source objects available to the method at run time, i.e.,
objects passed as actual parameters to the method. Con-
sequently, the sources of each access path, and hence, the
actual objects that will be accessed by σ are determined.

The second step is to expand each resolved ac-
cess path into one or more regions. The access path
o.f1 . . . fn is expanded into n access paths, namely,
o.f1, o.f1.f2, o.f1.f2.f3 and so on, up to o.f1 . . . fn.
This is because, to access the field o.f1 . . . fn, the fields
f1 to fn−1 must be read, and consequently must be
represented with individual region nodes in order to
synchronize threads that may access them. The 1-limited
symbolic access paths for recursive data accesses are
similarly expanded. For example, the symbolic access
path $0.head{.next}* translates to this.head,
this.head.next, this.head.next.next, etc.
Expansion stops when the current next field contains null.

Finally, the run-time system searches the registry for
the region node rv for every variable v that was expanded

class Matrix {
Reader input; // input file
double[][] data; // data in matrix
int nRows, // size of matrix

nCols;

void readRow(int r, Reader in) {
for (int c = 0; c < nCols; c++) {

data[r][c] = parseDouble(in);
}

}

void readMatrix() {
for (int i = 0; i < nRows; i++) {

readRow(i, input);
}

}

double[] multRow(int r, Matrix m) {
double[] d = new double[m.nCols];
for (int i = 0, d[i] = 0; i < m.nCols; i++) {

for (int j = 0; j < m.nRows; j++) {
d[i] += data[r][j] * m.data[j][i];

}
}
return d;

}

Matrix multiply(Matrix m) {
Matrix product = new Matrix();
for (int i = 0; i < nRows; i++) {

product.setRow(i, a.multRow(i, m));
}

}

public static void main(String[] args) {
Matrix a, b, c, d, e;

// ...some code to initialize a, b, d and e

a.readMatrix(); // first fork point
c = a.multiply(b); // second fork point
e = a.multiply(d); // third fork point

}
}

Figure 5. A matrix multiplication example.

($0.nCols, read)
($0.nRows, read)
($0.input, read)
($0.data, write)

Figure 6. Data access summary for readMatrix.

from the resolved access path. If a region node does not
already exist for a given variable, a new node is allocated
for it and added to the registry.

As an example, consider the program in Figure 5, in
which the main method invokes the readMatrixmethod
on the object a. For each symbolic access path in the data
access summary of readMatrix (Figure 6), the run-time
system replaces its anchor with the actual reference-type
argument to the method; i.e., $0.nRows gets resolved to
a.nRows, etc. Since all the symbolic access paths of the
readMatrix method are only one field in length, the path
expansion process is simple. Each path translates to one re-
gion, and the corresponding region node is simply added to
the registry. The resulting region nodes (with empty thread
lists) are shown in Figure 7.

4.3.2 Thread Forking

Spawning a child thread involves determining regions ac-
cessed by the child thread, allocating thread nodes for the
child, and inserting thes nodes on the thread lists of the cor-
responding region nodes according to serial execution order.
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Figure 7. Region nodes are added for all regions that the
readMatrix method will access.

When a thread τ spawns a child thread σ, the resolved
and expanded access paths of σ is used to determine if it
can proceed to execute. Thread nodes for the child thread
are inserted into each of the thread list of the region nodes
corresponding to these access paths. Once this process is
done, the parent thread τ can continue on its own execu-
tion. Thread σ can proceed to execute when it acquires the
appropriate locks on its regions.

Prior to inserting a thread node tσ into the thread list of
a region o.f1 . . . fn, the run-time system must ensure that τ
has unblocked read access to o.f1 . . . fn−1, i.e., there is not
a node of another writer thread in front of the thread node t τ

in the thread list of the region node of o.f1 . . . fn−1. This is
necessary because if a reference fi in an access path is be-
ing modified by another writer thread when the thread σ is
spawned, tσ may be inserted into the thread list of a wrong
region node. Hence, the run-time system iterates over the
fields f1 . . . fn in the path and ensures that for every field f i,
the parent thread has read access to fi, i.e., τ has acquired
the read lock on the region rfi . If a region node exists for a
field variable fi, but τ does not have a read lock on the re-
gion, then τ is blocked. When τ acquires the read lock after
fi has been modified, it can read the updated reference and
insert tσ into the thread list of the region o.f1 . . . fi.fi+1.

Thread nodes in a thread list must be kept sorted by
serial execution order of the associated threads to preserve
program correctness. For two threads t1 and t2, we say that
t1 > t2 if t1 should access a variable before t2 when the
corresponding methods are invoked in the original sequen-
tial program. Since we require that the read and write sets of
a parent thread contain the union of those of its child threads,
for a given thread t in the thread list of a variable v, all of its
ancestor threads must also be in the same thread list. Sup-
pose t is the most recent child thread of its parent p. Since,
in a sequential program, a called method must terminate be-
fore the calling method resumes, once t has been spawned,
t must finish accessing v before p accesses v again, even
though p may have been using the variable before t was
spawned. Thus, t > p. By this reasoning, since the main
thread is the ancestor of all threads in a program, its thread
node is always the last one of every thread list.

Now suppose p spawns a new thread t′, a younger sib-
ling of t, so that t > t′. We can see that t′ > p, for the same
reason that t > p. Hence the only possible position in the
thread list that t′ can be placed is between t and its parent
p. Consequently, to maintain serial execution order in any
given thread list, a newly spawned thread must be placed
immediately in front of its parent thread. A more formal
proof may be found in [7].

Consider the naı̈ve matrix multiplication program in
Figure 5. The readMatrix and multiply methods op-
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a.nCols
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main

main

main

main

readMatrix

readMatrix

readMatrix

readMatrix

Figure 8. New thread nodes are created for the
readMatrix thread; the nodes are inserted into the thread
lists corresponding to regions accessed by the thread,

erate on a row-by-row basis; the former calls the readRow
method nRows times to fill the matrix with data, and the lat-
ter calls the multRowmethod nRows times to multiply the
matrix with the other matrix m. Calls to readMatrix and
multiply will result in multiple threads. The call sites of
these calls are the fork points for these threads.

At the first fork point (see comments in code), a new
thread is created for the call to readMatrix, regions
nodes are allocated for all regions that the invoked method
will access, and the registry is modified as shown in Fig-
ure 8.

It should be noted that as a new thread node is inserted
into a thread list, the nodes for all its ancestors are also in-
serted, if they are not already. This is consistent with the re-
quirement that the data access summary of a method include
those of its callees. Thus, in Figure 8, a thread node for the
main thread is automatically inserted after every node for
the readMatrix thread.

At the second fork point, the method multiply is
called, which calculates the product of the matrices a and
b. This causes a second thread (labeled multiply1 in
Figure 9) to be created. Region nodes are allocated for
b.nRows, b.nCols, b.data, which are in the read set
of the new thread, but for which there are no existing region
nodes. The new thread also writes to the product matrix
c, so a region node is created for c as well. The thread
node for multiply1 is then inserted into the thread lists
of these regions. It is also inserted into the thread list of
the existing region node for a.nRows and a.data. The
new thread node is placed behind the node of its sibling
thread running readMatrix, because in serial execution
order, the method readMatrix must exit before the call
to multiply occurs.

The registry is similarly updated for the third forked
thread, which runs multiply a second time, but on the
matrices a and d, producing the matrix e. Region nodes are
allocated for the fields of d and the matrix e, which are ac-
cessed by the new thread (labeled multiply2). The new
thread node is inserted into the thread list of the regions
that it uses, including those of a.nRows and a.data,
where the run-time system again preserves the serial exe-
cution order by placing the new thread after the ones that
were spawned before itself. The resulting registry is shown
in Figure 9.

4.3.3 Thread Synchronization

As described earlier, every region node in the registry is as-
sociated with a reader/writer lock. A thread that accesses
a region but does not write to it is called a reader thread.
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Figure 9. The registry is updated as the two multiply threads are spawned; the thread lists of shared regions keep the threads
in serial execution order.

A thread that accesses a region and possibly writes to it is
called a writer thread.

Each reader thread must acquire a reader lock on the
region node rx prior to accessing the region x; the reader
lock allows concurrent reads of the same region by mul-
tiple threads. In contrast, a writer thread must acquire a
writer lock, which is an exclusive lock, i.e., acquiring the
lock blocks the execution of all other threads that access the
same region. If a thread is unable to acquire a (reader or
writer) lock, its execution must block until it can.

A reader thread τ is granted a reader lock immediately
if its thread node tτ is the first in the thread list of rx, or if
the predecessor of tτ belongs to another reader thread which
is already running; otherwise τ waits for its predecessor to
signal it. When τ acquires a reader lock on rx, it checks if
the successor of tτ belongs to another waiting reader thread.
If it does, τ signals the waiting reader thread and grants it a
reader lock as well. A writer thread σ is granted a writer lock
only if its thread node tσ is the first node in the thread list of
rx. This means that all other accesses to the variable x must
complete before σ may overwrite its value. This ensures
the correctness of the execution because data dependences
are preserved. When the writer thread terminates (or other-
wise relinquishes its writer lock), it signals the next thread
(if any) on the thread list of rx, and grants it the lock it has
been waiting for. This scheme allows multiple threads that
read the same variable to execute concurrently, yet prevents
any conflicting accesses to occur at the same time.

This synchronization scheme is illustrated using the
example in Figure 5. Suppose the program is restruc-
tured to fork a thread for every call to the readRow and
multRow methods. The thread executing the i-th call to
the readRow method, which modifies row i of the ma-
trix a, must terminate before either of the two threads run-
ning the multiply method makes the i-th call to the
multRow method to perform multiplication on the same
row. Otherwise, the thread(s) executing the multRow

void readRow(int r, Reader in) {
Region.getRegion(data[r]).acquire();

for (int c = 0; c < nCols; c++) {
data[r][c] = parseDouble(in);

}

Region.getRegion(data[r]).release();
}

double[] multRow(int r, Matrix m) {
double[] d = new double[m.nCols];

Region.getRegion(data[r]).acquire();

for (int i = 0, d[i] = 0; i < m.nCols; i++) {
for (int j = 0; j < m.nRows; j++) {

d[i] += data[r][j] * m.data[j][i];
}

}

Region.getRegion(data[r]).release();

return d;
}

Figure 10. The zJava compiler inserts code at synchroniza-
tion points to ensure that data dependences are not violated
at run time.

method will use values from an undefined row in its cal-
culation, and yield incorrect results.

However, once the entire matrix a has been read in,
both multiply threads, and their child threads running
multRow, can proceed with their multiplications concur-
rently. None of the threads modifies the shared data array
contained in the matrix a; in other words, they are all read-
ers of the shared array. Hence there is no conflicting data
accesses among them, and they may execute concurrently.

To facilitate inter-thread synchronization, the zJava
compiler inserts region-based synchronization primitives
into the bodies of methods. Figure 10 shows the definition
of the readRow and the multRow methods after such a
transformation. The synchronization routines are provided
by the run-time system in normal Java classes.



4.3.4 Thread Termination

The zJava compiler does not insert code into the compiled
program to terminate threads explicitly. A thread terminates
when the method the thread is executing exits.

At the exit of a method, the thread stores any return
value of the method in a future [8], waits for its child threads
to terminate, and finally removes its own thread node from
the registry. The future is a synchronization device for han-
dling return values from child threads. If the parent thread
attempts to get the value of the future before it has been set
by the child thread, the parent thread is blocked until the
child thread returns. This maximizes the concurrency be-
tween the parent thread and the child thread, in those cases
where the return value from the child thread is not used im-
mediately (or at all) by the parent thread.

5. Experimental Evaluation

We implemented the zJava run-time system in Java to make
it portable. The system is implemented as a user library and,
hence, requires no specific changes to the JVM. We evalu-
ated the performance of the system on a Sun Ultra 4 ma-
chine, equipped with four processors. In this section, we
report the performance of the run-time system using two
benchmarks. For both benchmarks, the data access sum-
maries were manually computed. Each program was also
manually restructured to transmit the data access summaries
to the run-time system and to insert thread forking and syn-
chronizations calls.

The first benchmark, called ReadTest, is a micro-
benchmark that aims to measure the performance improve-
ment that can be achieved by executing multiple reads (of
the same data item) in concurrent threads. It consists of
a loop that spawns m threads, each of which reads (but
does not write) only one object and performs n computa-
tions with it1. Hence the benchmark is a good indicator
of the overhead of parallelizing a program without thread
blocking. Its performance provides an upper bound on the
speedups that can be obtained by the system.

The second benchmark, called Matrix is the matrix
multiplication application described earlier in the paper. It
is used to demonstrate the performance of zJava in a some-
what more realistic scenario. It’s is a slightly modified ver-
sion of the one shown in Figure 5. Although it is mainly an
array-based application, the code itself uses references and
dynamically creates its objects. Traditional array-based par-
allelizing compiler technology would fail to to extract paral-
lelism in this application, even though it manipulates arrays
in loops.

The speedup (defined as the ratio of the execution time
of the sequential program to the execution time of the par-
allel program) of ReadTest on 4 processors is shown in
Figure 11 as a function of thread granularity (i.e., different
values of n), when the number of threads is equal to 100.
The granularity of each thread is expressed in milliseconds.
The figure indicates that the performance of the benchmark
is poor when the granularity of a thread is very small (less
than 10 milliseconds). In fact, the performance reflects a

1Specifically, each of the m threads calls Math.sine n times with the
value of a shared Double as the argument.
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Figure 11. The effect of thread granularity on the perfor-
mance of the run-time system.
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Figure 12. The effect of the number of threads on the per-
formance of the run-time system.

slow-down in execution time. This is because at small gran-
ularities, the start-up and synchronization costs outweigh
benefits gained from parallelism. However, when the gran-
ularity of a thread becomes greater than 50 milliseconds,
close to linear speedup is achieved. Indeed, for thread gran-
ularity greater than 100 milliseconds, the speedup is practi-
cally linear.

The effect of the number of threads in the ReadTest
benchmark (i.e., the value of m) is shown in Figure 12. The
speedup of the ReadTest benchmark when the granular-
ity of each thread is 800 milliseconds is shown for differ-
ent number of threads in the system. The figure indicates
that when the number of threads is small (about 100), lin-
ear speedup can be achieved. However, when the number of
threads is increased, performance slightly degrades, due to
the contention resulting from sharing the registry and from
the locking of regions and thread lists by parent threads as
they create child threads.

The speedup of the Matrix application is shown in
Figure 13. The program spawns one thread to compute each
row of the product matrix. The speedup is shown for vari-
ous matrix sizes, and hence, varying number of threads and
granularity of each thread. For example, for a 1000 × 1000
matrix, 1000 threads are spawned, each of which performs
a million additions and multiplications. The speedup of for
the largest matrix size is 3.6 at 4 processors.

The speedup of Matrix for a 1000 × 1000 matrix
for different number of processors is shown in Figure 14.
Although the speedup of Matrix is less than linear (3.6 at 4
processors), the speedup increases linearly with the number
of processors.
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Figure 13. Speed-up of matrix multiplication on 4 proces-
sors as a function of matrix size (number of threads).

The speedup results of both the micro-benchmark and
the matrix multiplication program indicate that scalable per-
formance may be achieved when the number of threads is
small and the granularity of each thread is moderate.

6. Related Work

Abdelrahman and Huynh [9] implement a system for au-
tomatically parallelizing array-based C programs at the
method level. Our system builds on theirs, but extends their
work to address automatic parallelization of pointer-based
programs that employ dynamic data structures.

Rinard and Lam [10] describe the Jade system, which
allows parallelization of C programs at various granularities.
Their work requires that programs be manually annotated
to specify parallelism and synchronization. In contrast, we
extract and represent shared data access from the program
and automatically exploit parallelism.

Rugina and Rinard [11] employ compile-time-only
analysis to automatically exploit parallelism in array-based
programs that use divide-and-conquer. In contrast, we
exploit parallelism in non-array-based programs, albeit at
higher overhead at run-time.

Deutsch [4] devises a version of symbolic access
paths that can capture object access information more ac-
curately and more concisely than ours, and uses it for inter-
procedural may-alias analysis. Nonetheless, our work ex-
tends the use of access paths for computing run-time data
dependences among concurrent threads.

Choi et al. [6] implements escape analysis for the Java
programming language, which determines if the lifetimes of
objects exceeds those of their declaring scopes. The zJava
compiler performs a similar analysis to determine objects
shared among threads.

7. Concluding Remarks

The zJava system exploits parallelism among methods in se-
quential Java programs. In this paper, we described the de-
sign and implementation of the run-time component of the
system, and presented initial experimental results. The run-
time system utilizes a central data structure, called the reg-
istry, to maintain threads in the system and to enforce syn-
chronization. Initial experimental results indicate that linear
speedup may be obtained when the number of threads cre-
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Figure 14. Speed-up of matrix multiplication for a 1000 ×
1000 matrix as a function of the number of processors.

ated by the system is small and the granularity of the threads
is moderate.

We are currently profiling the run-time system to gain
a better understanding of the sources of overhead, and hence
formulate a plan to further improve the performance of the
run-time system. We will then experiment with larger and
more realistic applications and examine performance for
large numbers of processors.
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