

Source Code Generator Based on a Proprietary Specification Language

Krešimir Fertalj, Damir Kalpić, Vedran Mornar
University of Zagreb

Faculty of Electrical Engineering and Computing
Unska 3, 10000 Zagreb, Croatia

kresimir.fertalj@fer.hr, damir.kalpic@fer.hr, vedran.mornar@fer.hr

Abstract

An application generator has resulted from the

authors' efforts to improve the development of interactive
database applications. The developed tool is based on a
meta-base. The meta-base comprises an extended data
model, the programming language description and some
additional information to support the generation process.
The procedures described in a proprietary specification
language serve to generate the application over the
database modeled in the meta-base. The specification
language is based on the source code templates, standard
program structures and on special statements for
handling of the meta-data. Main ideas and operating
principles of the original application generator are
exposed. The specification language, its syntax and its
basic components are described. The generator
functionality is explained on some simple specification
examples where the SQL code and pseudo-code for the
corresponding hypothetical application are generated.
Some experience gathered from the generator practical
usage is discussed. A list of projects is included, where
some complex applications were developed by the aid of
the generator. An analysis is presented to show the
proportions of the generated source code versus manually
written statements.

1. Introduction

The idea to develop an own source code generator

crossed our minds about a decade ago. At that time, there
were only a few of such tools at the market. They were not
of a significant help, or they were part of the development
system that we were not using (e.g. dBase/Clipper,
Clarion). Other products, which appeared on the market
after we had developed the pilot version of our tool, were
not significantly better than our tool. We found that some
of them generated only a few components of an
application (e.g. database schema, screen forms) and that
most of them did not preserve manually written code in

case of a repeated generation. We needed a tool that
would be capable of repeated generation of a "complete"
application in a single pass, where the application should
consist of what we call standard modules [7]. Every
module is aimed to handle the data in a single database
table but it can also interact with other generated modules.
Furthermore, we required a tool that we can use for
different languages and DBMSs (namely ZIM, Informix
and Visual Basic) and for different types of applications
(stand alone, server, client-server). Finally, we wanted to
have a tool, which would generate the source code that
looked like as if we had written it by ourselves. Due to all
that, we considered the applicability of other tools as
significantly low for us, so we continued the development
and usage of our tool.

The generator of database applications described in this
paper has been developed following the requirements that
stem from the method described in [7]. The generator is
built over the meta-base, which comprises an extended
data model, the programming language description and
some additional information to support the generation
process. It is assumed that the data model must be brought
into the third normal form [3] [4]. The data modeling is
done with help of the tool, which is capable to check the
data model and to generate the meta-data. The
specification language is defined, which enables the
generation of complete applications in source code, based
on source code templates. The manually coded parts are
preserved by an originally devised procedure that
compares the files produced in subsequent steps of
generation to the manually changed files. The procedure
relies on the algorithms for file comparison described in
[11] [12] [16] [17]. Description of the algorithms upon
which the procedure is based, would exceed the scope of
this paper.

The rest of the paper is organized as follows. Section 2
briefly describes the main ideas and operating principles
of the tool. Section 3 describes the meta-base. In section
4, the specification language is described. The generator
functionality is explained on some simple examples in
section 5. Some experience gathered from the generator
practical usage is discussed in section 6.

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

0-7695-1435-9/02 $17.00 (c) 2002 IEEE 1
Proceedings of the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
0-7695-1435-9/02 $17.00 © 2002 IEEE

2. The main ideas and operating principles

The main ideas and operating principles of the

generator are depicted by the following figures. The tool
is capable to generate database schema, application
programs and user interface, based on the data model and
on the definition of the programming language that are
stored in the meta-base (Figure 1). The control statements
drive the generation process. Besides that, some meta-data
can be generated and automatically stored into the meta-
base. For instance, relationships between entities are
generated based on primary keys and candidate foreign
attributes, and forms are generated based on the data model
definitions and predefined form generation parameters.

GENERATOR Data model

APPLICATION

User interface

Programs

Database

Description of
target language

Control statements

Figure 1. The main ideas

Figure 2. presents the main processes carried out while

working with the generator.

1

system
description

analysis

5

p-code
generation

3

meta-data
generation

6

application
generation

2

data model
analysis

META-BASE

SYS

MOD

APPLICATION

SRC

TEM CTL

4

specification
analysis

Figure 2. The operating principles

1. The system analyzer analyzes the programming
language and DBMS description stored in text files
(SYS) and stores the corresponding data into the
meta-base.

2. The data model analyzer processes the data model
(MOD) described in the proprietary input language,
normalizes the descriptions being processed and
stores them into the meta-base.

3. Meta-data generator generates relationships and
screen forms by inspecting the meta-base contents
and stores the generated objects into the meta-base.

4. The language analyzer analyzes the source code of
the specifications (SRC) that were previously
written for the chosen programming language.

5. Intermediate code (p-code) generator generates the
p-code of processed specifications. Depending on
the control parameters, the p-code can be stored too
for further execution (TEM) and can be used by p-
code interpreter.

6. The language analyzer processes the control
statements and invokes the p-code interpreter, which
generates the application.

After the generation is completed, the database can be
created in DBMS by execution of the generated statements
that are written in correspondent data definition language. In
addition, the generated source programs must be compiled.
This can be activated manually or it can be automated by use
of appropriate utilities.

3. The meta-base

3.1. The basic meta-model

The model of the database, for which an application is

generated, is stored in part of the meta-base shown in Figure
3. The meta-model comprises the objects described in
relational and post-relational database theory [2] [15].

The information about the entities is stored in the meta-
table Entity. Short name of an entity (ShortName) can be
used in combination with some affixes to form the names of
program variables and names of other objects, such as
screen forms and source files. The long name (LongName)
can be used to form the headings of screen forms, reports
and menus to be generated. The attributes associated with
each database entity are called fields (Field). Field is
described by properties that define required data values,
creation of an index over that field, auto increments and
persistency of the field data. All entity fields are defined
over the attributes that are stored in one set (Attribute).
Long name of an attribute can be used to generate the
labels for fields defined over that attribute. The attributes
are defined over domains (Domain), which define data
type, data entry and data display properties of attributes
(i.e. fields) that are defined over a domain. Entity key is
defined by a set of entity fields (KeyField). Keys can be
simple or composite. Several candidate keys can be

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

0-7695-1435-9/02 $17.00 (c) 2002 IEEE 2
Proceedings of the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
0-7695-1435-9/02 $17.00 © 2002 IEEE

defined for an entity. A key with minimal key number
(SN) is regarded as the entity primary key, while the
others are alternate keys. Definition of a key comprises a
KeyName, which is used as the name of a primary key
constraint or an index created over the key.

The information about the relationships between the
entities is stored in meta-table Relationship. The binary
and unary relationships of type one-to-many can be
defined. The entity referenced by the foreign key is called
Parent entity (ParentName) and entity that references the
parent entity by its foreign key is called Child entity
(ChildName). The primary-foreign attribute pairs that
define a relationship are described in Relationship Field
(ParFldName, ChiFldName). For each relationship, an
alias for parent table can be defined (ParentAlias) in order
to resolve ambiguity in perception of referenced table

when dealing with parallel and unary relationships.
Referential integrity constraints [4] can be defined at the
level of relationship (InsRule, DelRule), specifying the
actions to be performed when inserting a Child or deleting
a Parent (none, restrict, cascade, set null, set default).
Referent Field defines the Parent attributes (RefFldName)
to be shown on the screen forms and reports of a Child.
As for the parent aliases, the aliases can be given for such
fields (DomFldName).

Screen forms (Form) and their fields (Form Field) are
generated based on the data model, thus they can be
regarded as dynamical enhancements of the model. The
information about the source entity and entity fields is
stored in Form and Form Field respectively. A form field
is defined by position and size of a label and a variable
part of the field.

Attribute
AttName
LongName

Domain
DomName
TypeName
DomLen
DomDec
Case
Just
DataMask
ValRule

Entity
EntName
ShortName
LongName

Field
Required
Index
Serial
Virtual
SN

Form
FormName
EntName
FormWdth
FormHght

Form Field
FormName
FFldName
SN
FormFldId
VarRow
VarCol
VarWdth
VarHght
Label
LabRow
LabCol
LabWdth
LabHght

Key
KeyNo
KeyName

Referent Field
RefFldName
DomFldName
SN

Relationship
RelName
ShortName
ParentAlias
InsRule
DelRule

Relationship Field
ParFldName
ChiFldName
SN

Key Field
SN

Figure 3. The basic meta-model

Control
ArgVal

Control Script
ScrCode
ScrDesc

Form Definition
SysCode
FDefName
FDefDesc
MaxRows
MaxCols
RowSp
ColSp
GenVars
GenLabs
ShortForm
GenRefs
DetailForm
Compress
JustVars
VarLabs
ScrollFlds
BoxFlds
Prefix
Suffix
VarStart
VarEnd

Project
ProjName
LongName
ProjDir

Specification
SpecId
SpecDesc
SpecFile

Specification Argument
ArgId
ArgType

System Parameter
ParValue

System
SysCode
SysName

DataType
TypeName
MinLen
MaxLen
LenReq
DefLen
DecReq
DefDec

Param
ParCode
ParDesc

Figure 4. The DBMS description and information to support the generation process

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

0-7695-1435-9/02 $17.00 (c) 2002 IEEE 3
Proceedings of the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
0-7695-1435-9/02 $17.00 © 2002 IEEE

3.2. The programming language description

The programming language and DBMS description and

some additional information to support the generation
process are also stored in the meta-base (Figure 4).

For each DBMS, the data types are described
(DataType). The user of the tool can define some other
parameters (System Parameter) to describe the system.
Those parameters can be accessed from the specification
language in order to maneuver the generation process. The
Form Definition stores the parameters required to generate
the screen forms, such as form size (MaxRows, MaxCols),
form field spacing (RowSp, ColSp), form field
components (GenVars, GenLabs) and layout parameters
(Compress, JustVars, VarLabs, ShortForm, DetailForm).

 The rest of the meta-base stores the information about
the specifications (Specification, Specification Argument)
and scripts to control the generation process (Control
Script, Control).

A set of specifications must be written once for chosen
DBMS and programming language and can be reused
many times. For example, we used the same specifications
to generate the applications in different projects realized
within the same release of particular 4GL/DBMS, but
control scripts that were specific for particular project
were driving the generation process.

4. The specification language

The specification language comprises statements for

writing specifications, statements for describing the
DBMS, data definition statements, and control statements
for managing the generation process. The language
analyzer is implemented as a recursive-descent parser of
context-free grammar [1] [9] [21]. A short-form of the
language syntax is described by rewriting rules
(productions) in BNF (Backus-Naur Form) notation [1]
[20]. Only those parts of the language that are relevant for
understanding of this article are presented here.

The language treats the following as tokens: constants,
identifiers, operators, keywords and punctuation symbols.
Additionally, the language recognizes source code
template and macro variable. The expressions can be
composed of combinations of operators (arithmetic,
relational and string operators), constants, variables (user
defined and system variables) and built-in functions (e.g.
string manipulation functions and formatting functions).

4.1. Specifications and statements

Specification is a program or a subroutine, which is

composed of a declaration part and a specification block.
No special syntactic structure is defined to represent the
main program. A specification that is interpreted first is
treated as the “main” specification. The specification
block consists of source code templates and statements.

Syntax:
<S> ::= {<global vars>}

 {<specification>}
<specification> ::= SPEC <spec id>
 <formal args> <local vars>
 <spec block>
 ENDSPEC
<spec block> ::= {<state or temp>}
<state or temp> ::= <template>|<statement> |ε

The statements fall into following categories:
• Structural statements. SPEC and ENDSPEC define

the beginning and the end of a specification.
• Declaration statements. GLOBAL declares global

variables and DECLARE declares local variables.
The variables can be defined by basic data types
(INT, LONG, FLOAT, CHAR) or they can be
defined as records with structures from the meta-
base objects. For example, the declaration
DECLARE rEnt LIKE Ent declares the record rEnt
with structure of tuple Ent.

• The assignment statement LET.
• Sequence-control statements. For example, IF-

ELSE-ENDIF, WHILE-ENDWHILE, BREAK,
NEXT (synonym CONTINUE), CALL and EXIT.

• Output statements. For example, OUTPUT redirects
the output during the specification execution,
PRINT prints any regular expression to current
output, and SCREEN prints a formatted screen
form.

• Special statements to handle the meta-data, as we
shall describe later in this chapter.

4.2. Source code templates

The difference between the statements and the code

templates is that statements are executed, while templates
are decomposed to text parts and macro variables that are
written to output after the macros have been substituted by
corresponding values. The template text can consist of any
character, except the EOF (end of file) character. Special
characters can be used within texts to generate the
graphical user interface. Only identifiers can be used as
macro variables.

Syntax:
<template> ::= << <template body> >> | ε
<template body> ::= <template part>
 {<template part>}
<template part> ::= <text> | <macro>
<text> ::= <any character>
 {<any character>} | ε
<macro> ::= #< <macro id> > | ε

4.3. Statements to handle the meta-data

The FOREACH statement collects the meta-data and

dynamically creates a named set <set id> of records from

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

0-7695-1435-9/02 $17.00 (c) 2002 IEEE 4
Proceedings of the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
0-7695-1435-9/02 $17.00 © 2002 IEEE

the meta-table <object>. The optional WHERE clause
specifies the records to be collected.

Syntax:
<foreach> ::= FOREACH <object>
 <where part> -> <set id>
 <spec block>
 ENDFOREACH
<where part> ::= WHERE <standard expr> | ε

After the set is formed, the built-in variable SYSSTAT

is set to the number of collected records and the statement
starts to perform a loop, executing <spec block> for each
record in the set. Built-in functions CURRPOS (<set id>)
and LASTPOS (<set id>) can be used inside the loop to
determine the absolute position of the current record in the
set and the count of records in the set.

The statement FETCH selects a record from the meta-
base and fills the specified variable <var id> with that
record. If more than one record can be selected, the first
record is taken.

Syntax:
<fetch> ::= FETCH <object> <into part>
 <where part>
<into part> ::= INTO <var id> | ε

COUNT counts the meta-records and puts the result

into the specified variable. As for the other meta-data

manipulation statements, the SYSSTAT variable is set to
the count of processed records.

Syntax:
<count> ::= COUNT <object> <into part>
 <where part>

The following statement generates a screen form for an

entity, based on the form definition previously stored in the
meta-base (Form Definition on Figure 4). Optionally, the
name for the resulting form can be specified, as well as the
name of parent entity for the master-detail form.

Syntax:
<genform> ::= GENFORM <form def> <form ent>
 <form name> <master ent>

5. The application generation

The generator functionality is explained on

specification examples where the code for a hypothetical
application is generated. The data model of the application
is shown in Figure 5. Person can be born in one City and
currently can live in another City. This is a good example
of two parallel relationships (BornIn, LivesIn) defined by
complex foreign keys (CountryCode + CityCode).
Obviously, parent aliases should be given to City in order
to distinguish its roles (CityOfBirth, CityOfLiving).

CountryCode = CountryOfLivingCode
CityCode = CityOfLivingCode

CountryCode = CountryOfBirthCode
CityCode = CityOfBirthCode

City
CountryCode <pk> CHAR(2)
CityCode <pk> INTEGER
CityName CHAR(40)

Person
PersonId <pk> CHAR(13)
Surname CHAR(25)
Name CHAR(25)
CountryOfBirthCode <fk> CHAR(2)
CityOfBirthCode <fk> INTEGER
CountryOfLivingCode <fk> CHAR(2)
CityOfLivingCode <fk> INTEGER
Street CHAR(30)

CityOfBirth

CityOfLiving

BornInCity

LivesInCity

Figure 5. The data model of a hypothetical application

5.1. Database generation

The following specification generates the SQL

statement that creates a database table. In practice, the
SQL statements for creation and dropping of complete
database, as well as the statements to transfer the data via
text files, are generated in the same way. This example
shows how to generate the statements for creating the
tables together with primary keys.

Example: Specification of SQL to create table

SPEC CreateTable
 ...
 <<
 CREATE TABLE >> Print sEnt.EntName << (>>

 ForEach Fld Where Fld.EntName=sEnt.EntName -> sFld
 <<
 >> Print sFld.Fldname, " ";

 Call PrintDataTypeAndNULL (sFld)
 <<,>>
 EndForEach /* sFld */

 ForEach Key Where EntName=sEnt.EntName -> sKey
 If CurrPos(sKey) > 1 <<,>> EndIf
 If CurrPos(sKey) = 1
 <<

 PRIMARY KEY (>>
 Else
 <<
 UNIQUE (>>
 EndIf

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

0-7695-1435-9/02 $17.00 (c) 2002 IEEE 5
Proceedings of the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
0-7695-1435-9/02 $17.00 © 2002 IEEE

 ForEach KeyFld Where EntName=sKey.EntName
 And KeyNo=sKey.KeyNo -> sKeyFld
 If CurrPos(sKeyFld) > 1 <<, >> EndIf
 Print sKeyFld.FldName;
 EndForEach

 <<) CONSTRAINT >> Print sKey.keyname;

 EndForEach /* sKey */

<<
);
>>
ENDSPEC /* CreateTable */

In practice, for each entity a statement that creates the

corresponding table is generated (CREATE TABLE). For
each entity field, the field name, field type, field width,
and number of decimal places are specified. The NOT
NULL is generated for primary attributes and attributes
having Required flag set (see Figure 3). The PRIMARY
KEY constraint is set for the first key and
UNIQUE...CONSTRAINT is set for alternate keys. The
following example shows the SQL script generated for the
Person shown in Figure 5.

Example: Generated SQL statement

 CREATE TABLE Person
 (
 PersonId CHAR(13) NOT NULL,
 Surname CHAR(25) NOT NULL,
 Name CHAR(25) NOT NULL,
 CountryOfBirthCode CHAR(2) NOT NULL,
 CityOfBirthCode INTEGER NOT NULL,
 CountryOfLivingCode CHAR(2),
 CityOfLivingCode INTEGER,
 Street CHAR(30),

 PRIMARY KEY (PersonId) CONSTRAINT pk_Person
);

5.2. Enforcement of referential integrity

In the next example, SQL statements that create foreign

keys perform the implementation of referential integrity.
The part of the statement that defines cascade deletions of
children (ON DELETE CASCADE) is optionally generated
for each relationship depending on the value of DelRule
meta-attribute.

Example: Specification of statements to implement

referential integrity

SPEC RefInt

 ForEach Rel -> sRel
 <<
 ALTER TABLE >> Print sRel.ChildName;
 << ADD CONSTRAINT FOREIGN KEY (>>

 CALL PrintForeignKeyFlds (sRel)

 <<)

 REFERENCES >> Print sRel.parentname, " (";

 CALL PrintReferencedFlds (sRel)

 <<)>>

 If sRel.DelRule = "D"
 << ON DELETE CASCADE>>
 EndIf

 << CONSTRAINT fk_>> Print sRel.RelName << ;
 >>
 EndForEach /* sRel */
ENDSPEC /* RefInt */

Example: Generated statements for creation of foreign

keys

 ALTER TABLE Person ADD CONSTRAINT
 FOREIGN KEY (CountryOfBirthCode, CityOfBirthCode)
 REFERENCES City (CountryCode, CityCode)
 CONSTRAINT fk_BornInCity ;

 ALTER TABLE Person ADD CONSTRAINT
 FOREIGN KEY (CountryOfLivingCode,CityOfLivingCode)
 REFERENCES City (CountryCode, CityCode)
 CONSTRAINT fk_LivesInCity ;

5.3. Source code generation

The specification PseudoInput generates pseudo-code

of a nonprocedural statement for editing of the data by
using a screen form. In practice, the user is provided with
information about the function that is to be performed
(adding of a new record or update of the record currently
displayed on the screen). Update of the primary key is not
allowed and primary fields are disabled when editing for
update takes place. After that, the nonprocedural statement
to handle the form input is invoked. Finally, depending on
user action, the form is refreshed with the data that were
displayed before editing, or the edited record is stored into
the database.

Example: Specification of code to handle the input of

data from the screen form

SPEC PseudoInput vEntName Char(18)
 ...
 <<
 form input into record #<vRecName>

 # entity integrity
 after field #<vKeyFld>
 if (#<vRecKey>) is null
 Message ("Value required")
 if Exists#<vEntName> (#<vRecKey>)
 Message ("#<vEntName> already exists")
 >>

 ForEach Rel Where ChildName=vEntName -> sRel
 Let vParent = sRel.ParentName
 Let vAlias = sRel.ParentAlias

 Let vForFld = "" Let vForKey = ""
 Call CalcForeignFieldLists(sRel, vForFld, vForKey)

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

0-7695-1435-9/02 $17.00 (c) 2002 IEEE 6
Proceedings of the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
0-7695-1435-9/02 $17.00 © 2002 IEEE

 <<
 # reference & chain #<vParent> as #<vAlias>
 after field #<vForFld>
 if (#<vForKey>) is not null
 Select#<vParent> (#<vForKey>)
 if (#<vForKey>) is null
 Message ("Not existing #<vAlias>")
 in field #<vForFld>
 if KeyPressed (LASTKEY, {chaining keys})
 Handle#<vParent> (LASTKEY, #<vForKey>) >>
 EndForEach /* sRel */

 <<
 end input in #<vRecName>
 >>
ENDSPEC /* PseudoInput */

Integrity checks are performed within the form input,

as shown in the next example. If a user tries to omit the
primary key, a message about the required values for key
fields is issued and the user is forced to enter the primary
key. When the primary key is set, a check is made and the
user is warned if attempting to enter duplicate identifiers
(see after field PersonId). In the same way the referential
integrity checks are performed (e.g. after field
CountryOfBirthCode, CityOfBirthCode).

Furthermore, this example illustrates how to generate
the statements for procedure chains [7]. If in the field that
represents a foreign attribute (e.g. in field
CountryOfBirthCode, CityOfBirthCode) one of the keys
for procedure chains is pressed, a function to handle the
referenced table is called (e.g. HandleCity). This function
allows the user to perform the data entry of the record that
is going to be referenced, and to return a new value of the
foreign key for which the function was called. The
generation of the source code for concrete 4GLs is
described in [6].

Example: Generated pseudo-code

form input into record rPerson

 # entity integrity
 after field PersonId
 if (rPerson.PersonId) is null
 Message ("Value required")
 if PersonExists (rPerson.PersonId)
 Message ("Person already exists")

 # reference & chain City as CityOfBirth
 after field CountryOfBirthCode,CityOfBirthCode
 if (rPerson.CountryOfBirthCode,
 rPerson.CityOfBirthCode) is not null
 SelectCity (rPerson.CountryOfBirthCode,
 rPerson.CityOfBirthCode)
 if (rPerson.CountryOfBirthCode,
 rPerson.CityOfBirthCode) is null
 Message ("Not existing CityOfBirth")

 in field CountryOfBirthCode,CityOfBirthCode
 if KeyPressed (LASTKEY, {chaining keys})
 HandleCity (LASTKEY,

 rPerson.CountryOfBirthCode,
 rPerson.CityOfBirthCode)

 # reference & chain City as CityOfLiving
 ... /* the code as for the CityOfBirth */

end input in rPerson

5.4. Generation of user interface

User interface is generated in the following way. Meta-

data that define screen forms (Form and Form Field in
Figure 3) are generated by GENFORM statement as
described in section 3. After the meta-data for a screen
form are generated, the source code for that form can be
generated in the same way as the SQL code and program
code are generated.

6. Practical experience

Practical use has shown that our tool is capable of

generating the modules with basic functions for handling
of data [7]. The tool was used internally to make projects
for external customers. Several projects were
accomplished in this way:

• The program to support the employment office
management (EOM),

• Information system for production planning of
automobile parts (ISPAP) [13],

• Information system for student administration
(ISSA) [14],

• Information system for technical maintenance
(ISTM) [10],

• Application to handle the register of scientists
(ROS),

• The program to support the selling of encyclopedia
editions (SEE)

• IS for HR Management in the Ministry of Defense
of Croatia (ISHR) [8].

The projects were realized in various releases of the

DBMSs Informix and ZIM. Table 1 shows the size of the
projects and the share of generated code within the whole
product. The rightmost column presents the share of the
coding time within the project time.

For some cases, (ISPAP, SEE and ISHR) the source
code was delivered to the customer, so that the percentage
does not include the time possibly consumed later by the
customer alone.

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

0-7695-1435-9/02 $17.00 (c) 2002 IEEE 7
Proceedings of the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
0-7695-1435-9/02 $17.00 © 2002 IEEE

Table 1. Analysis of proportions of the generated versus manually coded statements

Project DBMS Entities Relationships Generated Manually coded Coding
EOM Zim 56 27 75% sophisticated functions 84%

ISPAP* Zim 106 310 55% sophisticated functions 31%
ISSA** Informix 78 90 20% sophisticated functions 73%
ISTM** Informix 85 116 10% sophisticated functions 64%

ROS Informix 39 44 90% sophisticated reports 58%
SEE Zim 47 83 80% sophisticated functions 71%

ISHR** Informix 131 228 40% sophisticated functions N/A
* The generated system was connected to a linear programming system [13].
** Estimated values for the first three years of the project.

The share of generated code is estimated based on the

data model size, the subjective estimation of the
complexity of the manually coded elements and by the
comparison of the generated and the final files. The share
of coding was calculated based on the known number of
working hours. Depending on the project, between 10%
and 90% of the source code was generated. The best
results were achieved when the code had to handle
straightforward data processing. The size of the model did
not matter. The share of the generated code was decreased
relative to the number of embedded sophisticated
functions. This is natural, because such functions must be
programmed manually. In projects like ISSA or ISTM, a
significant amount of code was generated and fast initial
results were achieved, although the final share of the
generated code is low and the coding took a longer time.

The percentage of the coding phase within the project
is about 60%. This percentage seems to be big. One of the
reasons is an early start of the implementation. In this
way, early phases where shortened and a part of the design
was done during implementation. The prototyping and
frequent interaction with users had additionally increased
the coding time.

Generally, the software production rate was increased,
but the overall time was not shortened significantly. The
main benefit was in the quantity and quality of the
software produced. For example, in ISHR project the
initial database consisted of over 130 tables. For that
database, 8.5 MB of source code (260 K lines in 570 files)
was generated based on the specifications that took
approximately 5 KB.

7. Conclusions

The generation of application is performed by

executable specifications written in the proprietary
specification language. The specifications rely on the data
model that is stored in a meta-base. In that way, the
independence of the programming language and DBMS is
achieved.

The meta-base stores all information that is relevant for
generation of complete applications in a single pass. A

program generated in a single pass has advantages over an
ad hoc coded program, particularly for middle size
databases. A generation process, based on correct
specifications, ensures for the software its correctness
(validity) and its conformity to the database scheme. The
whole application obeys the same standards and appears
homogenous to the users.

Manual coding is impossible to avoid. Therefore, the
main purpose of the generator is to produce only the basic
functions to spare the programmers from the routine work.
Instead, they can dedicate themselves to code the
sophisticated functions. Their work is preserved by an
original procedure that compares the generated and
manually written code.

 Although specification language seems to be rather
low level, specifications and specification scripts can be
regarded as high-level concepts. Specifications combine
the statements of the specification language with source
code of the chosen programming language. Due to that,
the code of specifications is sometimes hard to read. We
believe that this problem is minimized by proper selection
of keywords and by a good style of writing the
specifications.

The tool proved itself on real-world projects, which can
be attested by the list of generated software. Still, some
improvements should be done. In parallel to that, new
technologies, such as XML and XSL, could be used to
develop a completely new tool. We have done some
efforts in that direction and some prototypes have already
been created.

8. References
[1] A.V. Aho and J.D. Ullman, Principles of Compiler Design,

Addison-Wesley, Reading, MA, 1978.
[2] P.P. Chen, “The Entity-Relationship Model - Toward a

Unified View of Data”, ACM Transaction on Database
Systems, Vol. 1, No. 1, 1976, pp. 9-36.

[3] E.F. Codd, “Further normalization of the data base
relational model”. In R. Rustin (Ed.), Data Base Systems,
Prentice-Hall, Englewood Cliffs, New Jersey, 1972, pp. 33-
64.

[4] C.J. Date, An Introduction to Database Systems, Sixth
Edition, Addison-Wesley, Reading, MA, 1994.

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

0-7695-1435-9/02 $17.00 (c) 2002 IEEE 8
Proceedings of the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
0-7695-1435-9/02 $17.00 © 2002 IEEE

[5] A. van Deursen, P. Klint and J. Visser, “Domain-Specific
Languages: An Annotated Bibliography”, ACM Sigplan
Notices, Vol. 35, No. 6, 2000, pp. 26 -36.

[6] K. Fertalj, An improvement of methods to accelerate and
standardise the software application production, Ph.D.
Thesis (in Croatian), ZPM FER, Zagreb, 1997.

[7] K. Fertalj, D. Kalpic and V. Mornar, “A Software
Development Method Based on Iterative Prototyping”, The
World Multiconference on Systemics, Cybernetics and
Informatics, July 31 - August 4, Orlando, 1999,
Proceedings, International Institute of Informatics and
Systemics, Orlando, FL 32837, USA, ISBN 980-07-5917-4,
Vol. 2, 1999, pp. 83-90.

[8] K. Fertalj, D. Kalpic, and N. Hadjina, "On-the-Scene
Education of Information Technology Staff", Challenges of
Information Technology Management in the 21st Century,
IRMA International Conference, May 21-24, 2000,
Anchorage, AK, USA, Idea Group Publishing, Hershey,
USA, ISBN 1-878289-84-5, 2000, pp 942-943.

[9] D. Grune and C.J.H. Jacobs, Parsing techniques – a
practical guide, Ellis Horwood Limited, Chichester, West
Sussex, England, 1990.

[10] Z. Hebel, M. Baranovic and S. Zakosek, ISOHEP -
Computerised maintenance management system for
Croatian National Electricity (HEP), Euromaintenance '98,
Proceedings, Zagreb, HDO, 1998, pp. 233-240.

[11] P. Heckel, “A Technique for isolating differences between
files”, Comm. ACM, Vol. 21, No. 4, April 1978, pp. 264-
268.

[12] D. Hirschberg, “A Linear Space Algorithm for Computing
Maximal Common Subsequences”, Comm. ACM, Vol. 18,
No. 6, June 1975, pp. 341-343.

[13] D. Kalpic, M. Baranovic and V. Mornar, “Case Study
Based on a Multi-Period Multi-Criteria Production Planning
Model”, European Journal of Operational Research 87,
1995, pp. 658-669.

[14] D. Kalpic and V. Mornar, “Student Administration
System”, European review conference proceedings
"University-Enterprise Information Systems", Graz,
September 15-16, 1994, pp. 124-131.

[15] D. Maier, The Theory of Relational Databases, Computer
Science Press, Rockville, Maryland, 1983.

[16] W. Miller and E. Myers, “A File Comparison Program”,
Software Practice and Experience, Vol. 15, No. 11, 1985,
pp. 1025.

[17] E.Myers, “An O(ND) Difference Algorithm and its
Variations”, Algorithmica, Vol.1, No. 2, 1986, pp. 251-
256.

[18] Proceedings of the 2nd Conference on Domain-Specific
Languages DSL’99, ACM Sigplan Notices, Vol. 35, No. 1,
2000.

[19] J.C. Ramming (Ed.), Proceedings of the Conference on
Domain-Specific Languages DSL’97, USENIX
Association, 1997.

[20] E.J. Sammet, Programming Languages: History and
Fundamentals, Prentice Hall, Englewood Cliffs, New
Jersey, 1969.

[21] A.T. Schreiner and H.G. Friedman, Introdution to Compiler
construction with Unix, Prentice Hall, Englewood Cliffs,
New Jersey, 1985.

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

0-7695-1435-9/02 $17.00 (c) 2002 IEEE 9
Proceedings of the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
0-7695-1435-9/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

