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Abstract 

For real time systems not only the logical function is 
important but also the timing behavior, e. g. hard real 
time systems must react inside their deadlines. To guar- 
antee this it is necessary to know upper bounds for the 
worst case execution times (WCETs). The accuracy 
of the prediction of WCETs depends strongly on the 
ability to model the features of the target processor. 

Cache memories, pipelines and parallel functional 
units are architectural components which are respon- 
sible for the speed gain of modern processors. It is not 
trivial to determine their influence when predicting the 
worst case execution time of programs. 

This paper describes a method to predict the be- 
havior of pipelined superscalar processors and reports 
initial results of a prototypical implementation for the 
SuperSPARC I processor. 

1 Introduction 

The correctness of a hard real-time system depends not 
only on the logical functionality, the programs must also 
satisfy the temporal requirements dictated by the phys- 
ical environment. To analyze the schedulability of a 
given set of tasks, upper bounds for the worst case exe- 
cution time (WCET) of the tasks are required. In gen- 
eral it is not possible to determine these upper bounds 
by measurements or simulation, because all possible 
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combinations of input values must be considered. We 
use static program analysis to compute the WCET of 
programs. Our method is based on abstract interpreta- 
tion. 

In this paper the prediction of the behavior of pipe- 
lines combined with parallel execution on a superscalar 
processor is presented. Initial results of a prototypical 
implementation for the SuperSPARC I processor [18] 
are presented. 

To obtain sharp bounds for the WCET it is necessary 
to consider the features of the target processors. Mod- 
ern processors gain speed through: The use of cache 
memories and pipelines, and the parallel execution of 
instructions. 

2 Super-scalar Pipelines 

2.1 Principle of Pipelines 

The idea of pipelining is to overlap the execution of in- 
structions. This is accomplished by dividing the execu- 
tion of instructions into several steps (pipeline stages). 
The ideal case of full overlapped instructions can not 
always be reached. Pipeline bubbles can occur in real 
pipelines, when the pipeline stalls. Situations, which 
can lead to pipeline stalls are called pip&e hazards. 
There are three types of hazards. Structural hazards are 
caused by resource conflicts, data hazards are caused 
by data dependences, and control hazards are caused 
by control flow changes (e.g. branches). 

2.2 Superscalar Execution 

A measure for the throughput of a processor is the CPI 
value.(Cycles Per Instruction). 

With the concept of pipelining it is possible to reach 
at best a CPI value of 1. To increase the throughput, 
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i. e. decrease the CPI value further it is necessary to in- 
troduce parallel execution. The parallelization can be 
done statically or dynamically. The static approach is 
used in e. g. VLIW (Very Large Instruction Word) pro- 
cessors [8], where the compiler is responsible for select- 
ing the instructions to execute simultaneously. In su- 
perscalar processors the dynamic approach is used, i. e. 
the processor selects the instructions to be processed 
concurrently during run time. 

Stage 
FO 

Fl 

DO 

Dl 

D2 

EO 

El 

WB 

Tasks 
l Fetch of up to 4 instr. in case of cache 
hit, or up to 8 instr. from memory 

l Filling of the prefetch queue 

l Selection of instructions from prefetch 
queue to form a group of concurrent 
executable instructions 

l Assignment of functional units 
and register ports to instructions 
b Computation of branch destination addr. 
l Reading of address registers 
for memory accesses 

l Reading of operand registers 
l Computation of virtual 
addresses for memory references 

l Execution of computations in 
Arithmetic Logic Unit 1 (ALUl) 
l Start of data cache accesses 
0 Transfer of floating point 
instructions to the FPU 

l Computations, that depend on 
instruction in same group are 
executed in the cascaded ALU2 
l Completion of data cache accesses 

l Write back of integer results 

Table 1: Stages of the integer pipeline. 

2.3 Example: SuperSPARC I 

The SuperSPARC I is a superscalar RISC processor, 
compatible with the SPARC version 8 architecture [19]. 
It is capable of grouping up to three instructions to ex- 
ecute them concurrently. The grouping of instructions 
is a dynamic process. The decision which instructions 
are grouped together depends on the availability of in- 
structions in the prefetch queue or the cache, and on 

+-I-= Decode of Floating point operations 

FRD Read of FP registers 

FE Execution of FP instructions 

FL Rounding and normalization of results 

FWB Write back of floating point results 

Table 2: Stages of the floating point pipeline. 

data dependences, resource conflicts, and control flow 
changes. The data dependences and the resource con- 
flicts can occur between the available instructions and 
between these and already grouped instructions. 

The SuperSPARC I has a main or integer pipeline 
and a floating point pipeline. The pipeline stages of 
the main and floating point pipeline are displayed in 
Table 1 and Table 2. 

The processing of a floating point instruction starts 
in the first part of the main pipeline and continues in 
the floating point pipeline. The transfer from the inte- 
ger pipeline to the floating point pipeline is done in EO 
CFD). 

‘The execution time of some floating point instruc- 
tions depends on their operands. If the operands or 
the result are subnormal values the computation takes 
longer (see [S]). 

3 Pipeline Analysis by Abstract Interpretation 

Abstract interpretation is a well developed theory of 
static program analysis [3]. It is semantics based, 
thus supporting correctness proofs of program analy- 
ses. Abstract interpretation amounts to performing a 
program’s computations using value descriptions or ab- 
stract values in place of concrete values. 

One reason for using abstract values instead of con- 
crete ones is computability: to ensure that analysis re- 
sults are obtained in finite time. Another is to obtain 
results that describe the result of computations on a set 
of possible (e.g., all) inputs. 

The behavior of a program (including its pipeline 
behavior) is given by the (formal) semantics of the pro- 
gram. To predict the pipeline behavior of a program, 
its “collecting semantic@ approximated. The collect- 
ing semantics gives the set of all program (pipeline) 
states for a given program point. Such information 
combined with a path analysis can be used to derive 
WCET-bounds of programs. This approach has suc- 
cessfully been applied to predict the cache behavior of 

‘In [3], the term “static semantics” is used for this. 
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programs [4, 6, 201. 
The approach works as follows: in a first step, the 

“concrete pipeline semantics” of programs is defined. 
The concrete pipeline semantics is a simplified seman- 
tics that describes only the interesting aspects of the 
pipeline behavior but ignores other details of execution, 
e. g. register values, results of computations, etc. In this 
way each real pipeline state is represented by a concrete 
pipeline state. In the next step, we define the “abstract 
pipeline semantics” that “collects” all occurring con- 
crete pipeline states for each program point. 

From the construction of the abstract semantics fol- 
lows that all concrete pipeline states that are included 
in the collecting semantics for a given program point are 
also included in the abstract semantics [4]. An abstract 
pipeline state at a program point may contain concrete 
pipeline states that cannot occur at this point, due to 
infeasible paths. This can reduce the precision of the 
analysis but doesn’t affect the correctness (see [4]). 

The computation of the abstract semantics has been 
implemented with the help of the program analyzer gen- 
erator PAG [14], which allows to generate a program an- 
alyzer from a description of the abstract domain (here, 
sets of concrete pipeline states) and of the abstract se- 
mantic functions. 

4 Pipeline Semantics 

Before the pipeline semantics is presented, which allows 
to analyze the behavior of superscalar pipelines, we try 
to motivate its design. The pipeline semantics must at 
least allow us to detect stalls and to model the selection 
of instructions for concurrent execution. Therefore, the 
detection of hazards must be possible and the informa- 
tion which instructions are available must be provided. 

To detect structural hazards the resource usage of 
instructions has to be known. For most modern proces- 
sors, memory access is too slow to cause data hazards. 
Dependences over cache accesses can be treated within 
a data cache/store buffer analysis [6]. It is assumed 
that data hazards occur only in case of dependences be- 
tween data registers. They can be detected by modeling 
read and write ports of registers as resources. Control 
hazards can also be detected with information about 
resource usage. An instruction that changes the con- 
trol flow must write to a special resource, e. g. the nezt 
program counter register. 

To know which instructions are available the cache 
behavior and the state of the prefetch queue should be 
known. The cache behavior is predicted by a sepa- 
rate cache analysis [5]. To model the prefetch queue 
the pipeline semantics must allow the description of re- 
sources with their own state. 

Our approach is based on the pipeline analysis 
framework in [4]. We consider an in-order superscalar 

processor that can execute a group of up to N instruc- 
tions concurrently. 

For superscalar processors it is not sufficient to build 
a kind of static reservation table, since the assignment 
of resources to pipeline stages of instructions can change 
dynamically during the grouping process. Additionally 
the state of some resources must be provided. 

4.1 Concrete Pipeline Semantics 

Definition 4.1 (resource association) 
Let R = {q , . . . , T,} be the set of resource types and 
resources of the processor. Let PS be the set of pipe- 
line stages. A pair (s, {rj, , . . . , rj,, }) with s E PS 
and rj, 7 . . . 7 rj,, E R is a resource association. R = 
(PS x 2R) denotes the set of all resource associations. 
0 

Definition 4.2 (resource association sequence) 
A sequence F E R = R* is a resource association se- 
quence. Let “.” be the concatenation operator for re- 
source association sequences. 0 

Definition 4.3 
A resource demand sequence is a resource association se- 
quence describing the statically given resource demand 
of an instruction (type). 
A resource allocation sequence is a resource association 
sequence describing an actual assignment of resources 
to an instruction. It depends on the current state of the 
pipeline. cl 

Resource allocation sequences always start with the 
resource allocation for the current pipeline stage, i.e. 
resource allocations of previous pipeline stages are re- 
moved, when the instruction advances through the pipe- 
line. 

Example 4.1 
Consider an instruction with the following resource de- 
mand sequence 

This instruction needs the resource. types or re- 
sources {r,, , . . . , rZb} in pipeline stage sr, before 
{r vl, . . . , ry, } are needed in stage ss. The instruction 
requires no resources in stage ~3. It stays two cycles in 
s4 and needs {r,, , . . . , rI, } both times before it con- 
tinues through the remaining stages. cl 

The resource demand sequence of an instruction’ 
depends only on the instruction type (e.g. ADD or 
DIV) and the operand types (e. g. register or immediate 
value). 

How the resource demand of an instruction can be 
satisfied depends on the actual situation in the pipeline. 
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The initial resource allocation sequence of an instruc- 
tion can differ from the resource demand sequence of 
the type of this instruction. Where multiple resources 
of a resource type are available a particular instance is 
chosen. 

A concrete pipeline state describes the occupancy 
of the pipeline stages by instructions, the current and 
future resource allocations for these instructions and the 
state of some special resources, e. g. the prefetch queue. 

Definition 4.4 (concrete pipeline state) 
A concrete pipeline state p consists of the resource al- 
location sequences of the up to N * IPSj (up to N in- 
structions per pipeline stage) instructions, which are 
currently in the pipeline, R# = ((a)N)IPsl, and the 
state SR of some resources, i.e. p = (r#, SR). P denotes 
the set of all possible concrete pipeline states’. 0 

The concrete pipeline state changes when a new in- 
struction enters the pipeline. The resulting new pipeline 
state depends on the previous pipeline state, on the (re- 
source demand sequence of the) new instruction and on 
the states of other processor parts (e. g. the state of the 
cache memory). 

Definition 4.5 (update function) 
Let IS be the instruction set of the processor. The 
(concrete) update function U : P x IS + P models 
the effect on the concrete pipeline state caused by the 
entrance of a new instruction into the pipeline. Cl 

Definition 4.6 (cycles function) 
The cycles function C : P x IS + lNs computes the 
number of cycles needed by a new instruction to enter 
the pipeline, i.e. the number of cycles needed to reach 
the pipeline state U(p, i). 0 

Definition 4.7 (empty function) 
The pipeline empty function & : P -+ lNs computes the 
number of cycles which are needed to flush the pipeline, 
i.e. the numbers of cycles needed to reach the empty 
pipeline state PC. Cl 

4.2 Control Flow Representation 

Programs are represented by control flow graphs con- 
sisting of nodes and typed edges. The nodes represent 
instructions. Each instruction is statically assigned a 
resource demand sequence, i. e. there exists a mapping 
from control flow nodes to resource demand sequences: 
res, : V + R. 

‘This set is finite. The length of the resource allocation sequences 
is limited, because the number of pipeline stages is finite and the 
number of repetitions of pipeline stages is also limited. The sets of 
possible states of resources are finite. 

The update function U is extended to sequences of 
instructions: 

WP, (il ,... ,ik)) =U(...U(U(p,il),i2) ,... ,ik) 

The pipeline behavior of a path (ir, . . . ,il) in the 
control flow graph is given by applying U to the empty 
pipeline state p, and the concatenation of all instruc- 
tions paired with the appropriate processor state infor- 
mation along the path: 

4.3 Abstract Semantics 

There are only finitely many concrete pipeline states 
and their representation is usually small. Therefore, 
sets of concrete pipeline states2 can be used as the do- 
main for our abstract interpretation and do not need 
space efficient descriptions of sets of concrete pipeline 
states. 

Definition 4.8 (abstract pipeline state) 
An abstract pipeline state $ E P is a set of concrete 
pipeline states. ? = 2p denotes the set of all abstract 
pipeline states. 0 

The abstract version of the concrete pipeline update 
function is a canonical extension of the concrete pipeline 
update function to sets: U@, i) = {U(p, i) 1 p E 6) 

Definition 4.9 (pipeline join function) 
A join function combines two abstract pipeline states. 
The join function is given by the least upper boundAof 
the abstract domain. The pipeline join function ,7 : 
P x P + P is set union: J($i ,&) = $1 U $2 0 

The join function is used to union the abstract pipe- 
line states of two or more merging paths. To combine 
more than two values the join function is extended: 

4.4 Pipeline Analysis 

In order to solve the pipeline analysis for a program, one 
can construct a system of recursive equations from its 
control flow graph. In the program analyzer generator 
PAG this is only done implicitly. 

The variables in the equation system stand for ab- 
stract pipeline states for program points. For every con- 
trol flow node k, representing instruction ik there is an 
equation $k = U(pred(k), ik). If k has only one direct 
predecessor k’, then pred(k) = &I. If k has more than 

‘The domains of the abstract semantics and the collecting seman- 
tics are equal. But an abstract pipeline state may contain concrete 
pipeline states, that do not occur in the respective collecting seman- 
tics, due to infeasible paths. 
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newgrp-stat := closed; 
fi 

fl 
grp-stat := newgrp-stat; 
return(p); 

The grouping process is modeled by a set of rules. 
These rules are based upon the resource demand se- 
quences of available instructions and the resource allo- 
cation sequences of instructions which are already fur- 
ther in the pipeline. 

Example 4.2 
One of the rules that are applied in res-conflo (po- 
sition (A)) in the update function example says that 
two instructions that access the data cache cannot be 
grouped together. 

A rule applied in data-dep() (position (B)) says that 
instructions which access a read port of a data register 
in stage Dl (i.e. load or store instructions) cannot be 
grouped with a preceding instruction that uses the write 
port of this particular data register. 

The rule applied at position (C) says that an in- 
struction which uses the write port of the next program 
counter register (e.g. branches) is always the last, in a 
group. 

These rules prevent problems arising from resource 
conflicts, data dependences, and control flow changes 
respectively. 0 

While the application of all these rules can be trig- 
gered by the resource allocations of instructions, it is 
not always necessary to exhaustively search the resource 
allocation or resource demand sequences for a trigger- 
ing resource. From the resource demand sequences of 
the instruction types some necessary preconditions can 
be precomputed. 

Example 4.3 
Consider the first rule of Example 4.2. Only the re- 
source allocation sequence of the various types of load 
and store instructions contain the data cache. There- 
fore, this rule can be triggered just by looking at the 
instruction type. 0 

The stall behavior of the SuperSPARC I is also mod- 
eled by rules. 

Example 4.4 
One of the rules applied in data-hazard0 (position 
(D)) in the update function example says that a pipe- 
line bubble has to be inserted between a group wherein 
the write port of a data register R, and the ALU in 
stage El is used and a group which uses the read port 
of R, in stage Dl. cl 

In some special cases the documentation of the Su- 
perSPARC I was insufficient for our purposes. There- 
fore pessimism is introduced in the analyzer. This pes- 
simism results in pessimistic concrete pipeline states. 
A pessimistic concrete pipeline state contains more re- 
sources than the instruction actually uses or allocates 
resources for more pipeline stages than are actually oc- 
cupied by the instruction. 

Example 4.5 
Consider the following SuperSPARC I instruction se- 
quence: 

A 8000: ADD Rl,R2,R3 
B 8004: ADD Rs ,Rs ,Rq 
c 8008: LD CR4+41,R3 
D 8012: SUB R6,h,b 

The resource demand sequences for these instruc- 
tions are shown in Table 3. Rg , R,” are the read and 
write ports of data register 2. DC stands for the data 
cache and ALU for the resource type arithmetic logic 
unit. 

Table 3: Resource demand sequences of Example 4.5. 

Figure 1 shows the dynamic change of the resource 
allocation sequences and the prefetch queue state for 
this example. The prefetch queue state is modeled by 
a sequence of instruction addresses (shown in the box 
under the appropriate call to the update function). The 
first address is on top of the queue. 

In pipeline state pl a new group is created, which 
contains just A. The prefetch queue is filled from the 
cache and A is dequeued. In p2 B joins the group of 
A. A dynamic change of the resource allocation against 
the statically assigned resource demand for instruction 
B occurs. Since the result of B depends on the result of 
A, B must use the cascaded ALU (AL&) and not ALU1 . 
B is dequeued from the prefetch queue. In ps a pipeline 
bubble is inserted and a new group is started for C. The 
bubble is necessary, since the LD instruction depends 
on a result of the cacaded ALU in El, which otherwise 
could not be forwarded. A and B advance four pipeline 
stages (two cycles). C is dequeued from the prefetch 
queue. In p4 D starts a new group since it depends on C 
which forwards its result from El. D is dequeued from 
the prefetch queue, which is empty then. 0 
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call to update/ 
prefetch queue 
A starts new group 
P1 = 
ti(pc, A, hit) 
18004, 8008, 80121 
I 1 

grouping A and B 

P2 = 

U(PI, B, hit) 
18008,8012] 

C causes stall 

P3 = 
WPZ, C, hit) 
@ 

D starts new group 

P4 = 

WPS, D, hit) 

El 

resource allocation sequences 

FO’FlDCDl D2 EO ElpB 
A - - - - R$,R$Ri,R$ - Ry 

ALU1 

Figure 1: Application of the concrete update function 
on Example 4.5 

5 Out of Order Execution 

Processors with out of order execution are more flexible 
in choosing instructions for parallel execution. If the 
foremost instruction in row doesn’t fit they will try the 
next one. Of course out of order pipelines too, have to 
check for hazards. 

As stated above our semantics is suitable for super- 
scalar pipelines with in order execution. As a matter 
of fact the above semantics is also suitable for pipelines 
with out of order execution. The decision of an out of 
order execution machine to choose a subset from the 
available instructions is based on the resource require- 
ments of the instructions. Since our semantics is based 
on resources, no changes are needed to support out of 
order execution. 

Nevertheless the concrete semantic functions, and 
the cycles and empty function must be adapted for a 
new target processor. 

6 Practical Experiments 

In this section the results of a first implementation of 
the pipeline analysis are presented. We have chosen the 
SuperSPARC I processor as target. The implementa- 
tion has been done with the program analyzer gener- 
ator PAG, i.e. the pipeline analyzer is generated from 
a description of the semantic functions. For the sake 
of space, this description isn’t shown here (for further 
information see [18]). 

The analyzer takes as input the control flow graph 
of a program and the results of the cache analysis [5]. 
We conservatively assume that memory references that 
are not classified as hits by the cache analysis are cache 
missesr. The output of the analyzer is a mapping map 
of instruction/context pairs to pairs of clock cycles. The 
first element of a clock cycle pair is the result of the 
cycles function applied to the abstract pipeline state 
as shown in Section 4.4. The second element is either 
the result of the empty function applied to the abstract 
pipeline state for exit instructions2 or zero for all other 
instructions. 

A context represents the execution stack, i.e. the 
trace of function calls and loops along the corresponding 
path in the control flow graph to the instruction. Let 
IC be the set of all instruction/context pairs. 

map : IC-,lNt-JXlNl-J 

In general it is impractical to regard all possible con- 
texts (paths) of a program. The cache behavior (and 
thereby the pipeline behavior) often exhibits significant 
differences caused by initialization effects. Therefore, 
first iterations of each loop from further iterations and 
first calls to each (recursive) function from recursive 
calls are distinguished. Instead of distinguishing all 
paths, path classes are considered for which similar be- 
havior is expected. 

This is realized by a generalization of well known 
interprocedural analysis schemes [15]. The approach is 
called VIVU (Virtual Inlining of non-recursive func- 
tions and Virtual Unrolling of loops and recursive func- 
tions) . 

The frontend of the analyzer reads a Sun SPARC ex- 
ecutable in a.out format. The implementation is based 
on the EEL library of the Wisconsin Architectural Re- 
search Tool Set (WARTS). 

The worst case execution profile of a program deter- 
mines how often each instruction/context pair is max- 
imally encountered during the execution of a program. 
By combination with the results of our pipeline anal- 
ysis the worst case number of clock cycles needed to 
execute the input program can be estimated. For our 

‘For the Sup&PARC I this assumption is safe, since cache misses 
don’t lead to accelerations. 

‘An exit instruction is a last instruction’of the program. 
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experiments “exact” execution profiles are used instead 
of deriving them via a path analysis. This allows us to 
assess the effectiveness of the pipeline analysis without 
the influence of possibly pessimistic path analyses. The 
profilers used to create the profiles are produced with 
the help of qpt2 (Quick program Profiler and Tracer) [I] 
that is part of the WARTS distribution. An execu- 
tion profile maps instruction/context pairs to execution 
counts: 

profile : IC + IN0 

We have chosen four small programs (see Table 4) 
to test our implementation. 

Program 
lsimple 

matmult 

fibr 

Pi I 
Comment 
simple for loop 

matrix multiplication 

recursive computation of the 23. 
Fibonacci number 

approximative computation of Pi 

Table 4: List of test programs 

6.1 Improvements by the pipeline analysis 

To show the effectiveness of our pipeline analysis we 
compare the results of the combined instruction cache/ 
pipeline analysis1 with an (virtual) analysis without 
cache and pipeline behavior prediction, and with our 
cache analysis. The CPI (Cycles Per Instruction) values 
of the different analyses are compared.2 For the Super- 
SPARC I the best CPI value that an analysis without 
cache and pipeline behavior prediction can reach is 133 
(assuming no overlap of instructions and 100% instruc- 
tion cache miss rate). The best CPI value that can be 
reached by a cache analysis alone is 4. 

Table 5 displays the improvement by the pipeline 
analysis. In the second column the CPI value accord- 
ing to the combined cache/pipeline analysis is shown. 
The improvement factor against the best possible re- 
sults of an analysis without cache/pipeline behavior 

‘100% data cache miss rate for load instructions and 0% for stores 
are assumed because of the SuperSPARC store buffer. 

‘We also did some measurements on a Sun SPARCstation 10 with 
a Sup&PARC I under NetBSD. However these measurements are 
only statistical results, since we couldn’t yet measure without the in- 
fluence of a non real time multiuser/multitasking operating system. 
But we believe, that the statistical approximated run time values give 
a fairly good impression of the capabilities of our pipeline analysis. 
The ratio of predicted run time and statistical evaluated measure- 
ments are 1.01 (Isimple), 1.10 (matmult), 1.03 (fib-r) and 2.40 (pi 
with normal operands). 

3Cache miss penalty of 9 cycles plus a minimum of 4 cycles (8 half 
cycle pipeline stages) for an integer instruction. 

prediction by the cache analysis is shown in the third 
row. The improvement factor of the combined instruc- 
tion cache/pipeline analysis against an optimal instruc- 
tion cache analysis can be found in the fourth column. 
The last column shows the improvement of our com- 
bined cache/pipeline analysis against the best possible 
results of an analysis without cache/pipeline behavior 
prediction. 

Program CPI 

lsimple 0,556 

matmult 3,436 

fibr 1,800 

Pi 3,138 

Cache 
Analysis 
improv. 
factor 
3,24 

Additional 
improv. 
factor by 
Pipeline A. 
7,19 

3,24 1,16 

3,24 2,22 

3,24 1,27 

Combined 

improv. 
factor 
23,29 

3,75 

7,19 

4,ll 

Table 5: Improvements by the pipeline analysis. 

7 Related Work 

Healy, Whalley and Harmon developed an approach [7] 
to predict worst case execution times in the presence of 
instruction caches and simple pipelines. Their analyzer 
predicts the WCET of a user specified program part. 
The results of a preceding cache analysis are used. Their 
target processor is a MicroSPARC I. Since the pipeline 
of this processor is pretty simple they can limit the used 
resources to registers and pipeline stages. 

For each instruction type several informations must 
be presented to the analyzer. These are the first and 
the last pipeline stage from or to which forwarding is 
possible and the maximum number of clock cycles per 
pipeline stage. Each instruction is assigned the registers 
it uses and the result of the preceding cache analysis. 

The analysis of a program path is done by repeated 
concatenation of instructions. Healy et al. use a bottom 
up algorithm to apply their approach to programs with 
loops. For the analysis of the innermost ioop all paths 
through it are merged. The results of this analysis are 
used in the next higher loop level as if the inner loop was 
a single instruction. The distinction between first and 
other loop iterations is not done explicitly but by the 
cache classifications (first miss, first hit, always miss, 
always hit). For the step from an inner to an outer 
loop it can be necessary to apply adjustments to the 
result of the analysis. To avoid underestimations in 
the presence of pipelines they have to use a trick which 
involves adding of miss penalties and subtracting them 
later at outer loop levels. This trick doesn’t work with 
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superscalar processors since for superscalar pipelines a 
cache hit can result in a speed gain that is higher than 
the miss penalty due to grouping effects [18]. 

Another approach to predict the WCET of real time 
programs is presented in [lo] by Li, Malik and Wolfe. 
This is an integrated solution, where both program path 
analysis, and cache and pipeline behavior prediction are 
based on integer linear programs. The target processor 
is the i960KB from Intel, which has a pretty simple 
pipeline. Thus Li, Malik and Wolfe can limit their ef- 
forts to the detection of structural hazards. While ana- 
lyzing simple pipeline and direct-mapped caches is fast, 
increasing levels of cache associativity sometimes lead 
to prohibitively high analysis times. 

Widely based on [lo], Ottoson and Sjijdin [17] have 
developed a framework to estimate WCETs for archi- 
tectures with pipelines, instruction and data caches. To 
predict the pipeline behavior they also use a kind of 
path concatenation like Healy et al., where the maximal 
overlapping of two instructions is computed. Ottoson 
and Sjijdin restrict themselves to pipeline stages as re- 
sources. In an experiment to predict the cache behavior 
of a very small program they report analysis times of 
several hours. 

In [ll] Lim et al. describe a general framework for 
the computation of WCETs of programs in the presence 
of pipelines and caches. To model the pipeline behav- 
ior they construct a reservation table of resources for 
each instruction. Registers and pipeline stages are re- 
garded as resources. Lim et al. also use a kind of path 
concatenation. They use a bottom up algorithm that 
starts with isolated program constructs. A new reser- 
vation table is computed, each time an instruction (or 
a path) is appended to a path. The reservation tables 
are shortened if possible, by keeping only information 
from the beginning and the end of the path. Lim et al. 
focus on the R3000 processor from MIPS, which has a 
simple five level integer pipeline. 

The more recent work of Lim, Han, Kim and Min [12] 
replaces the reservation tables by instruction depen- 
dence graphs. In this work they focus on a virtual pro- 
cessor with an idealized multiple issue pipeline. Like 
in [ll] concatenation and pruning of paths is done dur- 
ing the execution of the bottom up algorithm. Lim, 
Han, Kim and Min don’t consider caches or prefetch 
queues. 

Lundqvist and Stenstrijm describe a simulation 
based approach in [13]. The theoretical advantage of a 
simulation is that the values of all operands are known 
and infeasible paths can thereby be eliminated. Usually 
this is also the drawback of a simulation approach, since 
the input is generally unknown. To circumvent this 
problem Lundqvist and Stenstrijm introduce unknown 
vaZues, i. e. their simulation is capable of handling pro- 
grams even if the input values are not known. The in- 

troduction of unknown values leads to several problems. 
For instance if the target address of a store instruction 
happens to be an unknown value, the whole main mem- 
ory becomes unknown. Lundqvist and Stenstrijm try to 
shrink this problem by reducing the amount of effected 
memory through relinking of programs in case of stat- 
ically linked routines. To circumvent the simulation of 
each path in a loop iteration a path merging strategy is 
used. The merging of paths leads to loss of information, 
i.e. to unknown values. The authors report that this 
loss of information frequently leads to non-termination 
of the simulation, even if the simulated program termi- 
nates. The detection of infeasible paths is also affected 
by the information loss. The target processor is a Pow- 
erPC. 

We are aware of two retargetable pipeline analysis 
approaches that are based on Maril (Marion’s machine 
description language) of the Marion [2] system of David 
G. Bradlee. Hur et al. [9] have developed a retargetable 
timing analyzer that has been used to generate analyz- 
ers for the MIPS R3000/R3100 and the Motorola 88000. 
Narasimham and Nilsen describe in [16] a retargetable 
tool called pipeline simulator compiler that determines 
the number of cycles necessary to execute a given in- 
struction sequence assuming 100% cache hits. For their 
tool there are processor descriptions modeling the pipe- 
line behavior of the MIPS R2000, the Power PC 601, 
and a SPARC computer architecture. For a more de- 
tailed discussion of these approaches see [4]. 

8 Conclusion and Future Work 

We have shown that the semantics based approach can 
be used to predict the behavior of modern pipelines. 
The presented semantics was designed for superscalar 
processors, but is also suitable to model out of order 
execution processors. 

The results of our first implementation for the Super- 
SPARC I processor show a clear improvement against 
the naive approach. 

Our implementation has shown that with the VIVU 
approach it is possible to realize the instruction cache 
and pipeline behavior prediction independently without 
significant loss of accuracy. The advantages of this ap- 
proach are that there is no need to bother about worst 
case paths during our pipeline analysis since our results 
reflect all paths, and that a subsequent path analysis 
can access context specific information about the be- 
havior of instructions. 

Future work includes the development of pipeline 
analyses for other processors, especially for processors 
with out of order execution. Work on the integration 
of the pipeline analysis with the data cache analysis is 
also in progress. For target systems with out of order 
execution of data memory accesses it is not sufficient to 
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treat data cache and pipeline behavior prediction inde- 
pendently. 

Additionally it is planned to integrate the pipeline 
analysis with the path analysis, like it has been done 
for the cache analysis [20]. 

A further step can be to incorporate the results of an 
analysis of floating point operands. This can be impor- 
tant for processors like the SuperSPARC I which show 
a significant different execution time of floating point 
operations in dependence of their operand values. 

Our goal is to develop a set of tools which allow to 
create a pipeline analysis for a new processor from a 
concise description of this processor. 
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