
Pipeline Behavior Prediction for Superscalar Processors by Abstract
Interpretation

Jijrn Schneider*

Universitat des Saarlandes

Christian Ferdinand

AbsInt Angewandte Informatik GmbH
Fachbereich Informatik

Postfach 15 11 50
D-66041 Saarbriicken, Germany

Phone: +49 681 302 3434
Fax: +49 681 302 3065

jsQcs.uni-sb.de
http://www.cs.uni-sb.de/wjs

Universitat des Saarlandes
Starterzentrum - Gebaude 45

D-66123 Saarbriicken, Germany
Phone: +49 681 8318317

Fax: +49 681 8318320
ferdinand@AbsInt.de

http://www.AbsInt.de

Abstract

For real time systems not only the logical function is
important but also the timing behavior, e. g. hard real
time systems must react inside their deadlines. To guar-
antee this it is necessary to know upper bounds for the
worst case execution times (WCETs). The accuracy
of the prediction of WCETs depends strongly on the
ability to model the features of the target processor.

Cache memories, pipelines and parallel functional
units are architectural components which are respon-
sible for the speed gain of modern processors. It is not
trivial to determine their influence when predicting the
worst case execution time of programs.

This paper describes a method to predict the be-
havior of pipelined superscalar processors and reports
initial results of a prototypical implementation for the
SuperSPARC I processor.

1 Introduction

The correctness of a hard real-time system depends not
only on the logical functionality, the programs must also
satisfy the temporal requirements dictated by the phys-
ical environment. To analyze the schedulability of a
given set of tasks, upper bounds for the worst case exe-
cution time (WCET) of the tasks are required. In gen-
eral it is not possible to determine these upper bounds
by measurements or simulation, because all possible

*Partly supported by DFG (German Reskarch Foundation), Trans-
ferbereich 14

Permission to make digital or hard copies of 811 or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or e fee.
LCTES ‘99 5/99 Atlanta, GA, USA
0 1999 ACM l-56113~136s4/99/0006...$5.00

combinations of input values must be considered. We
use static program analysis to compute the WCET of
programs. Our method is based on abstract interpreta-
tion.

In this paper the prediction of the behavior of pipe-
lines combined with parallel execution on a superscalar
processor is presented. Initial results of a prototypical
implementation for the SuperSPARC I processor [18]
are presented.

To obtain sharp bounds for the WCET it is necessary
to consider the features of the target processors. Mod-
ern processors gain speed through: The use of cache
memories and pipelines, and the parallel execution of
instructions.

2 Super-scalar Pipelines

2.1 Principle of Pipelines

The idea of pipelining is to overlap the execution of in-
structions. This is accomplished by dividing the execu-
tion of instructions into several steps (pipeline stages).
The ideal case of full overlapped instructions can not
always be reached. Pipeline bubbles can occur in real
pipelines, when the pipeline stalls. Situations, which
can lead to pipeline stalls are called pip&e hazards.
There are three types of hazards. Structural hazards are
caused by resource conflicts, data hazards are caused
by data dependences, and control hazards are caused
by control flow changes (e.g. branches).

2.2 Superscalar Execution

A measure for the throughput of a processor is the CPI
value.(Cycles Per Instruction).

With the concept of pipelining it is possible to reach
at best a CPI value of 1. To increase the throughput,

35

i. e. decrease the CPI value further it is necessary to in-
troduce parallel execution. The parallelization can be
done statically or dynamically. The static approach is
used in e. g. VLIW (Very Large Instruction Word) pro-
cessors [8], where the compiler is responsible for select-
ing the instructions to execute simultaneously. In su-
perscalar processors the dynamic approach is used, i. e.
the processor selects the instructions to be processed
concurrently during run time.

Stage
FO

Fl

DO

Dl

D2

EO

El

WB

Tasks
l Fetch of up to 4 instr. in case of cache
hit, or up to 8 instr. from memory

l Filling of the prefetch queue

l Selection of instructions from prefetch
queue to form a group of concurrent
executable instructions

l Assignment of functional units
and register ports to instructions
b Computation of branch destination addr.
l Reading of address registers
for memory accesses

l Reading of operand registers
l Computation of virtual
addresses for memory references

l Execution of computations in
Arithmetic Logic Unit 1 (ALUl)
l Start of data cache accesses
0 Transfer of floating point
instructions to the FPU

l Computations, that depend on
instruction in same group are
executed in the cascaded ALU2
l Completion of data cache accesses

l Write back of integer results

Table 1: Stages of the integer pipeline.

2.3 Example: SuperSPARC I

The SuperSPARC I is a superscalar RISC processor,
compatible with the SPARC version 8 architecture [19].
It is capable of grouping up to three instructions to ex-
ecute them concurrently. The grouping of instructions
is a dynamic process. The decision which instructions
are grouped together depends on the availability of in-
structions in the prefetch queue or the cache, and on

+-I-= Decode of Floating point operations

FRD Read of FP registers

FE Execution of FP instructions

FL Rounding and normalization of results

FWB Write back of floating point results

Table 2: Stages of the floating point pipeline.

data dependences, resource conflicts, and control flow
changes. The data dependences and the resource con-
flicts can occur between the available instructions and
between these and already grouped instructions.

The SuperSPARC I has a main or integer pipeline
and a floating point pipeline. The pipeline stages of
the main and floating point pipeline are displayed in
Table 1 and Table 2.

The processing of a floating point instruction starts
in the first part of the main pipeline and continues in
the floating point pipeline. The transfer from the inte-
ger pipeline to the floating point pipeline is done in EO
CFD).

‘The execution time of some floating point instruc-
tions depends on their operands. If the operands or
the result are subnormal values the computation takes
longer (see [S]).

3 Pipeline Analysis by Abstract Interpretation

Abstract interpretation is a well developed theory of
static program analysis [3]. It is semantics based,
thus supporting correctness proofs of program analy-
ses. Abstract interpretation amounts to performing a
program’s computations using value descriptions or ab-
stract values in place of concrete values.

One reason for using abstract values instead of con-
crete ones is computability: to ensure that analysis re-
sults are obtained in finite time. Another is to obtain
results that describe the result of computations on a set
of possible (e.g., all) inputs.

The behavior of a program (including its pipeline
behavior) is given by the (formal) semantics of the pro-
gram. To predict the pipeline behavior of a program,
its “collecting semantic@ approximated. The collect-
ing semantics gives the set of all program (pipeline)
states for a given program point. Such information
combined with a path analysis can be used to derive
WCET-bounds of programs. This approach has suc-
cessfully been applied to predict the cache behavior of

‘In [3], the term “static semantics” is used for this.

36

programs [4, 6, 201.
The approach works as follows: in a first step, the

“concrete pipeline semantics” of programs is defined.
The concrete pipeline semantics is a simplified seman-
tics that describes only the interesting aspects of the
pipeline behavior but ignores other details of execution,
e. g. register values, results of computations, etc. In this
way each real pipeline state is represented by a concrete
pipeline state. In the next step, we define the “abstract
pipeline semantics” that “collects” all occurring con-
crete pipeline states for each program point.

From the construction of the abstract semantics fol-
lows that all concrete pipeline states that are included
in the collecting semantics for a given program point are
also included in the abstract semantics [4]. An abstract
pipeline state at a program point may contain concrete
pipeline states that cannot occur at this point, due to
infeasible paths. This can reduce the precision of the
analysis but doesn’t affect the correctness (see [4]).

The computation of the abstract semantics has been
implemented with the help of the program analyzer gen-
erator PAG [14], which allows to generate a program an-
alyzer from a description of the abstract domain (here,
sets of concrete pipeline states) and of the abstract se-
mantic functions.

4 Pipeline Semantics

Before the pipeline semantics is presented, which allows
to analyze the behavior of superscalar pipelines, we try
to motivate its design. The pipeline semantics must at
least allow us to detect stalls and to model the selection
of instructions for concurrent execution. Therefore, the
detection of hazards must be possible and the informa-
tion which instructions are available must be provided.

To detect structural hazards the resource usage of
instructions has to be known. For most modern proces-
sors, memory access is too slow to cause data hazards.
Dependences over cache accesses can be treated within
a data cache/store buffer analysis [6]. It is assumed
that data hazards occur only in case of dependences be-
tween data registers. They can be detected by modeling
read and write ports of registers as resources. Control
hazards can also be detected with information about
resource usage. An instruction that changes the con-
trol flow must write to a special resource, e. g. the nezt
program counter register.

To know which instructions are available the cache
behavior and the state of the prefetch queue should be
known. The cache behavior is predicted by a sepa-
rate cache analysis [5]. To model the prefetch queue
the pipeline semantics must allow the description of re-
sources with their own state.

Our approach is based on the pipeline analysis
framework in [4]. We consider an in-order superscalar

processor that can execute a group of up to N instruc-
tions concurrently.

For superscalar processors it is not sufficient to build
a kind of static reservation table, since the assignment
of resources to pipeline stages of instructions can change
dynamically during the grouping process. Additionally
the state of some resources must be provided.

4.1 Concrete Pipeline Semantics

Definition 4.1 (resource association)
Let R = {q , . . . , T,} be the set of resource types and
resources of the processor. Let PS be the set of pipe-
line stages. A pair (s, {rj, , . . . , rj,, }) with s E PS
and rj, 7 . . . 7 rj,, E R is a resource association. R =
(PS x 2R) denotes the set of all resource associations.
0

Definition 4.2 (resource association sequence)
A sequence F E R = R* is a resource association se-
quence. Let “.” be the concatenation operator for re-
source association sequences. 0

Definition 4.3
A resource demand sequence is a resource association se-
quence describing the statically given resource demand
of an instruction (type).
A resource allocation sequence is a resource association
sequence describing an actual assignment of resources
to an instruction. It depends on the current state of the
pipeline. cl

Resource allocation sequences always start with the
resource allocation for the current pipeline stage, i.e.
resource allocations of previous pipeline stages are re-
moved, when the instruction advances through the pipe-
line.

Example 4.1
Consider an instruction with the following resource de-
mand sequence

This instruction needs the resource. types or re-
sources {r,, , . . . , rZb} in pipeline stage sr, before
{r vl, . . . , ry, } are needed in stage ss. The instruction
requires no resources in stage ~3. It stays two cycles in
s4 and needs {r,, , . . . , rI, } both times before it con-
tinues through the remaining stages. cl

The resource demand sequence of an instruction’
depends only on the instruction type (e.g. ADD or
DIV) and the operand types (e. g. register or immediate
value).

How the resource demand of an instruction can be
satisfied depends on the actual situation in the pipeline.

37

The initial resource allocation sequence of an instruc-
tion can differ from the resource demand sequence of
the type of this instruction. Where multiple resources
of a resource type are available a particular instance is
chosen.

A concrete pipeline state describes the occupancy
of the pipeline stages by instructions, the current and
future resource allocations for these instructions and the
state of some special resources, e. g. the prefetch queue.

Definition 4.4 (concrete pipeline state)
A concrete pipeline state p consists of the resource al-
location sequences of the up to N * IPSj (up to N in-
structions per pipeline stage) instructions, which are
currently in the pipeline, R# = ((a)N)IPsl, and the
state SR of some resources, i.e. p = (r#, SR). P denotes
the set of all possible concrete pipeline states’. 0

The concrete pipeline state changes when a new in-
struction enters the pipeline. The resulting new pipeline
state depends on the previous pipeline state, on the (re-
source demand sequence of the) new instruction and on
the states of other processor parts (e. g. the state of the
cache memory).

Definition 4.5 (update function)
Let IS be the instruction set of the processor. The
(concrete) update function U : P x IS + P models
the effect on the concrete pipeline state caused by the
entrance of a new instruction into the pipeline. Cl

Definition 4.6 (cycles function)
The cycles function C : P x IS + lNs computes the
number of cycles needed by a new instruction to enter
the pipeline, i.e. the number of cycles needed to reach
the pipeline state U(p, i). 0

Definition 4.7 (empty function)
The pipeline empty function & : P -+ lNs computes the
number of cycles which are needed to flush the pipeline,
i.e. the numbers of cycles needed to reach the empty
pipeline state PC. Cl

4.2 Control Flow Representation

Programs are represented by control flow graphs con-
sisting of nodes and typed edges. The nodes represent
instructions. Each instruction is statically assigned a
resource demand sequence, i. e. there exists a mapping
from control flow nodes to resource demand sequences:
res, : V + R.

‘This set is finite. The length of the resource allocation sequences
is limited, because the number of pipeline stages is finite and the
number of repetitions of pipeline stages is also limited. The sets of
possible states of resources are finite.

The update function U is extended to sequences of
instructions:

WP, (il ,... ,ik)) =U(...U(U(p,il),i2) ,... ,ik)

The pipeline behavior of a path (ir, . . . ,il) in the
control flow graph is given by applying U to the empty
pipeline state p, and the concatenation of all instruc-
tions paired with the appropriate processor state infor-
mation along the path:

4.3 Abstract Semantics

There are only finitely many concrete pipeline states
and their representation is usually small. Therefore,
sets of concrete pipeline states2 can be used as the do-
main for our abstract interpretation and do not need
space efficient descriptions of sets of concrete pipeline
states.

Definition 4.8 (abstract pipeline state)
An abstract pipeline state $ E P is a set of concrete
pipeline states. ? = 2p denotes the set of all abstract
pipeline states. 0

The abstract version of the concrete pipeline update
function is a canonical extension of the concrete pipeline
update function to sets: U@, i) = {U(p, i) 1 p E 6)

Definition 4.9 (pipeline join function)
A join function combines two abstract pipeline states.
The join function is given by the least upper boundAof
the abstract domain. The pipeline join function ,7 :
P x P + P is set union: J($i ,&) = $1 U $2 0

The join function is used to union the abstract pipe-
line states of two or more merging paths. To combine
more than two values the join function is extended:

4.4 Pipeline Analysis

In order to solve the pipeline analysis for a program, one
can construct a system of recursive equations from its
control flow graph. In the program analyzer generator
PAG this is only done implicitly.

The variables in the equation system stand for ab-
stract pipeline states for program points. For every con-
trol flow node k, representing instruction ik there is an
equation $k = U(pred(k), ik). If k has only one direct
predecessor k’, then pred(k) = &I. If k has more than

‘The domains of the abstract semantics and the collecting seman-
tics are equal. But an abstract pipeline state may contain concrete
pipeline states, that do not occur in the respective collecting seman-
tics, due to infeasible paths.

38

newgrp-stat := closed;
fi

fl
grp-stat := newgrp-stat;
return(p);

The grouping process is modeled by a set of rules.
These rules are based upon the resource demand se-
quences of available instructions and the resource allo-
cation sequences of instructions which are already fur-
ther in the pipeline.

Example 4.2
One of the rules that are applied in res-conflo (po-
sition (A)) in the update function example says that
two instructions that access the data cache cannot be
grouped together.

A rule applied in data-dep() (position (B)) says that
instructions which access a read port of a data register
in stage Dl (i.e. load or store instructions) cannot be
grouped with a preceding instruction that uses the write
port of this particular data register.

The rule applied at position (C) says that an in-
struction which uses the write port of the next program
counter register (e.g. branches) is always the last, in a
group.

These rules prevent problems arising from resource
conflicts, data dependences, and control flow changes
respectively. 0

While the application of all these rules can be trig-
gered by the resource allocations of instructions, it is
not always necessary to exhaustively search the resource
allocation or resource demand sequences for a trigger-
ing resource. From the resource demand sequences of
the instruction types some necessary preconditions can
be precomputed.

Example 4.3
Consider the first rule of Example 4.2. Only the re-
source allocation sequence of the various types of load
and store instructions contain the data cache. There-
fore, this rule can be triggered just by looking at the
instruction type. 0

The stall behavior of the SuperSPARC I is also mod-
eled by rules.

Example 4.4
One of the rules applied in data-hazard0 (position
(D)) in the update function example says that a pipe-
line bubble has to be inserted between a group wherein
the write port of a data register R, and the ALU in
stage El is used and a group which uses the read port
of R, in stage Dl. cl

In some special cases the documentation of the Su-
perSPARC I was insufficient for our purposes. There-
fore pessimism is introduced in the analyzer. This pes-
simism results in pessimistic concrete pipeline states.
A pessimistic concrete pipeline state contains more re-
sources than the instruction actually uses or allocates
resources for more pipeline stages than are actually oc-
cupied by the instruction.

Example 4.5
Consider the following SuperSPARC I instruction se-
quence:

A 8000: ADD Rl,R2,R3
B 8004: ADD Rs ,Rs ,Rq
c 8008: LD CR4+41,R3
D 8012: SUB R6,h,b

The resource demand sequences for these instruc-
tions are shown in Table 3. Rg , R,” are the read and
write ports of data register 2. DC stands for the data
cache and ALU for the resource type arithmetic logic
unit.

Table 3: Resource demand sequences of Example 4.5.

Figure 1 shows the dynamic change of the resource
allocation sequences and the prefetch queue state for
this example. The prefetch queue state is modeled by
a sequence of instruction addresses (shown in the box
under the appropriate call to the update function). The
first address is on top of the queue.

In pipeline state pl a new group is created, which
contains just A. The prefetch queue is filled from the
cache and A is dequeued. In p2 B joins the group of
A. A dynamic change of the resource allocation against
the statically assigned resource demand for instruction
B occurs. Since the result of B depends on the result of
A, B must use the cascaded ALU (AL&) and not ALU1 .
B is dequeued from the prefetch queue. In ps a pipeline
bubble is inserted and a new group is started for C. The
bubble is necessary, since the LD instruction depends
on a result of the cacaded ALU in El, which otherwise
could not be forwarded. A and B advance four pipeline
stages (two cycles). C is dequeued from the prefetch
queue. In p4 D starts a new group since it depends on C
which forwards its result from El. D is dequeued from
the prefetch queue, which is empty then. 0

40

call to update/
prefetch queue
A starts new group
P1 =
ti(pc, A, hit)
18004, 8008, 80121
I 1

grouping A and B

P2 =

U(PI, B, hit)
18008,8012]

C causes stall

P3 =
WPZ, C, hit)
@

D starts new group

P4 =

WPS, D, hit)

El

resource allocation sequences

FO’FlDCDl D2 EO ElpB
A - - - - R$,R$Ri,R$ - Ry

ALU1

Figure 1: Application of the concrete update function
on Example 4.5

5 Out of Order Execution

Processors with out of order execution are more flexible
in choosing instructions for parallel execution. If the
foremost instruction in row doesn’t fit they will try the
next one. Of course out of order pipelines too, have to
check for hazards.

As stated above our semantics is suitable for super-
scalar pipelines with in order execution. As a matter
of fact the above semantics is also suitable for pipelines
with out of order execution. The decision of an out of
order execution machine to choose a subset from the
available instructions is based on the resource require-
ments of the instructions. Since our semantics is based
on resources, no changes are needed to support out of
order execution.

Nevertheless the concrete semantic functions, and
the cycles and empty function must be adapted for a
new target processor.

6 Practical Experiments

In this section the results of a first implementation of
the pipeline analysis are presented. We have chosen the
SuperSPARC I processor as target. The implementa-
tion has been done with the program analyzer gener-
ator PAG, i.e. the pipeline analyzer is generated from
a description of the semantic functions. For the sake
of space, this description isn’t shown here (for further
information see [18]).

The analyzer takes as input the control flow graph
of a program and the results of the cache analysis [5].
We conservatively assume that memory references that
are not classified as hits by the cache analysis are cache
missesr. The output of the analyzer is a mapping map
of instruction/context pairs to pairs of clock cycles. The
first element of a clock cycle pair is the result of the
cycles function applied to the abstract pipeline state
as shown in Section 4.4. The second element is either
the result of the empty function applied to the abstract
pipeline state for exit instructions2 or zero for all other
instructions.

A context represents the execution stack, i.e. the
trace of function calls and loops along the corresponding
path in the control flow graph to the instruction. Let
IC be the set of all instruction/context pairs.

map : IC-,lNt-JXlNl-J

In general it is impractical to regard all possible con-
texts (paths) of a program. The cache behavior (and
thereby the pipeline behavior) often exhibits significant
differences caused by initialization effects. Therefore,
first iterations of each loop from further iterations and
first calls to each (recursive) function from recursive
calls are distinguished. Instead of distinguishing all
paths, path classes are considered for which similar be-
havior is expected.

This is realized by a generalization of well known
interprocedural analysis schemes [15]. The approach is
called VIVU (Virtual Inlining of non-recursive func-
tions and Virtual Unrolling of loops and recursive func-
tions) .

The frontend of the analyzer reads a Sun SPARC ex-
ecutable in a.out format. The implementation is based
on the EEL library of the Wisconsin Architectural Re-
search Tool Set (WARTS).

The worst case execution profile of a program deter-
mines how often each instruction/context pair is max-
imally encountered during the execution of a program.
By combination with the results of our pipeline anal-
ysis the worst case number of clock cycles needed to
execute the input program can be estimated. For our

‘For the Sup&PARC I this assumption is safe, since cache misses
don’t lead to accelerations.

‘An exit instruction is a last instruction’of the program.

41

experiments “exact” execution profiles are used instead
of deriving them via a path analysis. This allows us to
assess the effectiveness of the pipeline analysis without
the influence of possibly pessimistic path analyses. The
profilers used to create the profiles are produced with
the help of qpt2 (Quick program Profiler and Tracer) [I]
that is part of the WARTS distribution. An execu-
tion profile maps instruction/context pairs to execution
counts:

profile : IC + IN0

We have chosen four small programs (see Table 4)
to test our implementation.

Program
lsimple

matmult

fibr

Pi I
Comment
simple for loop

matrix multiplication

recursive computation of the 23.
Fibonacci number

approximative computation of Pi

Table 4: List of test programs

6.1 Improvements by the pipeline analysis

To show the effectiveness of our pipeline analysis we
compare the results of the combined instruction cache/
pipeline analysis1 with an (virtual) analysis without
cache and pipeline behavior prediction, and with our
cache analysis. The CPI (Cycles Per Instruction) values
of the different analyses are compared.2 For the Super-
SPARC I the best CPI value that an analysis without
cache and pipeline behavior prediction can reach is 133
(assuming no overlap of instructions and 100% instruc-
tion cache miss rate). The best CPI value that can be
reached by a cache analysis alone is 4.

Table 5 displays the improvement by the pipeline
analysis. In the second column the CPI value accord-
ing to the combined cache/pipeline analysis is shown.
The improvement factor against the best possible re-
sults of an analysis without cache/pipeline behavior

‘100% data cache miss rate for load instructions and 0% for stores
are assumed because of the SuperSPARC store buffer.

‘We also did some measurements on a Sun SPARCstation 10 with
a Sup&PARC I under NetBSD. However these measurements are
only statistical results, since we couldn’t yet measure without the in-
fluence of a non real time multiuser/multitasking operating system.
But we believe, that the statistical approximated run time values give
a fairly good impression of the capabilities of our pipeline analysis.
The ratio of predicted run time and statistical evaluated measure-
ments are 1.01 (Isimple), 1.10 (matmult), 1.03 (fib-r) and 2.40 (pi
with normal operands).

3Cache miss penalty of 9 cycles plus a minimum of 4 cycles (8 half
cycle pipeline stages) for an integer instruction.

prediction by the cache analysis is shown in the third
row. The improvement factor of the combined instruc-
tion cache/pipeline analysis against an optimal instruc-
tion cache analysis can be found in the fourth column.
The last column shows the improvement of our com-
bined cache/pipeline analysis against the best possible
results of an analysis without cache/pipeline behavior
prediction.

Program CPI

lsimple 0,556

matmult 3,436

fibr 1,800

Pi 3,138

Cache
Analysis
improv.
factor
3,24

Additional
improv.
factor by
Pipeline A.
7,19

3,24 1,16

3,24 2,22

3,24 1,27

Combined

improv.
factor
23,29

3,75

7,19

4,ll

Table 5: Improvements by the pipeline analysis.

7 Related Work

Healy, Whalley and Harmon developed an approach [7]
to predict worst case execution times in the presence of
instruction caches and simple pipelines. Their analyzer
predicts the WCET of a user specified program part.
The results of a preceding cache analysis are used. Their
target processor is a MicroSPARC I. Since the pipeline
of this processor is pretty simple they can limit the used
resources to registers and pipeline stages.

For each instruction type several informations must
be presented to the analyzer. These are the first and
the last pipeline stage from or to which forwarding is
possible and the maximum number of clock cycles per
pipeline stage. Each instruction is assigned the registers
it uses and the result of the preceding cache analysis.

The analysis of a program path is done by repeated
concatenation of instructions. Healy et al. use a bottom
up algorithm to apply their approach to programs with
loops. For the analysis of the innermost ioop all paths
through it are merged. The results of this analysis are
used in the next higher loop level as if the inner loop was
a single instruction. The distinction between first and
other loop iterations is not done explicitly but by the
cache classifications (first miss, first hit, always miss,
always hit). For the step from an inner to an outer
loop it can be necessary to apply adjustments to the
result of the analysis. To avoid underestimations in
the presence of pipelines they have to use a trick which
involves adding of miss penalties and subtracting them
later at outer loop levels. This trick doesn’t work with

42

superscalar processors since for superscalar pipelines a
cache hit can result in a speed gain that is higher than
the miss penalty due to grouping effects [18].

Another approach to predict the WCET of real time
programs is presented in [lo] by Li, Malik and Wolfe.
This is an integrated solution, where both program path
analysis, and cache and pipeline behavior prediction are
based on integer linear programs. The target processor
is the i960KB from Intel, which has a pretty simple
pipeline. Thus Li, Malik and Wolfe can limit their ef-
forts to the detection of structural hazards. While ana-
lyzing simple pipeline and direct-mapped caches is fast,
increasing levels of cache associativity sometimes lead
to prohibitively high analysis times.

Widely based on [lo], Ottoson and Sjijdin [17] have
developed a framework to estimate WCETs for archi-
tectures with pipelines, instruction and data caches. To
predict the pipeline behavior they also use a kind of
path concatenation like Healy et al., where the maximal
overlapping of two instructions is computed. Ottoson
and Sjijdin restrict themselves to pipeline stages as re-
sources. In an experiment to predict the cache behavior
of a very small program they report analysis times of
several hours.

In [ll] Lim et al. describe a general framework for
the computation of WCETs of programs in the presence
of pipelines and caches. To model the pipeline behav-
ior they construct a reservation table of resources for
each instruction. Registers and pipeline stages are re-
garded as resources. Lim et al. also use a kind of path
concatenation. They use a bottom up algorithm that
starts with isolated program constructs. A new reser-
vation table is computed, each time an instruction (or
a path) is appended to a path. The reservation tables
are shortened if possible, by keeping only information
from the beginning and the end of the path. Lim et al.
focus on the R3000 processor from MIPS, which has a
simple five level integer pipeline.

The more recent work of Lim, Han, Kim and Min [12]
replaces the reservation tables by instruction depen-
dence graphs. In this work they focus on a virtual pro-
cessor with an idealized multiple issue pipeline. Like
in [ll] concatenation and pruning of paths is done dur-
ing the execution of the bottom up algorithm. Lim,
Han, Kim and Min don’t consider caches or prefetch
queues.

Lundqvist and Stenstrijm describe a simulation
based approach in [13]. The theoretical advantage of a
simulation is that the values of all operands are known
and infeasible paths can thereby be eliminated. Usually
this is also the drawback of a simulation approach, since
the input is generally unknown. To circumvent this
problem Lundqvist and Stenstrijm introduce unknown
vaZues, i. e. their simulation is capable of handling pro-
grams even if the input values are not known. The in-

troduction of unknown values leads to several problems.
For instance if the target address of a store instruction
happens to be an unknown value, the whole main mem-
ory becomes unknown. Lundqvist and Stenstrijm try to
shrink this problem by reducing the amount of effected
memory through relinking of programs in case of stat-
ically linked routines. To circumvent the simulation of
each path in a loop iteration a path merging strategy is
used. The merging of paths leads to loss of information,
i.e. to unknown values. The authors report that this
loss of information frequently leads to non-termination
of the simulation, even if the simulated program termi-
nates. The detection of infeasible paths is also affected
by the information loss. The target processor is a Pow-
erPC.

We are aware of two retargetable pipeline analysis
approaches that are based on Maril (Marion’s machine
description language) of the Marion [2] system of David
G. Bradlee. Hur et al. [9] have developed a retargetable
timing analyzer that has been used to generate analyz-
ers for the MIPS R3000/R3100 and the Motorola 88000.
Narasimham and Nilsen describe in [16] a retargetable
tool called pipeline simulator compiler that determines
the number of cycles necessary to execute a given in-
struction sequence assuming 100% cache hits. For their
tool there are processor descriptions modeling the pipe-
line behavior of the MIPS R2000, the Power PC 601,
and a SPARC computer architecture. For a more de-
tailed discussion of these approaches see [4].

8 Conclusion and Future Work

We have shown that the semantics based approach can
be used to predict the behavior of modern pipelines.
The presented semantics was designed for superscalar
processors, but is also suitable to model out of order
execution processors.

The results of our first implementation for the Super-
SPARC I processor show a clear improvement against
the naive approach.

Our implementation has shown that with the VIVU
approach it is possible to realize the instruction cache
and pipeline behavior prediction independently without
significant loss of accuracy. The advantages of this ap-
proach are that there is no need to bother about worst
case paths during our pipeline analysis since our results
reflect all paths, and that a subsequent path analysis
can access context specific information about the be-
havior of instructions.

Future work includes the development of pipeline
analyses for other processors, especially for processors
with out of order execution. Work on the integration
of the pipeline analysis with the data cache analysis is
also in progress. For target systems with out of order
execution of data memory accesses it is not sufficient to

43

treat data cache and pipeline behavior prediction inde-
pendently.

Additionally it is planned to integrate the pipeline
analysis with the path analysis, like it has been done
for the cache analysis [20].

A further step can be to incorporate the results of an
analysis of floating point operands. This can be impor-
tant for processors like the SuperSPARC I which show
a significant different execution time of floating point
operations in dependence of their operand values.

Our goal is to develop a set of tools which allow to
create a pipeline analysis for a new processor from a
concise description of this processor.

Acknowledgements

Many members of the compiler design group at the Uni-
versitgt des Saarlandes, especially the members of the
USES (UniversitZt des Saarlandes Embedded Systems)
group deserve acknowledgement. Reinhard Wilhelm
provided many valuable hints and suggestions, and has
carefully read draft versions of this work. Florian Mar-
tin provided his vast knowledge about PAG and adjusted
this tool for the special needs of the pipeline analysis.

We like to thank Mark D. Hill, James R. Larus, Alvin
R. Lebeck, Madhusudhan Talluri, and David A. Wood
for making available the Wisconsin architectural re-
search tool set (WARTS), and the anonymous reviewers
for their helpful comments.

References

[l] T. Ball and J. Larus. Optimally Profiling and Tracing Pro-
grams. In Proceedings of the 19th ACM Symposium on Prin-
ciples of Progmmming Languages, pages 59-70, Jan. 1992.

[2] D. G. Bradlee. Retargetable Instruction Scheduling for
Pipelined Processors. PhD Thesis, Technical Report 91-08-
07, University of Washington, 1991.

[3] P. Cousot and R. Cousot. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs bv Construc-
tion or Approximation of Fixpoints. In PFoceedings of the 4th
ACM Symposium on Principles of Prvgmmming Languages,
pages 238-252, Los Angeles, CA, 1977.

[4] C. Ferdinand. Cache Behavior Prediction for Real-Time Sys-
tems. Dissertation, Universitgt des Saarlandes, Sept. 1997.

[5] C. Ferdinand, F. Martin, and R. Wilhelm. Applying Com-
piler Techniques to Cache Behavior Prediction. In Proceed-
ings of the ACM SIGPLAN Workshop on Language, Com-
piler and Tool Support for Real-Time Systems, pages 3746,
June 1997.

[6] C. Ferdinand and R. Wilhelm. On predicting data cache
behavior for real-time systems. In Proceedings of the ACM
SIGPLAN Workshop on Languages, Compilers and Tools
for Embedded Systems, volume 1474 of Lecture Notes in
Computer Science, pages 16-30. Springer, 1998.

[7] C. A. Healy, D. B. Whalley, and M. G. Harmon. Integrating
the Timing Analysis of Pipelining and Instruction Caching.
In Proceedings of the IEEE Real-Time Systems Symposium,
pages 288-297, Dec. 1995.

[8] J. L. Hennessy and D. A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publishers,
Inc., 2 edition, 1996.

[9] Y. Hur, Y. H. Bea, S.-S. Lim, B.-D. Rhee, S. L. Min, Y. C.
Park. M. Lee. H. Shin. and C. S. Kim. Worst Case Tim-
ing Analysis df RISC P;ocessors: R3000/R3010 Case Study.
In Proceedings of the IE.EE Real-Time Systems Symposium,
pages 308-319, Dec. 1995.

[lo] Y.-T. S. Li, S. Malik, and A. Wolfe. Efficient Microarchitec-
ture Modeling and Path Analysis for Real-Time Software.
In Proceedings of the IEEE Real-Time Systems Symposium,
pages 298-307, Dec. 1995.

[ll] S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min,
C. Y. Park. H. Shin, K. Park. S.-M. Moon. and C. S. Kim. An
Accurate \iVorst C&e Timing Analysis fdr RISC Processors.
IEEE ‘IYansactions on Software Engineering, 21(7):593-604,
July 1995.

[12] S.-S. Lim, J. H. Han, J. Kim, and S. L. Min. A worst case
timing analysis technique for multiple-issue machines. In
Proceedings of the IEEE Real-Time Systems Symposium ‘98,
1998.

[13] T. Lundqvist and P. Stenstriim. Integrating path and tim-
ing analysis using instruction-level simulation techniques.
In Proceedings of the ACM SIGPLAN Workshop on Lan-
guages, Compilers and Tools for Embedded Systems, vol-
ume 1474 of Lecture Notes in Computer Science, pages 1-15.
Springer, 1998.

[14] F. Martin. PAG - an efficient program analyzer genera-
tor. International Journal on Software Tools for Technology
Transfer, 2(1):46-67, 1998.

[15] F. Martin, M. Alt, R. Wilhelm, and C. Ferdinand. Analysis
of Loops. In Proceedings of the 7th International Conference
on Compiler Construction, volume 1383 of Lecture Notes in
Computer Science. Springer, March/April 1998.

[16] K. Narasimham and K. D. Nilsen. Portable Execution Time
Analysis for RISC Processors. In Proceedings of the ACM
SIGPLAN Workshop on Language, Compiler and Tool Sup-
port for Real-Time Systems, 1994.

1171 G. Ottoson and M. S.jGdin. Worst-Case Execution Time . .
Analysis for Modern Hardware Architectures. In Proceed-
ings of the ACM SIGPLAN Workshop on Language, Com-
piler and Tool Support for Real-Time Systems, pages 47-55,
June 1997.

[18] J. Schneider. Statische Pipeline-Analyse fiir Echtzeit-
systeme. Diplomarbeit, Universit;it des Saarlandes, Oct.
1998.

[19] SPARC International, Inc., Menlo Park California, U.S.A.
The SPARC Architecture Manual, Version 8, 1992.

[20] H. Theiling and C. Ferdinand. Combining Abstract Inter-
pretation and ILP for Microarchitecture Modelling and Pro-
gram Path Analysis. In Proceedings of the IEEE Real-Time
Systems Symposium ‘98, pages 144-153, Dec. 1998.

44

