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A Formal Approach to MpSoC Performance Verification

Kai Richter, Marek Jersak, Rolf Ernst
Technical University of Braunschweig,

Braunschweig, Germany

MpSoC - The Architecture of Choice
Multiprocessor Systems-on-chip (MpSoC) integrate multiple programmable microcontrollers and digital
signal processors (DSPs) with specialized memories and complex intellectual property (IP) components on
a single chip using complex on-chip networks. Such heterogeneous MpSoCs have become the architecture
of choice in major industries such as network processing, consumer electronics, or automotive systems. The
ever increasing heterogeneity is an inevitable result of component specialization and IP integration.
Component specialization and optimization are needed to achieve the required performance at low power
consumption and acceptable cost.

Fig. 1 shows the Viper processor for multimedia applications [DJR01] which is based on the Philips
Nexperia platform [Nex02]. Many of the key components are either reused or supplied externally, such as
the MIPS (www.mips.com)  and TriMedia (www.trimedia.com) processor cores. Tomorrows MpSoCs will
be even more complex, and using such IP library elements in a "cut&paste"-like design style is the only
way to reach the necessary design productivity.

Systems integration is becoming the major challenge in MpSoC design. The complexity of  HW and SW
component interactions is a serious thread to all kinds of performance pitfalls including transient overloads,
memory overflow, data loss, and missed deadlines. According to the latest ITRS roadmap [ITRS01],
system-level performance verification is among the top three co-design issues.
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Figure 1 The Viper Processor combines a MIPS RISC processor, a TriMedia TM32 VLIW DSP,
weakly programmable co-processors, fixed function co-processors, and different types of
memories and caches (omitted in the figure). A complex network of bridged high-speed and
peripheral buses connects these components.



Performance Simulation - Can It Get The Job Done?
Simulation is state of the art in MpSoC performance verification. Tools such as Mentor Seamless CVE
(www.mentor.com/seamless) or Axys MaxSim (www.axysdesign.com/products/products_maxsim.asp)
support hardware and software co-simulation of  the complete system. The co-simulation times are
extensive but as a major advantage performance verification and function verification can use the same
simulation environment, simulation patterns, and benchmarks. Simulation patterns are use cases  that
support system understanding and debugging. However, there are critical, conceptual disadvantages of
simulation-based performance verification.

HW and SW component integration includes resource sharing which is based on operating systems and
network protocols. Resource sharing results in a confusing variety of performance run-time dependencies.
Consider the system in Figure 2. Although activated periodically, the execution sequence of the three
processes on the CPU  is quite complex leading to output bursts. The figure does not even include data
dependent process execution times. Finding simulation patterns leading to the high-lighted worst-case
situation is already challenging.  Network arbitration (Figure 3) introduces an additional performance
dependency (indicated by the green arrows) between the subsystems which is not reflected in the system
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Figure 3 "Scheduling Anomaly": P3 is a driver process reading data from M1 and -during
bursts- iterating at maximum speed. Furthermore, P3 has a non-constant execution time, e.g. due
to input data dependencies. The shorter the process execution time, the shorter the distance of
packets to be sent over the bus and the higher the transient bus load. So, the minimum execution
time corresponds to the maximum transient bus load slowing down communication of other
components.

Figure 2 "Performance Corner Cases": subsystem containing three tasks which are activated
periodically. Scheduling is preemptive and follows static priorities. The execution sequence is
rather complex. Although activated periodically, P3 (with its input buffers filled) temporarily runs
in burst mode with an execution frequency which is only limited by the available processor
performance. This burst execution will lead to a transient P3 output burst which is modulated by
P1 execution. In the highlighted situation all processes request the CPU at the same time, resulting
in longest possible, i.e. worst-case preemtion time for all lower priority processes.
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function. This dependency can be sophisticated turning component or subsystem "best case" performance
into system "worst case" performance - a so called scheduling anomaly. Such transient run-time effects
leading to complex system-level corner cases are extremely difficult to find and to debug.

Using abstract and scheduling-aware performance simulation tools such as Cadence VCC
(www.cadence.com/products/vcc.html) provides rough estimates on system performance quickly but does
not help in reliably covering system-level corner cases. Furthermore, VCC only uses typical execution
times rather than considering intervals defined by the best-case and worst-case bounds.

System-Level Corner Cases - Who provides the simulation patterns?
Where do we get the stimuli from to cover system-level corner cases?
(a) Reusing function verification patterns is not sufficient since they do not cover the complex non-

functional performance dependencies introduced by resource sharing.
(b) Reusing component or subsystem corner cases is not sufficient, either, since they do not consider the

complex component and subsystem interactions.
The system integrator  might be able to develop additional simulation patterns, but only for simple systems
where the component behavior is well understood. For complex MpSoC with layered SW architectures,
dynamic bus protocols, and operating systems manual system-level corner case identification is no practical
option. In conclusion, todays simulation-based approaches to MpSoC performance verification are running
out of steam.

Industrial Consequences - What Do We Pay?
With embedded system design gradually moving from a core-centric SoC to a communication centric
MpSoC design style, the demands on flexibility and reactivity of on-chip interconnect are continuously
increasing. To meet these requirements at acceptable cost, sophisticated multi-hop dynamic communication
network protocols have been proposed [BDM02] to be optimized using communication statistics.
Interestingly in practice, there seems to be a second development in the opposite direction, towards
conservative and less efficient communication protocols like TDMA (time division multiple access) where
non-functional component dependencies -like those in Figure 3- are minimized and communication timing
becomes straighforwardly predictable. An example is the Sonics SiliconBackplane Micronetwork
(www.socinsinc.com). A similar development towards conservative protocols is found in distributed
systems such as TTP (time-triggered procotol) in automotive and aerospace electronics. Such protocols
enforce static bus access patterns, and the run-time behavior of each communication can be independently
verified. This simplicity in integration, however, comes at a significant performance price which grows
with system complexity. It increases buffer sizing requirements and, hence, also response times, and does
not adapt to dynamically changing load situations which are typical for reactive embedded systems. It will
therefore be highly difficult to scale such a conservative design style to future communication-centric
MpSoC with complex network protocols.

Formal Techniques - A Promising Alternative
When simulation falls short, formal approaches become more attractive. Such approaches allow a
systematic verification based on well-defined models. Other than simulation, formal analysis guarantees
full performance corner-case coverage by its very nature and provides guaranteed bounds for critical
performance parameters. The literature on formal performance or timing verification distinguishes two
subproblems: (a) formal process or task performance analysis, usually in the form of process running time
analysis, and (b) resource sharing analysis, also known as scheduling or schedulability analysis which is
based on process running times. Most of the solutions for scheduling analysis  are limited to individual
components or homogeneous subsystems. Therefore, a major shortcoming of existing techniques is that they
are currently not applicable to complex heterogeneous MpSoC as we will see after reviewing the existing
work.



Process Running Time and Communication Analysis
There exist two roots for process running time analysis: in real-time system analysis for software processes,
and in HW/SW co-design for rapid HW performance estimates. Process running time analysis basically
includes (a) program path analysis to find out what is going to be executed, and (b) architecture modeling -
inluding pipelines and caches- to determine the time spend for execution on this path. The enormous
progress in this field over the last 10 years already leading to industrial large scale applications in the
aircraft industry, e.g. the Absint tool (www.absint.com), can not  be mentioned here. We summarize that
process running time analysis provides conservative upper and lower bounds (intervals) for individual
process running times as well as bounds for the communication between processes [Wol02]. These running
time and communication behavior lay the foundation for the next analysis level, modeling of shared
resources.

Scheduling Analysis
Scheduling analysis for processors and buses has been another focus of real-time systems research for
decades, and there are many popular scheduling analysis techniques available, e.g. RMS (rate-monotonic
scheduling) and EDF (earliest deadline first) using static and dynamic priorities [LiL73], time-slicing
mechanisms like TDMA (time-division multiple access) or RR (round-robin) [JLT85], or static order
scheduling [LeM87]. Since then, many extensions have been proposed, some found their way into
commercial analysis tools such as TriPacific RAPID RMA (www.tripac.com/html/prod-fact-rrm.html),
Livedevices Real-Time Architect (www.livedevices.com/realtime.shtml), and TimeSys TimeWiz
(www.timesys.com/index.cfm?bdy=tools_bdy_model.cfm).

The techniques rely upon a simple yet very powerful abstraction of task activation and communication.
Instead of considering each event individually as simulation does, formal scheduling analysis abstracts
from individual events to event sequences. Only few simple and intuitive key characteristics of event
sequences such as an event period or a maximum jitter are needed. From these parameters, worst-case
scheduling scenarios are systematically derived, and efficient algorithms allow to safely bound the worst-
case process or communication response times.

The event stream model impressively displays the consequences of resource sharing, as Figure 2 shows. A
periodic input event stream (task activation) is transformed (by the scheduling) into an event stream with
burst at the components output. A larger system with more priority levels generates even more complex
event sequences.

Complex Event Streams - Too Complex?
The example leads to an interesting observation. Due to complex run-time interdependencies, even systems
with periodic process activation produce outputs which are no longer periodic. In case of the system in
Figure 3, the output event stream of CPU which is no longer exactly periodic turns, i.e. is propagated  into
the input event stream of the network, where it experiences additional distortion due to communication
scheduling on the shared network. In order to solve the system-level performance verification problem
including send and receive buffer sizing, we could try to find suitable analysis techniques which can deal
with these  event streams propagated through the network of components. However, protocols and
corresponding analysis techniques that can handle such complex input event streams efficiently are
extremely rare and produce even more "distorted" output streams which -again- need to be fed into the
connected receivers, and so on. It is obvious that very soon the event sequences in the corresponding
merged communication streams become incredibly complex, and the existing scheduling and analysis
techniques can not be applied. In other words, the complex event streams are not compatible with the
existing analysis techniques.



In effect, global scheduling analysis of complex systems is currently not possible, since the known
subsystem techniques can not be reasonably combined, mainly due to input-output event stream
incompatibilities. There exist few "holistic" analysis approaches providing solutions also for special classes
of distributed systems [TiC94, PEP02], but they are limited in their scope and scalability.

Recently, a different view of global scheduling analysis has been adopted. The individual components and
subsystems are seen as entities that interact, i.e. communicate, via event streams. Schedulability analysis,
then, becomes a flow analysis problem for event streams that can, in principle, be solved iteratively by
event stream propagation -just as explained above. In order to tame the complexity of the event streams,
one approach is to generalize the event model in an event vector system [Gre93] or with upper- and lower-
bound arrival curves [TCN00]. The work in [TCN00] successfully applies event model approximation
using arrival curves to network processor design. However, both approaches introduce a new event stream
representation and, thus, require new scheduling analysis techniques for the local components.

However, we don’t necessarily need to develop new local analysis techniques but can benefit from the host
of work in real-time scheduling analysis. Even if input and output streams seem to be totally incompatible,
we can see that the number of P3's output events in Figuge 3 can be easily bounded over a larger time
interval. The bursts only occur temporarily, representing a transient overload within a generally periodic
event stream, i.e. some key characteristics of the original periodic stream remain even in the presence of
heavy distortion.

In our work, we have developed a technology that allows us to (a) extract this key information from a given
schedule, and to (b) automatically interface or adapt the event stream such that the existing subsystem
analysis techniques can be safely applied.

Event Stream Interfacing - Taming Complexity
Figure 4(a) shows a relatively simple event stream interfacing scenario. It converts a periodic event stream
with jitter into a sporadic stream (some analysis techniques need this), requiring only a minimum of math.
The jitter events are characterized by a period (TX) and a jitter (JX). The jitter bounds the maximum time
deviation of each event with respect to a "virtual" reference period. In other words, each event is allowed to
be at most JX/2 "earlier" or "later" than the reference. The required sporadic input event model has only one
parameter, the minimum interarrival time (tY,min) between any two events in the stream, thus bounding the
maximum transient event frequency. Now, imagine two successive events  in the original stream, the first
being as late as possible (t + JX/2) and the second as early as possible (t + TX - JX/2). The minimum
distance between two dedicated events in the output event stream is thus tY,min = TX - JX .

Figure 4 (a) and (b) illustrate the use of EMIFs and EAFs to interface periodic events with
jitter into the sporadic event model, or to adapt periodic bursts into the purely periodic
events, respectively.
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With respect to the existing analysis techniques and practically important input stream characteristics, we
can identifiy two  event model classes:
•  Periodic event models are particularly useful when the event timing shows a generally periodic

behavior. Periodic signal sampling as typically found in  signal processing and control applications  is
an example for purely periodic events. Periodic events with jitter originate from a purely periodic
source but the timing has been distorted by process preemption or network congestion (as in the above
example). Jitters that exceed the original period lead to event bursts.

•  Sporadic event models define the second class of event models in most situations, where the source is
not periodic, e.g. user generated service requests or management tasks which appear seemingly
irregular. However, having no information at all would not allow any performance analysis. We need at
least some information to bound the overall system load, e.g. the minimum interarrival time between
any two events. Besides the basic model of sporadic events, there is the model of sporadic events with
bursts allowing higher transient event frequencies.

Our new technology provides adaptation support for all possible event model combinations. The intuitive
event flow principle using comprehensible yet rigorous event models and model adaptation support the
integrator in controlling complex event streams in system integration. It gives tremendous help in
understanding, analyzing, and optimizing the dynamic behavior of the complex component interactions.
The interfacing and adaptation is based on establishing mathematical relations between the involved
streams or models. For readings on the mathematical details of event models and their transformations, we
refer to [RiE02]. For this article, we will focus on the practical impact of event stream adaptation on system
design and analysis.

There are situations -as known from Fig. 4(a)- in which the event stream itself, i.e. the timing properties of
the actual events remains unchanged while only the mathematical representation, i.e. the underlying event
model is transformed. We refer to such transformations as Event Model InterFaces (EMIF). EMIF
transformation requires that the given timing of any possible event sequence in one model can be directly
captured by the other model's parameters. If such direct model transformation is not possible, then the
actual timing of the events in the stream, i.e. the stream itself must be adapted. An example is a periodic
stream with jitter or burst that must be adapted to a component that expects periodic events. This is
performed by an Event Adaptation Function (EAF) that is automatically inserted in an EMIF to make the
streams match. Practically speaking, EAFs correspond to buffers which are inserted at the component
interface to make the system working and analyzable. Using EAFs, buffer sizing and buffering delay
calculation is automatically performed during adaptation and is used in global system analysis.

Figure 4(b) shows the resynchronization of a periodic event stream with burst into a purely periodic stream.
Again, the math is relatively simple. The sought-after parameter TY of the purely periodic stream is the
average period of the bursty stream, and is given by TY = TX / bX . The burst event model [TiC94] captures a
number of bX events within a period of TX.

Likewise, sophisticated interfaces and adaptations possibly requiring appropriate design elements are
available for all other combinations of event models. Furthermore, the library of existing EMIFs and EAFs
is easily extendible to cover other event models and streams potentially used by designers of sophisticated
high-performance subsystems or necessary to integrate some complex IP components. These EMIFs and
EAFs form the foundation for a novel and very promising system-level performance analysis procedure.



Interface and Propagate!
We can now reliably verify the performance of the heterogeneous system from Figure 3. The Sensor
(Sens) sporadically sends new data to P1 on the CPU using the logical channel C1, while P3 sends bursts
of  requests through C2 to the fixed function component HW. Simultaneously, the signal processing
subsystem 2 is using the network. IP1 periodically sends data over channel C3 to the DSP which also
implements a periodic scheduling to efficiently run a set of signal processing applications.

The network can implement any protocol for which an appropriate analysis technique is avaliable. In fact,
this freedom really widens the design space, since the host of work on real-time analysis covers a variety of
network protocols including very complex dynamic arbitration schemes. For this example, we assume that
the input event streams to the network must comply with the model of periodic events with burst in order to
use a known analysis technique. The required event model interfaces at the network inputs are illustrated in
Figure 5. Only the burst stream from the CPU already meets the required model, the other two input
streams require an EMIF. Next, the network is analyzed using the known technique, and the distorted
output event streams are obtained. In other words, the input streams are interfaced and propagated through
the nework analysis.

Finally, the output event streams are interfaced to the input models required by the individual receiver
components. The DSP requires periodic input data to fit the given implementation of purely periodic
scheduling. This situation is already known from Figure 4(b), an EMIF with an appropriate EAF is inserted
at the network output.

Figure 5 Event stream view of complex component interactions after integration. The merged
network traffic on the logical channels C1, C2, and C3 consists of periodic, bursty, and sporadic
event streams. Event model interfaces at the network inputs map the key input stream
characteristics into the burst model parameters, thereby enabling the application of a known
network performance analysis from literature. The channels interfere, and the network output
is distorted due to congestion and needs to be interfaced to the event models required by the
individual components or subsystems. The periodic DSP functions additionally require
adaptation (EAF) to run efficiently as planned.
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The example shows that using event model interfacing in system integration gives tremendous relieve in
system-level performance analysis when dealing with complex event stream dependencies spaning several
heterogeneous components. The required event models are either constrained by the local component and
subsystem analysis techniques -such as the network in our system-, or are given by a component's
implementation itself -for instance, the periodic DSP schedule or the maximum frequency (sporadic event
model) of the HW component.

Cyclic Event Stream Dependencies
As an additional performance pitfall in MpSoC design, system integration can introduce cyclic event
stream dependencies which are not obvious and difficult to detect if component details are not considered.
Figure 6 highlights a non-functional event stream dependency cycle in our system that is only introduced
by communication sharing. Upon reception of new sensor data the CPU activates process P1 which -due to
preemption as in Fig. 2- influences the execution timing of process P3. P3's output, in turn, enters the
network on channel C2 where it now interferes with the arriving sensor data on channel C1. It is the
interference of the two functionally independent channels C1 and C2 that closes the dependency cycle,
since the subsystem of Figure 2 was originally cycle-free.

Such cycles are analyzed by iterative propagation of event streams until the event stream parameters
converge or until some deadline is missed or a buffer limit is exceeded. This iteration process terminates,
since the event timing uncertainty (i.e. the best-case to worst-case event timing interval) grows
monotonously with every iteration. For cases where there is no convergence, we have developed a
mechanism that uses EAFs to break up the dependency cycle in order reduce the timing uncertainty to
enforce convergence. Cyclic dependencies have been thoroughly investigated in [RZJ+02]. It should be
noted that these event flow cycles are not an artifical result of global analysis but practically exist as we
have seen in the example.

Application
So far, we have the methods and a simple tool for analysis interfacing and developed a library with analysis
algorithms to configure a global analysis model. This is a big step towards global formal analysis but, at
this time, there is still expert modeling knowledge needed. However, we have already applied the
technology to three case studies together with an automotive, a multi-media, and a telecom industrial
partner with each case having a very different focus. In the telecommunication project, we could resolve a
severe system integration problem with transient faults which was not found even in prototyping. In the
multi-media case study, we have modeled and analyzed a complex two-stage dynamic memory scheduler to

Figure 6 System integration can result in cyclic event stream dependencies which are not
reflected in the system function. Appropriate buffering when inserting EMIFs breaks up such
cycles. Putting the buffers in the right place significantly improves system performance and
memory optimization.
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derive maximum response times for buffer sizing and priority assignment. Last but not least, we have
shown how the technology enables a formal software certification procedure for automotive manufacturers.

Conclusion
Heterogeneous HW/SW component integration leads to increasing problems in MpSoC performance
verification. We gave small examples demonstrating that seemingly simple systems can already lead to
complex, non-intuitive subsystem interdependencies including cycles which are not reflected in the system
function. Finding these by simulation is very time-consuming and increasingly critical. New performance
verification solutions are urgently needed as future communication-centric MpSoC will create
unprecedented integration complexity.

Starting with abstract event stream models that are used in real-time system scheduling analysis, we
developed a global event flow interfacing technique which couples local scheduling analysis techniques
into a coherent global performance analysis. The scheduling analysis techniques can be applied to
programmable cores and their SW as well as to HW components, a requirement for any MpSoC
verification. We consider it a serious alternative to performance simulation at far less computation time and
higher result safety. First realistic applications demonstrate the power and the wide applicability of the
approach.

At the current state, application of the global analysis technique still requires some expert knowledge to set
up analysis and guide the analysis process, but we are working on an automated process using libraries of
analysis techniques. Here, we can profit from the host of work in real-time systems analysis
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