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Abstract
Reconfigurable instruction set processors have the
capability to adapt their instruction sets to the application
being executed through a reconfiguration in their
hardware. Through this adaptation, they are expected to
achieve a great improvement in performance compared to
fixed instruction set processors. In this paper, we discuss
the different hardware aspects that have to be considered
during the design of such a reconfigurable processor. The
topics discussed include the coupling of the processor and
the reconfigurable logic, configuration, instruction coding
and scheduling, granularity, hardware cache and
reconfigurability. A classification of current
reconfigurable processors is done according to the
discussed topics.

1 Introduction

Reconfigurable processors are a new type of processor
that combines a microprocessor with reconfigurable logic.
The objective of this approach is to add the benefits from
microprocessors and reconfigurable logic.

The reconfigurable logic will provide hardware
specialization to the application being executed. It will
provide similar benefits to those offered by application
specific instruction set processors (ASIP). ASIPs have
specialized hardware that accelerate the execution of the
applications it was designed for. A reconfigurable
processor would have this same benefit but without having
to commit the hardware into silicon. Reconfigurable
processors can be adapted after design, in the same way
that programmable processors can adapt to application
changes.

Reconfigurable instruction set processors (RISP) are a
subset of reconfigurable processors. They will be the focus
of this paper.

Many systems have been designed with very different
characteristics. The main objective of this paper is to
present and classify the design decisions that have to be
taken to create such kind of processors.

Research on this type of processors has been quite
active in the last years. The essential enabler of this has
been the fast growth of FPGA capacity. In Table 1, we can
see a sample of reconfigurable processors. In the table, we
present the characteristics of these processors according to

the issues studied in this paper. Characteristics that do not
apply to a specific processor are left blank.

We have included in this table those processors that we
believe are the most significant to RISP evolution. There
are many more processors, especially from before 1994.
Most of these processors are of the attached processor type
(explained in section 2.1) which is not the focus of this
paper.

This paper is divided in four main sections. In section 2,
the integration of the reconfigurable processing unit (RPU)
with the processor is discussed. Section 3 describes the
characteristics of the reconfigurable logic. Finally,
conclusions are presented in section 4.

2 Processor integration

The design of a reconfigurable processor can be divided
in two main tasks. The first one is the interfacing between
the microprocessor and the reconfigurable logic. This
includes all the issues related to how data is transferred to
and from the reconfigurable logic, as well as
synchronization between the two elements. The second
task is the design of the reconfigurable logic itself.
Granularity, reconfigurability, interconnection are issues
included in this task.

In this section, we discuss several issues related to the
interfacing of the processor with the reconfigurable logic,
and the operation of reconfigurable processors.

2.1 RPU coupling

The position of the RPU relative to the microprocessor
affects performance. The benefit obtained from executing
a piece of code in the RPU depends on communication
and execution costs [10]. The time needed to execute an
operation in the RPU is the sum of the time needed to
transfer the processed data and the time required to
process it. If this total time is smaller than the time it
would normally take in the processor alone, then an
improvement can be obtained.

The RPU can be placed in three main places relative to
the processor [13]:
- Attached processor: The reconfigurable logic is

placed on some kind of I/O bus (e.g. PCI bus).
Example: PRISM-1 [6].
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- Coprocessor: The logic is placed next to the
processor. The communication is done using a
protocol similar to those used for floating point
coprocessors. Example: Garp [3]

- Functional unit: The logic is placed inside the
processor. The instruction decoder issues instructions
to the reconfigurable unit as if it were one of the
standard functional units of the processor. Example:
OneChip98 [11].

With the first two interconnection schemes, sometimes
called loosely coupled, the speed improvement using the
reconfigurable logic has to compensate for the great
overhead of transferring the data. This usually happens in
applications where a huge amount of data has to be
processed using a simple algorithm that fits in the RPU.
Most systems built until recently were of this kind. Their
main benefit is the ease of constructing such a system
using a standard processor and standard reconfigurable
logic. Another benefit of this approach is that the
microprocessor and RPU can work in different tasks at the
same time.

Processor

Memory

Main bus

I/O bus

RFU Coprocessor

Attached
Processor

Figure 1 Basic types of RPU coupling

With the coprocessor scheme, sometimes called tightly
coupled, the communication costs are practically none and
because of this, it is easier to obtain a speed increase. This
configuration seems the most promising one because it can
be used to accelerate almost any application. For any given
application, it is usually possible to find a set of
instructions that can be used to increase the processor’s
performance.

From now on, we will focus on processors with a RPU
as a functional unit. We will call this unit, a reconfigurable
functional unit (RFU). A reconfigurable processor can
have one or more RFUs. As a normal functional unit, an
RFU executes instructions that come from the standard
instruction flow. A typical RISP may look like the one in
Figure 2.

When reconfigurable logic is placed inside the
processor, it does not have to be placed necessarily inside
a functional unit. Other places of interest can be the
external interface, the decoding logic or the control logic.
By placing the reconfigurable logic next to the I/O pins, it
is possible to build custom interfaces to other elements in
the system, thus eliminating the need of external glue
logic.

The first reconfigurable processors where of the
attached processor or co-processor type, but as gate

capacity is increasing, more and more processors are being
designed with RFU approach. This is due to the fact that
the expected performance is higher for the tightly coupled
configuration. Nevertheless, attached processor systems
still have an important role in some applications such as
stream processing.

Fetch

Decode

Issue

Integer FP LD/ST RFU

Figure 2 RISP architecture

2.2 Instruction types

The design of the interface to the reconfigurable unit
will depend on the characteristics of the instruction types
that we want to implement. Two main types of instructions
can be implemented on a RFU [13]:
- Stream based instructions (or block based

instructions): they process large amounts of data in a
sequential or blocked manner. Only a small set of
applications can benefit from this type. Most of them
are suitable for a coprocessor approach. Examples:
FIR filtering, discrete cosine transform (DCT)…

- Custom instructions: these instructions take small
amounts of data at a time (usually from internal
registers) and produce another small amount of data.
These instructions can be used in almost all
applications as they impose less restrictions on the
characteristics of the application. Example: bit
reversal, multiply accumulate (MAC), variable length
coding (VLC) and decoding (VLD)…

Instructions can also be classified in many other
manners, such as execution time, pipelining, internal state,
etc. If the type of the reconfigurable instructions closely
resembles the fixed instructions supported by the
microprocessor, the integration process will be easier.

The type of instructions supported is closely related to
the applications that are expected to be executed on the
processor. For example, multimedia applications usually
require stream processing. This fact can be checked in
Table 1.

2.3 Instruction coding and register access

Reconfigurable instructions are usually identified by a
special opcode. Which reconfigurable instruction is
executed is specified using an extra field in the instruction
word. This extra field can specify:
- Address: The address of the configuration data for

the instruction is specified in the instruction word.
Example: DISC [5].
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- Instruction number: An instruction identifier of
small length is embedded in the instruction word. This
identifier indexes a configuration table where
information, such as the configuration data address, is
stored. The number of reconfigurable instructions at
one time is limited by the size of the table. Example:
OneChip98 [11].

The first approach needs more instruction word bits but
has the benefit that the number of different instructions is
not limited by the size of a table, as in the second case. If
the configuration table can be changed on the fly, the
processor can adapt to the task at hand on runtime. The
major drawback of this approach is that specialized
scheduling techniques have to be used during code
generation. The compiler will have to schedule during the
lifetime of the program what instructions are stored in the
configuration table.

Opcode Address = 2 Operands

Opcode ID = 1 Operands

0

1

2

3

4

FFFF

FFFE

FFFD

FFFC

FFFB

FFFA

…

78B0

FFFA

0

7500

0

1

2

3

Address

Table

Figure 3 Fixed instruction selection formats

The instruction word also specifies the operands to be
passed to the RFU. The operands passed to the RFU can
be immediate values, addresses, register ids, etc. The
operands specified can be source or destination of the
operation. The operands can be coded in several ways:
- Hardwired: The contents of all registers are sent to

the RFU. The registers actually used depend on the
instruction configured inside the RFU. This allows the
RFU to access a bigger amount of registers but makes
code generation more difficult. The actual selection of
which registers are used is done inside the RFU. This
is the approach taken in Chimaera [9].

- Fixed: The operands are in fixed positions in the
instruction word and are of fixed types. If there are
different opcodes for reconfigurable instructions, they
could have different encoding formats. Example:
OneChip98 [11].

- Flexible: The position of the operands is
configurable. The degree of configuration can be very
broad. If a configuration table is used, it can be used
to specify the decoding of the operands. Example:
DISC [5].

In Figure 4, we can see hardwired coding for the source
operands and fixed coding for the destination operand. The
contents of all the registers are transferred to the RFU
through special lines. The result from the RFU is routed to
the register indicated in the instruction word. Hardwired

coding allows a bigger number of registers to be accessed
without a major complication in the hardware design.

Register File

RFU

Opcode ID Dest

R0 R1 R2 R3

R0 R1 R2 R3

Figure 4 Hardwired coding

Fixed coding for both source and destination operands
can be seen in Figure 5. In this case, there are only two
source operands, which are selected from the register file.
This method needs more instruction bits but allows a
greater flexibility to specify operands. It is the method
most commonly used, as can be seen in Table 1.

Register File

RFU

R0 R1 R2 R3 Opcode ID Src1 Src2 DestR0 R1 R2 R3

R0 R1 R2 R3

Figure 5 Fixed coding

Finally, in Figure 6, flexible coding for source operands
is shown. In this case, one operand is selected from the
register file and the other operand is also selected from the
register file or is treated as a constant included in the
instruction word. The way in which the second operand is
interpreted depends on the configuration table. This
configuration table has the same structure as the one used
to identify the instruction. None of the existing RISP use
this kind of operand coding.

Register File

RFU

R0 R1 R2 R3 Opcode ID Src1 Src2 Dest

Configurat ion Table

R0 R1 R2 R3

R0 R1 R2 R3

Figure 6 Flexible coding

The register file accessed by the RFU can be shared
with other functional units (such as the integer pipeline) or
be dedicated (such as the floating point register file in
some architectures). The dedicated register file would need
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less ports than if it was shared. This will simplify its
design. A major drawback of separate files is register
heterogeneity.

All current reconfigurable processors use the same
register file for fixed and reconfigurable instructions. This
will most likely change when more research is done on
reconfigurable superscalar and VLIW processors. Splitting
the register file allows the design of bigger and faster
register files by reducing the number of ports.

2.4 Memory access

Reconfigurable instructions access memory through
memory ports. With these ports, the instructions can make
specialized load/store operations or implement stream-
based operations. If the memory hierarchy supports several
accesses at the same time, then the number of memory
ports can be greater than one.

2.5 Instruction scheduling

RFUs can be included in any of the types of processors
available today. Due to instruction issuing, the type of
processor affects the design of the functional unit.

In standard RISC and CISC processors, where
instruction level parallelism is not exploited, adding a
RFU is quite straightforward. The common way is to wait
for the RFU to issue a “done” signal, [4] before executing
the next instruciton.

RFU designs for VLIW processors would normally
involve fixed duration instructions. Unknown duration on
VLIW would result in pipeline stalls, with a major loss in
performance. No VLIW processors currently exist that
include reconfigurable hardware.

Variable length instructions can be dealt with quite
efficiently on super-scalar processors. The RFU can be
used as one of the standard RFUs through reservations
stations or some other mechanism.

If we only have one pool of reconfigurable logic but
several connection interfaces, then the pool can work as if
there were several RFUs.  In this manner, reconfigurable
logic is shared among the RFUs. This technique can be
used in super-scalars and VLIWs.

Most RISPs are only able to execute one instruction at
the same time. They are based on both CISC and RISC
designs. The only superscalar processor that we know of is
the OneChip98, which is based on the superscalar version
of DLX.

3 Reconfigurable logic design

In this section, we focus on the design of the
reconfigurable logic itself. The design of the
reconfigurable logic will determine, amongst other things,
how many instructions fit inside it, the size of the
configuration stream, and the type of instructions that will

give the most performance. In Figure 7 we see a typical
reconfigurable functional unit.

3.1 Granularity

A very important aspect of the RFU design is the
granularity of the reconfigurable resources. The building
blocks for fine-grained logic are gates, (efficient for bit
manipulation operations), while in coarse-grained RFUs
the blocks are bigger (therefore better suited for bit
parallel operations).

Granularity also affects the size of the configuration
stream and the configuration time. With fine-grained logic,
more information is needed to describe the instruction.
Coarse-grained logic descriptions are more compact, but
when the size of the application data does not match that
of the logic, the performance decreases due to unused
power.

The optimal granularity varies from design to design.
For bit-oriented algorithms, a fine-grained approach seems
the best choice, while for computation intensive
applications, the coarse-grain approach can be a better
solution.

Segment 0

Segment 1

Segment 2

Segment 3

Register Ports

Memory Port

Configuration
Controller

Memory Port

Configuration
Table

Figure 7 Structure of a RFU

Most of the early designs included standard fine-
grained FPGA resources (e.g. DISC [5], OneChip [10]). In
several of the most modern approaches, the RFU is
implemented with non-standard cell structures (e.g. Garp
[3], Chimaera [9]). They are still fine-grained, except in
the case of PipeRench. Coarse grained RFU seem the most
likely to achieve high performance with small penalties for
reconfiguration times, power consumption and delay.

Related to the granularity is the segment size. A
segment is the minimum hardware unit that can be
configured and assigned to an instruction. Segments allow
instructions to share the reconfigurable resources.

If segments are used, the configuration of an instruction
is done in a hierarchical manner. The instruction is
assigned a set of segments, and inside those segments, the
processing elements are configured.

3.2 Interconnect

Interconnect is used to connect the processing elements
(i.e. gates or segments) to obtain the desired functionality.
The interconnect that connects the elements inside a
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segment is referred to as intra-segment interconnect. Inter-
segment interconnect is used to connect different
segments.

Intra-segment interconnect is related to granularity. It
also affects the speed obtained. In typical FPGAs, there
are different levels of intra-segment interconnect. With
coarse grained architectures, the interconnect tends to be
done using buses and crossbar switches.

Inter-segment interconnect only appears in RFU that
support multiple segment instructions. It is used to
transmit data between the different segments. There are
several kinds of inter-segment interconnect:
- Fixed: The position of the segments of an

instruction inside the RFU is fixed at design time.
- Relative: The position of the instruction’s segments

is specified relative to each other. This gives a little
slack to position the instruction inside the RFU.

- Relocatable: The position of the segments is not
fixed at all. They can be placed anywhere on the RFU

In Figure 8 we can see different configuration options
for an instruction of three segments and an RFU of four
segments. With fixed coding, there is only one position
where the instruction can be placed. With relative
interconnect, there are two possibilities. Finally, with
relocatable interconnect, there are many possible
configurations (only three are presented).

Seg 0

Seg 1

Seg 2

…

0

1

2

3

Fixed

Seg 0

Seg 1

Seg 2

Seg 0

Seg 1

Seg 2…

…0

1

2

3

0

1

2

3

Relative

Seg 0

Seg 1

Seg 2

Seg 0

Seg 1

Seg 2 Seg 0

Seg 1

Seg 2

…

…

…0

1

2

3

0

1

2

3

0

1

2

3

Relocatable

Figure 8 Inter-segment interconnection

The type of inter-segment interconnect determines the
complexity and size of the interconnect, and the size of the
configuration stream used for interconnect description.
Fixed interconnect is the simplest one and requires the
least configuration bits. Relative interconnect, is very
similar to fixed interconnect, in the sense that no extra
logic is required and that the size of the configuration
stream is very similar. Relocatable interconnect is the most
expensive one.

The design has to be resilient to misconfigurations. In
case the logic is misconfigured, it should not be destroyed.
This imposes certain restrictions on the design, but will
ensure a longer life of the system. The method normally
used consists in allowing only one current driver per
interconnect [9].

3.3 Reconfigurability

The reconfigurable logic inside the RFU can be
configured at different moments. If the RFU can only be

configured at startup, we say that the unit is not
reconfigurable (it is configurable). The reconfigurable
logic would get its configuration from some external
source (e.g. ROM) in a manner similar to conventional
FPGAs. In this type of RFU (e.g. Nano Processor [4]), the
total number of special instructions depends on the size of
the reconfigurable logic. With this approach, we have an
ASIP that can be customized after being committed to
silicon.

If we can configure the RFU after initialization, the
instruction set can be bigger than the size allowed by the
reconfigurable logic. If we divide the application in
functionally different blocks, the RFU can be reconfigured
to the needs of each individual block. In this manner, the
instruction adaptation is done in a per block basis. Most of
the reconfigurable processors belong to this kind.

3.4 Configuration process

Reconfiguration times depend on the size of the
configuration data, which can be quite large. These times
depend on the configuration method used. In the PRISC
processor [6], the RFU is configured by copying the
configuration data directly into the configuration memory
using normal load/store operations. If this task is
performed by a configuration unit that is able to fetch the
configuration data while the processor is executing code, a
performance gain can be obtained. We will focus in this
more common approach.

The configuration controller in Figure 7 is in charge of
reconfiguring the logic. It has a memory port to read the
new configuration data. As configuration data is normally
contiguous in memory, the configuration process can
access external memory using fast access modes designed
for high throughput.

The reconfigurable logic is simpler if the RFU blocked
during reconfiguration. If the RFU can be used while
reconfiguring, it is possible to increase performance.
Usually, there are several configuration planes, of which
only one is active at a given time (a configuration plane
stores the configuration of the RFU). New configuration
data can be loaded to the other planes. Changing the active
plane is a very fast operation (usually one clock cycle).

If the RFU is divided in segments that can be
configured independently from each other, we do not have
to reconfigure the whole RFU at a time, thus reducing
configuration time.

Since configuring the RFU takes some time,
prefetching the instruction configuration data can reduce
the time the processor is stalled waiting for
reconfiguration. The insertion of prefetching instructions
should be done automatically by software tools.

3.5 Caching the hardware and relocatability

If all the segments are alike and interconnection
between them is relocatable, a cache of instructions can be
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implemented. In [5], each time a reconfigurable instruction
is executed, a configuration table is used to see if the
instruction is configured in the RFU. If the instruction is
already configured, then it is executed. If it is not
configured, its configuration data is loaded automatically,
replacing some segments of the reconfigurable fabric
(usually, the least recently used).

Hardware caching can be used even if the RFU is not
relocatable. If the RFU has several configuration planes,
one plane can be assigned to one instruction. The caching
then works with planes instead of segments.

4 Conclusions and future work

In this paper, we have presented a broad picture of
reconfigurable instruction set processors. An analysis of
the main hardware issues has been done. The two main
aspects that have to be studied are the interfacing of the
reconfigurable logic with the microprocessor and the
design of the reconfigurable logic itself. They both involve
many decisions, which we have tried to enumerate as
thoroughly as possible.

Future work will continue along these main lines. Both
the hardware and the software side have to be studied
further. Several experiments will have to be done in order
to determine which is the best RISP architecture for the
MPEG-4 domain. Similarly, during the selection of the
architecture, tests will have to be done to determine the
best way to compile code.
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Year 1993 1993 1994 1994 1995 1996 1997 1997 1998 1999 1999
Processor Type M68010 Am29050 RISC? R2000 CISC? DLX MIPS ? RISC S-DLX ?
Application Type GP GP GP GP GP GP GP Multimedia GP GP Multimedi

a
Coupling Attach Copro RFU RFU RFU RFU Copro RFU Copro RFU Attach
Inst. Types All All Custom Custom All All Custom Stream Stream
Duration Var. Var. Fixed Fixed Var. Var. Var. Fixed Var. Var. Var.
Inst. Coding Fixed Fixed Fixed Fixed Fixed Fixed Fixed
Configuration Table No No Yes No Yes Yes Yes
Operand Coding Fixed Fixed Wired Fixed Fixed Wired Fixed
Shared Register File Yes Yes Yes Yes Yes Yes Yes
Memory Ports No Yes Yes Yes No Yes (2) Yes (1) Yes
Granularity Fine Fine Fine Fine Fine Fine Fine Fine Fine Fine Coarse
Reconfigurable No No No Yes Partial No Yes Yes Yes Yes Yes
Configuration Method SW SW SW Ctlr. Ctlr. Ctlr.
RFU Blocked during

Reconfiguration
Yes Yes Yes No No No

RPU Segmented No Yes Yes Yes Yes No Yes
Can Support Prefetching? No No No ? Yes
Relocatable Hardware No Yes Yes Yes Yes No Yes
Instruction Caching No Yes Yes Yes Yes
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