
Metrics for Design Space Exploration
of Heterogeneous Multiprocessor Embedded Systems

Donatella Sciuto, Fabio Salice, Luigi Pomante, William Fornaciari
Politecnico di Milano, DEI, P.zza Leonardo Da Vinci 32, 20133 Milano

sciuto@elet.polimi.it, salice@elet.polimi.it, pomante@cefriel.it, fornacia@elet.polimi.it
ABSTRACT
This paper considers the problem of designing heterogeneous
multiprocessor embedded systems. The focus is on a step of the
design flow: the definition of innovative metrics for the analysis
of the system specification to statically identify the most suitable
processing elements class for each system functionality.
Experimental results are also included, to show the applicability
and effectiveness of the proposed methodology.
Keywords
Heterogeneous Multiprocessor Embedded Systems, Metrics for
Hw/Sw Partitioning, System-Level Design.

1. INTRODUCTION
Modern electronic applications consist of a fairly heterogeneous
set of components: a mix of analog and digital systems and
several software application layers. The hardware can include
different microprocessors (general purpose or DSP), memories
and dedicated ICs (ASICs and/or FPGAs) and a set of local
connections between the system components, and some interfaces
between the system and the environment (sensors, actuators, etc.).
In general, a tradeoff among aspects like performance,
predictability, cost, flexibility, architecture distribution, weight,
fault tolerance, power consumption, etc. has to be achieved ([1],
[3]). Heterogeneous multiprocessor embedded systems have been
exploited for the implementation of different applications both for
research and for commercial use (e.g. heterogeneous
multiprocessor system on chip for the management of real-time
video stream [13], single-chip multiprocessor system for video
signal processing [14]). Therefore, on one hand, multiprocessor
embedded systems seem to be capable to meet the demand of
processing power and flexibility of complex applications. On the
other hand, such systems are very complex to design and
optimize, so that the design methodology plays a major role in
determining the success of the products. However, no assessed
general design methodologies are available today. To overcome
such problems, a possible solution consists in extending the
classical co-design methodologies.
In the past few years, a number of research works focused on co-
design methodologies for heterogeneous multiprocessor
embedded systems ([1], [11], [15], [16], [17], [18]). Such
frameworks allow user interaction to exploit the designer
experience at system level, where it is still possible to manage the
application complexity.

However, what is still needed is a systematic approach general
enough to be useful in several application domains, while
considering the peculiarity of the system to be designed. In
general, an environment to fully support system-level design of
heterogeneous multiprocessor systems should encompass the
following features:

• homogeneous system-level specification representing the
system functionality and the timing constraints;

• analysis of the specification to statically detect the best
processing element for each system functionality, and to
statically estimate their timing characterization for both hw
and sw implementations;

• system-level functional co-simulation to check the functional
correctness of the specification and to provide a set of
dynamical information on the system behavior (profiling,
communication, load, etc.);

• system-level design space exploration composed of two
integrated and iterative steps: partitioning, i.e. the
identification of feasible architectural solutions, (number and
type of heterogeneous processing elements); system-level
timing co-simulation considering heterogeneous
multiprocessor architectures and a high-level model for the
communication media, to verify the meeting of the timing
constraints.

This paper presents a part of a more comprehensive research work
[19] aiming at providing general models, methodologies and tools
to support each step of the co-design flow of embedded systems
based on heterogeneous multiprocessor architectures.
In particular, this paper focuses on a single step of the design
flow: the definition and validation of innovative metrics for the
analysis of the system specification to statically associate each
system functionality wit the most suitable class of processing
element.
The paper is organized as follows. Section 2 presents the
proposed design flow and the related design environment. Section
3 is the focus of the paper where the proposed metrics are detailed
and shown their possible use for codesign. The validation of the
methodology is discussed in Section 4, where experimental data
are reported for the adopted benchmark set. Section 5 drawn some
conclusions and outlines the future work.

2. THE PROPOSED APPROACH
The design flow we are proposing is shown in Figure 1.
Concerning the target architecture, the natural way to combine
performance, flexibility and effectiveness is to take the best from
different worlds. By their nature, software implementations on
programmable processing elements are preferred to achieve
maximum flexibility. Tasks running inefficiently on general-
purpose processing elements have to be mapped on specific
processors or on dedicated co-processors. However, different
application domains (e.g. video, audio, telecom, automotive) have
different requirements therefore, an optimal general architecture

does not exist. The optimal solution is found by defining a sort of
template architecture that can be optimized for the specific
characteristics of the application domain.

Homogeneous

Behavioral
Specification
(OCCAM)

Co-Analysis
Co-Estimation

Functional
Co-Simulation

Timing
Constraints

- Profiling
- Communication

- Affinity
- Timing

Low-level
Flow

Processors
Class

Partitioning
and

Architecture
Selection

Timing

Co-Simulation

System Design Exploration

Communication
Model

Scheduling
Directives

Transformations
Directive

Architectural
Constraints

High-level Flow

Workload
Estimation

- Load

Specification
Transformation

Library
Data

Figure 1. The proposed high-level flow

In the following, the main steps of the mapping of abstract
specifications onto such an architecture are presented.
2.1. Co-specification
The entry point is a SystemC description [2] of the desired system
behavior. This allows the designer not to force the design toward
hardware or software during the early stages of the design. A
proper procedure-level internal model has been defined to deal
with specifications not only expressed in SystemC, thus enforcing
the generality of the proposed methodology. The procedure-level
internal model is able to capture information related to the
computational elements present in an imperative, possibly object-
oriented, specification and the relationship between them. Such a
model, called Procedural Interaction Graph (PIG) is based on the
Procedural Call Graph (PCG, [5]). Moreover, to enhance
generality, the exchange format of the model is based on the VCG
format [4], a third party format that can be managed and
visualized with open source tools.
2.2. Co-analysis and Co-estimation
The first step of the flow aims at obtaining as much information
as possible on the system, by analyzing the specification in a
static and fast manner. The goal is twofold: for each system
functionality (i.e. every method) the best processing element is
statically defined, and a timing characterization for both HW and
SW implementations is computed. This step provides a set of data
expressing the affinity of the functionality towards each possible
processing element (GPP, DSP, ASIC/FPGA), and a set of
estimations on the time needed, to a particular class of processing
elements, for the execution of each single operation that composes
the specification.
2.3. Functional co-simulation
After the static analysis, the system functionalities are simulated
in order to verify their correctness with respect to typical input
data sets. This type of simulation is not precise but very fast and
allows the designer to easily detect functional errors and
anomalous situations (e.g. deadlocks or the presence of dead
code). Moreover, it is possible to extract important data
characterizing the dynamic behavior of the system: profiling and
communication cost (these information are always related to the

behavior of the system in correspondence of typical input data
sets).
2.4. Workload estimation
Combining some of the data provided by the previous steps
(timing and profiling data) with the timing constraints allows the
estimation of the load associated with the execution of each
procedure on a general purpose processor (GPP). The analysis of
such data is useful to evaluate the necessary amount of
processors, the level of load-balancing, and the identification of
those procedures that probably need an executor more performing
than a GPP.
2.5. System design exploration
The system design exploration task is constituted by two iterative
steps: partitioning and architecture selection, and timing co-
simulation. All the data produced in the previous stages are used
to drive the process, together with additional information
provided by the designer. Such information expresses the
architectural constraints (e.g. max number of GPP, max number
of DSP, area boundaries for ASIC, etc.), the scheduling directives
(e.g. procedures priority), and the parameters of the
communication model (e.g. the number of concurrent
communications allowed).
The partitioning methodology explores the design space (it is
based on a genetic algorithm) looking for feasible solutions,
supporting also the selection of a heterogeneous multiprocessor
architecture (which components must be included and how these
should be connected) taking into account several issues (degree of
affinity, communication cost, workload, physical costs, etc.). It
decides the binding between parts of the behavior and the selected
components. Architecture selection and partitioning are
influenced by performance requirements, implementation cost,
and application-specific issues.
The timing co-simulation methodology considers the proposed
heterogeneous multiprocessor architecture and a high-level model
for the communication media in order to model the system
behavior through the behavior of the hardware and software parts.
It evaluates the performance of the system by verifying its timing
correctness.
2.6. Specification transformation
This step involves restructuring of the specification that can be
performed in order to satisfy the design constraints. In particular it
is possible to go back in the flow through this step from several
points (dotted lines in Figure 1), each of them more costly than
the previous one, that is, after the functional co-simulation, after
the system design exploration, and after the low-level flow.

3. METRICS FOR CO-ANALYSIS
Co-analysis aims at obtaining as much information as possible
about the system by statically analyzing the specification. The
goal of this step is to statically detect the best processing element
for the execution of each system functionality. The proposed
analysis provides a set of data expressing the affinity of a
functionality towards a type of processing element (GPP, DSP,
ASIC/FPGA). For this, several subtasks should be performed: an
architectural analysis of the existing processing elements, to
determine their relevant features; the definition of a set of patterns
able to identify subsets of the specification that could exploit the
identified architectural features; the definition of a set of metrics
able to provide meaningful indications useful to make design
choices.

3.1. Characterization of executors
A first characterization discriminates between processor-like and
ASIC-like executors. The former is equipped with a more complex
control unit so it is quite independent in the retrieval and
management of data. The latter is more suitable in a co-
processing architecture, i.e. where it acts as a co-processor for a
main device, performing only specific tasks.
Such preliminary considerations represent a first guideline
towards an effective association between functionality and
category of executors. This section introduces the analysis to
detect main exploitable architectural features of the executors
considered above.
3.1.1. GPP architectural features
General Purpose Processors (GPP) have been designed to be
useful in several contexts and so it is difficult to detect particular
architectural features that strongly identify a GPP-suitable
application. They are typically adopted as control elements and
I/O manager, but they are also useful for general computations.
For complex systems that use an operating system, a GPP is in
charge of it acting as a manager for processes, memory and I/O.
3.1.2. DSP architectural features
Digital Signal Processor (DSP) have been tailored to digital
signal processing applications and so they present a loss of
generality with respect to GPP and a higher cost, but they provide
a better performance in the execution of a particular set of
instructions [8]. For example, typical DSP operations are
represented by regular (i.e. repetitive) computations on fixed
length arrays (e.g. filtering). The architectural features included in
a DSP allow concurrent loading of multiple operands, concurrent
execution of sums and multiplications, fast management of loops,
and fast access to sequential memory space (e.g. array).
3.1.3. ASIC-like devices architectural features
. Application Specific Integrated Circuits (ASIC) are developed
for specific applications. They are generally high performing but
their design and development costs are very high so they are
affordable only for high production volumes. Field
Programmable Devices (FPD) are arrays of logic blocks with
programmable interconnections that define the performed
functionality. They represent a tradeoff between processors and
ASICs with respect to performance, flexibility, and cost (e.g.
Field Programmable Gate Array [6]).
We worked on the identification of a set of features that allow an
early selection of the functionalities able to exploit ASIC-like
devices. The most relevant features are the following.
A mismatch between application data-path requirements and
those presented by the processor data-path could lead to
inefficient use of processor resources (non-standard data-path).
Therefore, ASIC-like devices are more suitable to perform bit
manipulation operations (shifting, Boolean operators, etc.).
Finally, repeated operations of similar types on large regular data
sets are an ideal candidate for ASIC-like implementations.
Regularity in operations imposes less demand on the control unit
complexity better exploiting the available resources.
3.2. The proposed approach: rationale
Considering the architectural features previously identified it is
possible to define a set of patterns able to identify subsets of the
specification that match some executor features, and a set of
metrics that quantify such matching. Finally, these metrics are
properly combined in order to build a global metric (the affinity)
able to suggest the best processing elements for the execution of
each system functionality.

Definition: the Affinity (Am)
The affinity Am=[AGPPm ADSPm AHWm] of a method m is a
triplet of values in the interval [0, 1] that provides a
quantification of the matching between the structural and
functional features of the functionality implemented by the
method and the architectural features for each one of the
considered executor classes (i.e. GPP, DSP, ASIC/FPGA).

An affinity of 1 towards an executor class indicates a perfect
matching, while a 0 affinity indicates no matching at all.
With respect to previous attempts to perform similar analysis, the
proposed one is more general and accurate. For example, in [7]
the efficiency of GPPs and FPGAs is evaluated only with respect
to the exploitation of the available area evaluating the spatial
efficiency of a device. In [9], the authors create a methodology
that fully characterizes any algorithm with respect to the elements
of its structure that affect its implementation. Such methodologies
are based on the definition of seventeen properties that are
gathered into groups (e.g. size, concurrency, temporality, spatial
locality, regularity, cyclic properties, etc.). The identified groups
are meaningful, however only a few of them are supported by an
effective quantification approach, and when such a support is
provided, the metrics defined are strictly bounded to high-level
synthesis issues (as an example, the methodology is used to
estimate the implementation area of a custom ASIC).
A co-design oriented work is instead the one presented in [10]
where the concept of hardware/software repelling is used to drive
a hw/sw partitioning algorithm. The approach is based on the
analysis of the system functionalities, detecting a set of features
that suggest a repelling of certain functionalities towards a certain
type of implementation. Unfortunately, the work considers only
one kind of software executor, and the set of features considered
isn’t clearly defined.
Finally, [11] represents the work more similar to the one
presented in this paper. In fact, it considers multiprocessor
systems synthesis starting from an object-oriented specification,
and it analyzes subsets of such a specification in order to detect
features that allow marking them as control dominated, data
transformation dominated or memory access dominated.
However, it doesn’t consider dedicated hardware devices (it
considers only GPPs, microcontrollers, and DSPs), and works
with a too coarse granularity level (whole classes and not single
methods), and poorly defines the metrics to be used within the
methodology.
3.2.1. Model and methodology
The classification of the specification is based primarily on the
data involved in the execution of a functionality and on its
structural properties. Moreover, several properties oriented to
particular classes of executors are considered. In the following, a
set of metrics is defined providing a model for the classification
of the specification. The functional and structural features
considered in the affinity are described in detail.
Data oriented metrics
The goal of these metrics is to take into account the type of data
involved in the execution of a given functionality.
Definition: Data Ratio (DRm,t)

For each method m and for each allowed type t (e.g. int, float,
etc.), DRm,t is defined as the ratio between the number of
declarations of t type with respect to the total number of
declarations made in m.

Structural metrics
The goal of these metrics is to identify the structural properties of
a functionality focusing on the analysis of the control flow
complexity.
Definition: Control Flow Complexity (CFCm)

For each method m, CFCm is defined as the ratio between the
number of source lines that contains loop or branch statement
and the total number of lines.

The value of such a metric is increased by variations in the
execution flow due to decision points (i.e. loops and branches),
therefore a linear sequence of instructions has zero control flow
complexity.
Definition: Loop Ratio (LRm)

For each method m, LRm is defined as the ratio between the
number of source lines that contain loop statements and the total
number of lines.

Such a metric allows discriminating between computational and
control oriented functionalities. Moreover, high LRm values
indicate the possibility of exploiting a spatially limited
computational unit by means of a compact implementation and a
strong component reuse.
DSP oriented metrics
The goal is to identify functionalities suitable to be executed by a
DSP by considering those issues that exploit the most relevant
architectural features of such executor class: Circular Buffering,
MAC operations, and Super Harvard architecture.
For the circular buffering, the goal is to identify subsets of the
specification that access a linear data structure (one-dimensional
array, row or column of bi-dimensional array). The use of a
circular buffer is identified, more or less explicitly, by portions of
code that try to shift an array of one or more positions.
Definition: Strong Circularity Degree (SCDm)

For each method m, SCDm is the ratio between the number of
source lines that contain expressions of the form v[i]=v[i ± K]
and the total number of lines, where v is a vector (or a
row/column of a matrix), and K is a constant value.

Definition: Weak Circularity Degree (WCDm)
For each method m, WCDm is the ratio between the number of
source lines that contain expressions of the form v[K]=f(v[i]) or
q=f(v[i]) and the total number of lines, where v is a vector (or a
row/column of a matrix), K is a constant value, and f(v[i]) is a
generic expression that involves v[i].

For the MACs, the goal is to identify subsets of the specification
that express a particular mix of operations (i.e. a sum and a
multiplication) that a DSP can perform concurrently.
Definition: Strong MAC Degree (SMDm)

For each method m SMDm is the ratio between the number of
source lines inside a loop that contain expressions of the form
s1=s1+sx

.sy and the total number of lines.
Definition: Weak MAC Degree (WMDm)

For each method m WMDm is the ratio between the number of
source lines that contain, outside a loop, expressions of the form
s1=s1+sx

.sy and the total number of lines.
For the concurrent memory access, the goal is to identify subsets
of the specification able to exploit concurrent memory accesses to
instructions and data, as provided by the Super Harvard
architectures [8].
Definition: Strong Harvard Degree (SHDm)

For each method m, SHDm is the ratio between the number of
source lines that contain, inside a loop, expressions with the

following structure v[i] op w[i] or q op w[i] and the total
number of lines, where v and w are vectors, and op is an
operator different from =.

Definition: Weak Harvard Degree (WHDm)
For each method m, WHDm is the ratio between the number of
source lines that contain, outside a loop, expressions such as v[i]
op w[i] or q op w[i] and the total number of lines, where v and
w are vectors, and op is an operator different from =.

GPP oriented metrics
The goal is to identify functionalities that significantly rely on
operations that involve conditional dependent control flows,
complex data structures and complex I/O management.
Definition: Conditional Ratio (CRm)

The Conditional Ratio of a method m is CR=CFC–LR where
CFCm is the Control Flow Complexity and LRm is the Loop
Ratio.

Definition: I/O Ratio (IORm)
For each instance of method, IORm is the ratio between the
number of source lines that contain I/O operations (e.g. read,
write, etc.) and the total number of lines.

Definition: Structure Ratio (STRm)
For each method m, the Structure Ratio is the ratio between the
number of structures declared and the total number of
declarations.

ASIC-like oriented metrics
The goal is to identify regular functionalities that significantly
rely on operations that involve bit manipulation. Therefore, in
addition to some of the previously defined concepts (i.e. LR, and
DRm for the type bit) the following metric is defined.
Definition: Bit Manipulation Rate (BMRm)

For each method m, BMRm is the ratio between the number of
source lines that contain bit manipulation operations (e.g. and,
or, xor, etc) and the total number of lines.

The information gathered by means of the metrics previously
defined is organized in a global metric that allows a
straightforward characterization of a functionality with respect to
each possible executor. Such a global metric, called affinity is
operatively defined in the following.
The affinity
The affinity of a functionality can be expressed by a
normalization function applied to a linear combination of the
metrics, with weights that depend on the considered executor
class. Intuitively, the affinity towards a GPP executor depends
primarily on: the I/O Ratio, the Conditional Ratio, the Structure
Ratio, and the number of declared variables of GPP compatible
type. The affinity towards a DSP executor primarily depends on:
the degrees of circularity, Harvard, and MAC, the Loop Ratio,
and the number of declared variables of DSP compatible built-in
type. The affinity towards an ASIC-like executor depends on: the
Loop Ratio, the Bit Manipulation Ratio, and the number of
variables of bit type. Therefore, it is possible to evaluate the
affinity for each method m as follows:

()T
m

T
m CWfA ⋅=

where:

[]mmm HWDSPGPPm AAAA =

















= ∑∑
==

m

realz

m
z

stringcharz

m
z

m
bitmmmmmmmmmmm STRDRDRDRBMRLRCRIORWMDSMDWHDSHDWCDSCDC

|int,

















=
00011100000000
01000100111111
11100011000000

W

The weights of the matrix W are set to 1 when the associated
metric is meaningful for a given executor class, 0 otherwise. In
this way, the affinity represents the sum of all the contributions
determined by each relevant metric. Since such a sum could be
greater than one, a function should be applied to obtain values in
the [0, 1] interval allowing a direct comparison between affinity
values related to different executors.
The adopted normalization function is the arctangent one because
it is limited to the interval [-π/2, π/2] when x varies from -∞ to ∞
so. So, to normalize the affinity in the interval [0, 1] it should be
scaled of a π/2 factor. Moreover, to take into account that a value
of 1 for a single relevant metric means a strong matching between
the functionality and the executor a proper coefficient is
multiplied to the x in order to obtain an affinity equal to 0.9 in
correspondence with x=1. Finally, to better discriminate between
low and high affinity values, a quadratic form is introduced,
leading to the following normalization function:

() ()
2

2 2

π
πxatanxf =

The function f(x), when applied to T
mCW ⋅ , provides affinity

values that are directly comparable and therefore it can be used to
select the best executors class for each functionality.

4. METHODOLOGY VALIDATION
In order to support the presented co-analysis methodology, and to
validate the methodology itself, a tool has been developed and
integrated in the tool suite supporting the design flow of Figure 1.
Due the wide diffusion of C language (especially in the DSP
field), a meaningful validation has been setup based on a C test
suite. A tool has been developed and integrated with a C/C++
code analyzer (GENOA, [12]). The tool computes the affinity
values for each system functionality that are then provided to the
system design exploration tools.
The adopted benchmark suite is composed of 311 procedures;
each one of them representing a specific functionality. A subset of
these procedures (i.e. 100) has been selected from applications
oriented to digital signal processing and, therefore, they represent
a valid sample of the main functionalities involved in these
applications (e.g. Fast Fourier Transform, filtering, convolutions,
etc.). The other procedures are representative of a general set that
contains functionalities related to the field of coding, string
manipulation, common operations (e.g. sorting) and parts of
videogames. During the validation process, the values of the
metrics previously defined have been collected, and the affinity
value of each functionality has been evaluated in the normalized
form.
Interesting considerations can be made by analyzing the averages
of the affinity values on the whole test suite, for the DSP
applications, and for the others (see Table 1). ADSP for the DSP
applications is fairly larger than the other affinity values and the
ADSP values evaluated for the other application cases. It is worth
noting that AGPP has the largest average of the whole set,
revealing the general purpose nature of the related executors class,

while the AHW indicates in general (the three average values in
Table 1 are nearly the same) those procedures that exploit some
features associated with the ASIC executor class.

Table 1. Affinity average values

 Average
(on the whole suite)

Average
(only the DSP aplications)

Average
(all but the DSP applications)

AGPP 0,46 0,38 0,49
ADSP 0,25 0,57 0,10
AHW 0,27 0,28 0,27

4.1. Metrics and Partitioning
To give the flavor on how the methodology can actually work on
real designs and to show its effectiveness, an example of co-
analysis and system-level partitioning is here reported.
The considered application consists of 52 methods and its
Procedure Interaction Graph is represented in Figure 2. The
target architecture is composed of an unconstrained number of
GPP, DSP and FPGA. Starting from an annotated VCG (with
affinity, load and communication cost data), the partitioning tool
builds its procedure-level internal model. The next action of the
tool has been the cost function minimization based on a genetic
algorithms strategy.

Main P1

P2

P4

P3

P5

P10

P9P6

P11 P8P7 P13

P12

P14

P17 P18 P16

P29

P28

P30 P23

P22

P24

P26 P25P27

P32

P31

P33

P34

P36 P35

P37

P38 P39

P40

P41 P42

P43

P45P44

P48

P47

P49

P51 P52P50

P15

P46

Figure 2. Procedure Interaction Graph

Table 2 shows the affinity values of each procedure. The load
depends on the imposed timing constraints and the relative
physical costs are 1 for a GPP, 1.2 for a DSP and 2 for a FPGA.
The goal of this validation is to check the behavior of the
partitioning tool for different timing constraints and different cost
function weights in order to highlight, in particular, the role of the
affinity values. Different timing constraints have been imposed on
the execution time of the whole application in the following way:
with respect to a TREF (evaluated by simulation for a single GPP
system) in different experiments the constraints have been 90%
TREF, and 50% TREF. The latter constraint aims at forcing the
partitioning tool to exploit the concurrency by increasing the
number of executors.
The weight of the affinity is variable and it assumes different
values during several experiments in order to enforce at each step
weights of the affinity index in the cost function. For each value
of the affinity weight, Table 3 and Table 4 report the iteration
(each iteration works with a finer-granularity) that has found the
minimum value for the considered cost function and the related
timing simulation result.
Table 3 shows the results for the constraint 90% TREF. Such a
choice enforces the presence of an architecture with more than
one executor in order to reduce the execution time and, in fact, the
timing constraint is always largely met. With lower affinity
weights (e.g. 0 and 2), the partitioning does not consider DSPs

executors, while with the weights 3 and 4, the affinity becomes an
important factor and a DSP is introduced. Theses solutions
provide acceptable simulated times and physical cost. When the
affinity weight is too high, the tool considers the affinity more
than other factors and then, even if the simulated time is the best
one, the physical cost increases and the load index indicates an
unbalancing that indicates a possible under-load of the resources.
In this example, the timing constraint is not considered as a big
issue.

Table 2. Affinity values

 Affinity Affinity Procedure
GPP DSP HW

Procedure
GPP DSP HW

P1 0.612 0.605 0.397 P27 0.799 0.447 0.492
P2 0.425 0.649 0.388 P28 0.580 0840 0.403
P3 0.535 0.640 0.392 P29 0.460 0.840 0.403
P4 0.259 0.772 0.398 P30 0.559 0.772 0.398
P5 0.297 0.748 0.396 P31 0.868 0.046 0.688
P6 0.543 0.551 0.468 P32 0.597 0.053 0.911
P7 0.658 0.062 0.894 P33 0.997 0.053 0.211
P8 0.997 0.053 0.925 P34 0.643 0.571 0.416
P9 0.586 0.619 0.394 P35 0.580 0.620 0.405

P10 0.548 0.640 0.391 P36 0.544 0.653 0.396
P11 0.351 0.637 0.393 P37 0.608 0.595 0.406
P12 0.623 0.577 0.413 P38 0.520 0.659 0.388
P13 0.553 0.626 0.397 P39 0.553 0.634 0.390
P14 0.424 0.648 0.388 P40 0.604 0.911 0.409
P15 0.524 0.648 0.388 P41 0.471 0.810 0.401
P16 0.997 0.053 0.915 P42 0.352 0.748 0.396
P17 0.612 0.596 0.412 P43 0.459 0.772 0.388
P18 0.587 0.607 0.405 P44 0.259 0.772 0.398
P19 0.616 0.609 0.397 P45 0.574 0.651 0.533
P20 0.725 0.519 0.428 P46 0.384 0.648 0.388
P21 0.565 0.635 0.398 P47 0.524 0.628 0.368
P22 0.997 0.053 0.550 P48 0.234 0.608 0.378
P23 0.658 0.053 0.694 P49 0.987 0.063 0.921
P24 0.799 0.447 0.492 P50 0.992 0.092 0.890
P25 0.494 0.648 0.388 P51 0.968 0.085 0.787
P26 0.384 0.648 0.388 P52 0.989 0.099 0.833

Table 3. Timing constraint: 90% TREF

 Architecture wA Iteration IC ILSW IA
GPP DSP FPGA

Simulated
Time

0 6 0.003 0.004 0.501 1 0 1 66% TREF
2 6 0.003 0.121 0.395 2 0 0 69% TREF
3 9 0.020 0.121 0.390 1 1 0 60% TREF
4 5 0.004 0.126 0.384 1 1 0 58% TREF
7 9 0.032 0.277 0.254 2 1 0 55% TREF

Table 4 shows the results for the constraint 50% TREF. The heavy
constraint forces an architecture with several executors. The
timing constraint is always met except in the case when the
affinity index is not taken into account (i.e. wA=0). With affinity
weights from 2 to 4, the partitioning provides good solutions.

Table 4. Timing constraint: 50% TREF

 Architecture wA Iteration IC ILSW IA
GPP DSP FPGA

Simulated
Time

0 10 0.320 0.040 0.394 3 0 0 51% TREF
2 9 0.006 0.024 0.386 2 1 0 42% TREF
3 9 0.007 0.024 0.385 2 1 0 42% TREF
4 9 0.011 0.126 0.392 2 1 0 43% TREF
7 10 0.220 0.060 0.340 1 2 0 45% TREF

Finally, as in the previous case, an affinity weight too high drives
to solutions that do not consider properly the other aspects: in this
case, communication issues cause a worst simulated time. The
results show how the partitioning tool is able to perform an
effective design space exploration, while the affinity represents a
useful indicator that allows the selection of an architecture
tailored to the features of the specification.

5. REFERENCES
[1] J. Axelsson. Analysis and Synthesis of Heterogeneous Real-Time

Systems. Ph.D. thesis No. 502, 1997. Department of Computer and
Information Science, Linköping University, Sweden.

[2] SystemC Home Page, http://www.systemc.org, 1999.
[3] T.A.C.M. Claasen. High speed: not the only way to exploit the

intrinsic computational power of silicon. Solid-State Circuits
Conference, 1999. Digest of Technical Papers. ISSCC, 1999. IEEE
International, 1999 Page(s): 22 –25.

[4] G. Sander, R. Tamassia, I. G. Tollis. Graph Layout through the
VCG Tool. In Proceedings of DIMACS Int. Workshop GD'94.

[5] J. Choi, M. Burke, P. Carini. Efficient flow-sensitive inter-
procedural computation of pointer-induced aliases and side effects.
In proceedings of the 20th Annual ACM Symposium on Principles
of Programming languages, pp. 233-245, January 1993.

[6] S. Broen, R. Francis, J. Rose, Z. Vranesic. Field Programmable
Gate Array. Kluwer Academics, Boston, 1992.

[7] A. De Hon. Reconfigurable Architectures for General-Purpose
computing. Technical Report 1586, MIT-AI Laboratoty, 1996.

[8] T. Cooper. Taming the SHARC. Tech. report, Ixthos Inc., 2000.
[9] L. Guerra, M. Potkonjak, M. Rabaey. System-level design

guidance using algorithm properties. J. VLSI Signal Processing,
VII, 1994, [Workshop on] , 1994 Page(s): 73 –82.

[10] A. Kavalade, A. Lee. A Global Criticality/Local Phase Driven
Algorithm for the Constrained Hardware/Software Partitioning
Problem. Codes/CASHE ’94, France, Sept. 22-24, 1994, pp 42-48.

[11] L. Carro, M. Kreutz, F.R. Wagner, M. Oyamada. System synthesis
for multiprocessor embedded applications. Design, Automation
and Test in Europe Conference 2000. Page(s): 697 –702.

[12] P. Devanbu. GENOA: A Customizable, Language- and Front-end
Independent Code Analyzer. In Proceedings of ICSE '92, 1992.

[13] M.T.J. Strik, A.H. Timmer, J.L. Van Meerbergen, G. Van
Rootselaar. Heterogeneous multiprocessor for the management of
real-time video and graphics streams. Solid-State Circuits, IEEE
Journal of, Volume: 35, Issue: 11 , Nov. 2000.

[14] J. Hilgenstock, K. Herrmann, S. Moch, P. Pirsch. A single-chip
video signal processing system with embedded DRAM. Signal
Processing Systems, 2000. SiPS 2000, IEEE Workshop on, 2000.

[15] B.P. Dave, G. Lakshminarayana, N.K. Jha. COSYN: Hardware-
software co-synthesis of heterogeneous distributed embedded
systems. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, Volume: 7 Issue: 1 , March 1999 Page(s).

[16] B.P. Dave, N.K. Jha. COHRA: hardware-software cosynthesis of
hierarchical heterogeneous distributed embedded systems.
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on , Volume: 17 Issue: 10 , Oct. 1998 pp: 900 –919.

[17] P.A. Hsiung. CMAPS: A Cosynthesis Methodology for
Application-Oriented General-Purpose Parallel Systems. ACM
Transactions on Design Automation of Electronic Systems. Vol. 5,
n. 1, pp.58-81, Jan. 2000.

[18] J. Axelsson. Towards System-Level Analysis and Synthesis of
Distributed Real-Time Systems. In Proc. 5th International
Conference on Information Systems Analysis and Synthesis, Vol.
5, pp. 40-46, Orlando, July 31-August 4, 1999.

[19] L. Pomante. “System-Level Co-Design of Heterogeneous
Multiprocessor Embedded Systems”. Ph.D thesis, 2002, DEI,
Politecnico di Milano, Italy.

