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ABSTRACT 
This paper considers the problem of designing heterogeneous 
multiprocessor embedded systems. The focus is on a step of the 
design flow: the definition of innovative metrics for the analysis 
of the system specification to statically identify the most suitable 
processing elements class for each system functionality. 
Experimental results are also included, to show the applicability 
and effectiveness of the proposed methodology. 
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1. INTRODUCTION 
Modern electronic applications consist of a fairly heterogeneous 
set of components: a mix of analog and digital systems and 
several software application layers. The hardware can include 
different microprocessors (general purpose or DSP), memories 
and dedicated ICs (ASICs and/or FPGAs) and a set of local 
connections between the system components, and some interfaces 
between the system and the environment (sensors, actuators, etc.).  
In general, a tradeoff among aspects like performance, 
predictability, cost, flexibility, architecture distribution, weight, 
fault tolerance, power consumption, etc. has to be achieved ([1], 
[3]). Heterogeneous multiprocessor embedded systems have been 
exploited for the implementation of different applications both for 
research and for commercial use (e.g. heterogeneous 
multiprocessor system on chip for the management of real-time 
video stream [13], single-chip multiprocessor system for video 
signal processing [14]). Therefore, on one hand, multiprocessor 
embedded systems seem to be capable to meet the demand of 
processing power and flexibility of complex applications. On the 
other hand, such systems are very complex to design and 
optimize, so that the design methodology plays a major role in 
determining the success of the products. However, no assessed 
general design methodologies are available today. To overcome 
such problems, a possible solution consists in extending the 
classical co-design methodologies. 
In the past few years, a number of research works focused on co-
design methodologies for heterogeneous multiprocessor 
embedded systems ([1], [11], [15], [16], [17], [18]). Such 
frameworks allow user interaction to exploit the designer 
experience at system level, where it is still possible to manage the 
application complexity. 
 
 
 
 
 
 
 
 
 
 
 

 
 
However, what is still needed is a systematic approach general 
enough to be useful in several application domains, while 
considering the peculiarity of the system to be designed. In 
general, an environment to fully support system-level design of 
heterogeneous multiprocessor systems should encompass the 
following features: 

• homogeneous system-level specification representing the 
system functionality and the timing constraints; 

• analysis of the specification to statically detect the best 
processing element for each system functionality, and to 
statically estimate their timing characterization for both hw 
and sw implementations; 

• system-level functional co-simulation to check the functional 
correctness of the specification and to provide a set of 
dynamical information on the system behavior (profiling, 
communication, load, etc.); 

• system-level design space exploration composed of two 
integrated and iterative steps: partitioning, i.e. the 
identification of feasible architectural solutions, (number and 
type of heterogeneous processing elements); system-level 
timing co-simulation considering heterogeneous 
multiprocessor architectures and a high-level model for the 
communication media, to verify the meeting of the timing 
constraints. 

This paper presents a part of a more comprehensive research work 
[19] aiming at providing general models, methodologies and tools 
to support each step of the co-design flow of embedded systems 
based on heterogeneous multiprocessor architectures. 
In particular, this paper focuses on a single step of the design 
flow: the definition and validation of innovative metrics for the 
analysis of the system specification to statically associate each 
system functionality wit the most suitable class of processing 
element. 
The paper is organized as follows. Section 2 presents the 
proposed design flow and the related design environment. Section 
3 is the focus of the paper where the proposed metrics are detailed 
and shown their possible use for codesign. The validation of the 
methodology is discussed in Section 4, where experimental data 
are reported for the adopted benchmark set. Section 5 drawn some 
conclusions and outlines the future work. 

2. THE PROPOSED APPROACH 
The design flow we are proposing is shown in Figure 1. 
Concerning the target architecture, the natural way to combine 
performance, flexibility and effectiveness is to take the best from 
different worlds. By their nature, software implementations on 
programmable processing elements are preferred to achieve 
maximum flexibility. Tasks running inefficiently on general-
purpose processing elements have to be mapped on specific 
processors or on dedicated co-processors. However, different 
application domains (e.g. video, audio, telecom, automotive) have 
different requirements therefore, an optimal general architecture 



does not exist. The optimal solution is found by defining a sort of 
template architecture that can be optimized for the specific 
characteristics of the application domain. 
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Figure 1. The proposed high-level flow 

In the following, the main steps of the mapping of abstract 
specifications onto such an architecture are presented. 
2.1. Co-specification 
The entry point is a SystemC description [2] of the desired system 
behavior. This allows the designer not to force the design toward 
hardware or software during the early stages of the design. A 
proper procedure-level internal model has been defined to deal 
with specifications not only expressed in SystemC, thus enforcing 
the generality of the proposed methodology. The procedure-level 
internal model is able to capture information related to the 
computational elements present in an imperative, possibly object-
oriented, specification and the relationship between them. Such a 
model, called Procedural Interaction Graph (PIG) is based on the 
Procedural Call Graph (PCG, [5]). Moreover, to enhance 
generality, the exchange format of the model is based on the VCG 
format [4], a third party format that can be managed and 
visualized with open source tools.  
2.2. Co-analysis and Co-estimation 
The first step of the flow aims at obtaining as much information 
as possible on the system, by analyzing the specification in a 
static and fast manner. The goal is twofold: for each system 
functionality (i.e. every method) the best processing element is 
statically defined, and a timing characterization for both HW and 
SW implementations is computed. This step provides a set of data 
expressing the affinity of the functionality towards each possible 
processing element (GPP, DSP, ASIC/FPGA), and a set of 
estimations on the time needed, to a particular class of processing 
elements, for the execution of each single operation that composes 
the specification. 
2.3. Functional co-simulation 
After the static analysis, the system functionalities are simulated 
in order to verify their correctness with respect to typical input 
data sets. This type of simulation is not precise but very fast and 
allows the designer to easily detect functional errors and 
anomalous situations (e.g. deadlocks or the presence of dead 
code). Moreover, it is possible to extract important data 
characterizing the dynamic behavior of the system: profiling and 
communication cost (these information are always related to the 

behavior of the system in correspondence of typical input data 
sets). 
2.4. Workload estimation 
Combining some of the data provided by the previous steps 
(timing and profiling data) with the timing constraints allows the 
estimation of the load associated with the execution of each 
procedure on a general purpose processor (GPP). The analysis of 
such data is useful to evaluate the necessary amount of 
processors, the level of load-balancing, and the identification of 
those procedures that probably need an executor more performing 
than a GPP. 
2.5. System design exploration 
The system design exploration task is constituted by two iterative 
steps: partitioning and architecture selection, and timing co-
simulation. All the data produced in the previous stages are used 
to drive the process, together with additional information 
provided by the designer. Such information expresses the 
architectural constraints (e.g. max number of GPP, max number 
of DSP, area boundaries for ASIC, etc.), the scheduling directives 
(e.g. procedures priority), and the parameters of the 
communication model (e.g. the number of concurrent 
communications allowed). 
The partitioning methodology explores the design space (it is 
based on a genetic algorithm) looking for feasible solutions, 
supporting also the selection of a heterogeneous multiprocessor 
architecture (which components must be included and how these 
should be connected) taking into account several issues (degree of 
affinity, communication cost, workload, physical costs, etc.). It 
decides the binding between parts of the behavior and the selected 
components. Architecture selection and partitioning are 
influenced by performance requirements, implementation cost, 
and application-specific issues. 
The timing co-simulation methodology considers the proposed 
heterogeneous multiprocessor architecture and a high-level model 
for the communication media in order to model the system 
behavior through the behavior of the hardware and software parts. 
It evaluates the performance of the system by verifying its timing 
correctness. 
2.6. Specification transformation 
This step involves restructuring of the specification that can be 
performed in order to satisfy the design constraints. In particular it 
is possible to go back in the flow through this step from several 
points (dotted lines in Figure 1), each of them more costly than 
the previous one, that is, after the functional co-simulation, after 
the system design exploration, and after the low-level flow. 

3. METRICS FOR CO-ANALYSIS 
Co-analysis aims at obtaining as much information as possible 
about the system by statically analyzing the specification. The 
goal of this step is to statically detect the best processing element 
for the execution of each system functionality. The proposed 
analysis provides a set of data expressing the affinity of a 
functionality towards a type of processing element (GPP, DSP, 
ASIC/FPGA). For this, several subtasks should be performed: an 
architectural analysis of the existing processing elements, to 
determine their relevant features; the definition of a set of patterns 
able to identify subsets of the specification that could exploit the 
identified architectural features; the definition of a set of metrics 
able to provide meaningful indications useful to make design 
choices. 



3.1. Characterization of executors 
A first characterization discriminates between processor-like and 
ASIC-like executors. The former is equipped with a more complex 
control unit so it is quite independent in the retrieval and 
management of data. The latter is more suitable in a co-
processing architecture, i.e. where it acts as a co-processor for a 
main device, performing only specific tasks. 
Such preliminary considerations represent a first guideline 
towards an effective association between functionality and 
category of executors. This section introduces the analysis to 
detect main exploitable architectural features of the executors 
considered above. 
3.1.1. GPP architectural features 
General Purpose Processors (GPP) have been designed to be 
useful in several contexts and so it is difficult to detect particular 
architectural features that strongly identify a GPP-suitable 
application. They are typically adopted as control elements and 
I/O manager, but they are also useful for general computations. 
For complex systems that use an operating system, a GPP is in 
charge of it acting as a manager for processes, memory and I/O. 
3.1.2. DSP architectural features 
Digital Signal Processor (DSP) have been tailored to digital 
signal processing applications and so they present a loss of 
generality with respect to GPP and a higher cost, but they provide 
a better performance in the execution of a particular set of 
instructions [8]. For example, typical DSP operations are 
represented by regular (i.e. repetitive) computations on fixed 
length arrays (e.g. filtering). The architectural features included in 
a DSP allow concurrent loading of multiple operands, concurrent 
execution of sums and multiplications, fast management of loops, 
and fast access to sequential memory space (e.g. array). 
3.1.3. ASIC-like devices architectural features 
. Application Specific Integrated Circuits (ASIC) are developed 
for specific applications. They are generally high performing but 
their design and development costs are very high so they are 
affordable only for high production volumes. Field 
Programmable Devices (FPD) are arrays of logic blocks with 
programmable interconnections that define the performed 
functionality. They represent a tradeoff between processors and 
ASICs with respect to performance, flexibility, and cost (e.g. 
Field Programmable Gate Array [6]). 
We worked on the identification of a set of features that allow an 
early selection of the functionalities able to exploit ASIC-like 
devices. The most relevant features are the following. 
A mismatch between application data-path requirements and 
those presented by the processor data-path could lead to 
inefficient use of processor resources (non-standard data-path). 
Therefore, ASIC-like devices are more suitable to perform bit 
manipulation operations (shifting, Boolean operators, etc.). 
Finally, repeated operations of similar types on large regular data 
sets are an ideal candidate for ASIC-like implementations. 
Regularity in operations imposes less demand on the control unit 
complexity better exploiting the available resources. 
3.2. The proposed approach: rationale 
Considering the architectural features previously identified it is 
possible to define a set of patterns able to identify subsets of the 
specification that match some executor features, and a set of 
metrics that quantify such matching. Finally, these metrics are 
properly combined in order to build a global metric (the affinity) 
able to suggest the best processing elements for the execution of 
each system functionality. 

Definition: the Affinity (Am) 
The affinity Am=[AGPPm ADSPm AHWm] of a method m is a 
triplet of values in the interval [0, 1] that provides a 
quantification of the matching between the structural and 
functional features of the functionality implemented by the 
method and the architectural features for each one of the 
considered executor classes (i.e. GPP, DSP, ASIC/FPGA). 

An affinity of 1 towards an executor class indicates a perfect 
matching, while a 0 affinity indicates no matching at all. 
With respect to previous attempts to perform similar analysis, the 
proposed one is more general and accurate. For example, in [7] 
the efficiency of GPPs and FPGAs is evaluated only with respect 
to the exploitation of the available area evaluating the spatial 
efficiency of a device. In [9], the authors create a methodology 
that fully characterizes any algorithm with respect to the elements 
of its structure that affect its implementation. Such methodologies 
are based on the definition of seventeen properties that are 
gathered into groups (e.g. size, concurrency, temporality, spatial 
locality, regularity, cyclic properties, etc.). The identified groups 
are meaningful, however only a few of them are supported by an 
effective quantification approach, and when such a support is 
provided, the metrics defined are strictly bounded to high-level 
synthesis issues (as an example, the methodology is used to 
estimate the implementation area of a custom ASIC). 
A co-design oriented work is instead the one presented in [10] 
where the concept of hardware/software repelling is used to drive 
a hw/sw partitioning algorithm. The approach is based on the 
analysis of the system functionalities, detecting a set of features 
that suggest a repelling of certain functionalities towards a certain 
type of implementation. Unfortunately, the work considers only 
one kind of software executor, and the set of features considered 
isn’t clearly defined. 
Finally, [11] represents the work more similar to the one 
presented in this paper. In fact, it considers multiprocessor 
systems synthesis starting from an object-oriented specification, 
and it analyzes subsets of such a specification in order to detect 
features that allow marking them as control dominated, data 
transformation dominated or memory access dominated. 
However, it doesn’t consider dedicated hardware devices (it 
considers only GPPs, microcontrollers, and DSPs), and works 
with a too coarse granularity level (whole classes and not single 
methods), and poorly defines the metrics to be used within the 
methodology. 
3.2.1. Model and methodology 
The classification of the specification is based primarily on the 
data involved in the execution of a functionality and on its 
structural properties. Moreover, several properties oriented to 
particular classes of executors are considered. In the following, a 
set of metrics is defined providing a model for the classification 
of the specification. The functional and structural features 
considered in the affinity are described in detail. 
Data oriented metrics 
The goal of these metrics is to take into account the type of data 
involved in the execution of a given functionality. 
Definition: Data Ratio (DRm,t) 

For each method m and for each allowed type t (e.g. int, float, 
etc.), DRm,t is defined as the ratio between the number of 
declarations of t type with respect to the total number of 
declarations made in m. 



Structural metrics 
The goal of these metrics is to identify the structural properties of 
a functionality focusing on the analysis of the control flow 
complexity. 
Definition: Control Flow Complexity (CFCm) 

For each method m, CFCm is defined as the ratio between the 
number of source lines that contains loop or branch statement 
and the total number of lines. 

The value of such a metric is increased by variations in the 
execution flow due to decision points (i.e. loops and branches), 
therefore a linear sequence of instructions has zero control flow 
complexity. 
Definition: Loop Ratio (LRm) 

For each method m, LRm is defined as the ratio between the 
number of source lines that contain loop statements and the total 
number of lines. 

Such a metric allows discriminating between computational and 
control oriented functionalities. Moreover, high LRm values 
indicate the possibility of exploiting a spatially limited 
computational unit by means of a compact implementation and a 
strong component reuse. 
DSP oriented metrics 
The goal is to identify functionalities suitable to be executed by a 
DSP by considering those issues that exploit the most relevant 
architectural features of such executor class: Circular Buffering, 
MAC operations, and Super Harvard architecture. 
For the circular buffering, the goal is to identify subsets of the 
specification that access a linear data structure (one-dimensional 
array, row or column of bi-dimensional array). The use of a 
circular buffer is identified, more or less explicitly, by portions of 
code that try to shift an array of one or more positions. 
Definition: Strong Circularity Degree (SCDm) 

For each method m, SCDm is the ratio between the number of 
source lines that contain expressions of the form v[i]=v[i ± K] 
and the total number of lines, where v is a vector (or a 
row/column of a matrix), and K is a constant value. 

Definition: Weak Circularity Degree (WCDm) 
For each method m, WCDm is the ratio between the number of 
source lines that contain expressions of the form v[K]=f(v[i]) or 
q=f(v[i]) and the total number of lines, where v is a vector (or a 
row/column of a matrix), K is a constant value, and f(v[i]) is a 
generic expression that involves v[i]. 

For the MACs, the goal is to identify subsets of the specification 
that express a particular mix of operations (i.e. a sum and a 
multiplication) that a DSP can perform concurrently. 
Definition: Strong MAC Degree (SMDm) 

For each method m SMDm is the ratio between the number of 
source lines inside a loop that contain expressions of the form 
s1=s1+sx

.sy and the total number of lines. 
Definition: Weak MAC Degree (WMDm) 

For each method m WMDm is the ratio between the number of 
source lines that contain, outside a loop, expressions of the form 
s1=s1+sx 

.sy and the total number of lines. 
For the concurrent memory access, the goal is to identify subsets 
of the specification able to exploit concurrent memory accesses to 
instructions and data, as provided by the Super Harvard 
architectures [8]. 
Definition: Strong Harvard Degree (SHDm) 

For each method m, SHDm is the ratio between the number of 
source lines that contain, inside a loop, expressions with the 

following structure v[i] op w[i] or q op w[i] and the total 
number of lines, where v and w are vectors, and op is an 
operator different from =. 

Definition: Weak Harvard Degree (WHDm) 
For each method m, WHDm is the ratio between the number of 
source lines that contain, outside a loop, expressions such as v[i] 
op w[i] or q op w[i] and the total number of lines, where v and 
w are vectors, and op is an operator different from =. 

GPP oriented metrics 
The goal is to identify functionalities that significantly rely on 
operations that involve conditional dependent control flows, 
complex data structures and complex I/O management. 
Definition: Conditional Ratio (CRm) 

The Conditional Ratio of a method m is CR=CFC–LR where 
CFCm is the Control Flow Complexity and LRm is the Loop 
Ratio. 

Definition: I/O Ratio (IORm) 
For each instance of method, IORm is the ratio between the 
number of source lines that contain I/O operations (e.g. read, 
write, etc.) and the total number of lines. 

Definition: Structure Ratio (STRm) 
For each method m, the Structure Ratio is the ratio between the 
number of structures declared and the total number of 
declarations. 

ASIC-like oriented metrics 
The goal is to identify regular functionalities that significantly 
rely on operations that involve bit manipulation. Therefore, in 
addition to some of the previously defined concepts (i.e. LR, and 
DRm for the type bit) the following metric is defined. 
Definition: Bit Manipulation Rate (BMRm) 

For each method m, BMRm is the ratio between the number of 
source lines that contain bit manipulation operations (e.g. and, 
or, xor, etc) and the total number of lines. 

The information gathered by means of the metrics previously 
defined is organized in a global metric that allows a 
straightforward characterization of a functionality with respect to 
each possible executor. Such a global metric, called affinity is 
operatively defined in the following. 
The affinity 
The affinity of a functionality can be expressed by a 
normalization function applied to a linear combination of the 
metrics, with weights that depend on the considered executor 
class. Intuitively, the affinity towards a GPP executor depends 
primarily on: the I/O Ratio, the Conditional Ratio, the Structure 
Ratio, and the number of declared variables of GPP compatible 
type. The affinity towards a DSP executor primarily depends on: 
the degrees of circularity, Harvard, and MAC, the Loop Ratio, 
and the number of declared variables of DSP compatible built-in 
type. The affinity towards an ASIC-like executor depends on: the 
Loop Ratio, the Bit Manipulation Ratio, and the number of 
variables of bit type. Therefore, it is possible to evaluate the 
affinity for each method m as follows: 
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The weights of the matrix W are set to 1 when the associated 
metric is meaningful for a given executor class, 0 otherwise. In 
this way, the affinity represents the sum of all the contributions 
determined by each relevant metric. Since such a sum could be 
greater than one, a function should be applied to obtain values in 
the [0, 1] interval allowing a direct comparison between affinity 
values related to different executors. 
The adopted normalization function is the arctangent one because 
it is limited to the interval [-π/2, π/2] when x varies from -∞ to ∞ 
so. So, to normalize the affinity in the interval [0, 1] it should be 
scaled of a π/2 factor. Moreover, to take into account that a value 
of 1 for a single relevant metric means a strong matching between 
the functionality and the executor a proper coefficient is 
multiplied to the x in order to obtain an affinity equal to 0.9 in 
correspondence with x=1. Finally, to better discriminate between 
low and high affinity values, a quadratic form is introduced, 
leading to the following normalization function: 

( ) ( )
2

2 2

π
πxatanxf =  

The function f(x), when applied to T
mCW ⋅ , provides affinity 

values that are directly comparable and therefore it can be used to 
select the best executors class for each functionality. 

4. METHODOLOGY VALIDATION 
In order to support the presented co-analysis methodology, and to 
validate the methodology itself, a tool has been developed and 
integrated in the tool suite supporting the design flow of Figure 1. 
Due the wide diffusion of C language (especially in the DSP 
field), a meaningful validation has been setup based on a C test 
suite. A tool has been developed and integrated with a C/C++ 
code analyzer (GENOA, [12]). The tool computes the affinity 
values for each system functionality that are then provided to the 
system design exploration tools. 
The adopted benchmark suite is composed of 311 procedures; 
each one of them representing a specific functionality. A subset of 
these procedures (i.e. 100) has been selected from applications 
oriented to digital signal processing and, therefore, they represent 
a valid sample of the main functionalities involved in these 
applications (e.g. Fast Fourier Transform, filtering, convolutions, 
etc.). The other procedures are representative of a general set that 
contains functionalities related to the field of coding, string 
manipulation, common operations (e.g. sorting) and parts of 
videogames. During the validation process, the values of the 
metrics previously defined have been collected, and the affinity 
value of each functionality has been evaluated in the normalized 
form. 
Interesting considerations can be made by analyzing the averages 
of the affinity values on the whole test suite, for the DSP 
applications, and for the others (see Table 1). ADSP for the DSP 
applications is fairly larger than the other affinity values and the 
ADSP values evaluated for the other application cases. It is worth 
noting that AGPP has the largest average of the whole set, 
revealing the general purpose nature of the related executors class, 

while the AHW indicates in general (the three average values in 
Table 1 are nearly the same) those procedures that exploit some 
features associated with the ASIC executor class. 

Table 1. Affinity average values 

 Average 
(on the whole suite) 

Average 
(only the DSP aplications) 

Average 
(all but the DSP applications) 

AGPP 0,46 0,38 0,49 
ADSP 0,25 0,57 0,10 
AHW 0,27 0,28 0,27  

4.1. Metrics and Partitioning 
To give the flavor on how the methodology can actually work on 
real designs and to show its effectiveness, an example of co-
analysis and system-level partitioning is here reported. 
The considered application consists of 52 methods and its 
Procedure Interaction Graph is represented in Figure 2. The 
target architecture is composed of an unconstrained number of 
GPP, DSP and FPGA. Starting from an annotated VCG (with 
affinity, load and communication cost data), the partitioning tool 
builds its procedure-level internal model. The next action of the 
tool has been the cost function minimization based on a genetic 
algorithms strategy. 
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Figure 2. Procedure Interaction Graph 

Table 2 shows the affinity values of each procedure. The load 
depends on the imposed timing constraints and the relative 
physical costs are 1 for a GPP, 1.2 for a DSP and 2 for a FPGA. 
The goal of this validation is to check the behavior of the 
partitioning tool for different timing constraints and different cost 
function weights in order to highlight, in particular, the role of the 
affinity values. Different timing constraints have been imposed on 
the execution time of the whole application in the following way: 
with respect to a TREF (evaluated by simulation for a single GPP 
system) in different experiments the constraints have been 90% 
TREF, and 50% TREF. The latter constraint aims at forcing the 
partitioning tool to exploit the concurrency by increasing the 
number of executors. 
The weight of the affinity is variable and it assumes different 
values during several experiments in order to enforce at each step 
weights of the affinity index in the cost function. For each value 
of the affinity weight, Table 3 and Table 4 report the iteration 
(each iteration works with a finer-granularity) that has found the 
minimum value for the considered cost function and the related 
timing simulation result. 
Table 3 shows the results for the constraint 90% TREF. Such a 
choice enforces the presence of an architecture with more than 
one executor in order to reduce the execution time and, in fact, the 
timing constraint is always largely met. With lower affinity 
weights (e.g. 0 and 2), the partitioning does not consider DSPs 



executors, while with the weights 3 and 4, the affinity becomes an 
important factor and a DSP is introduced. Theses solutions 
provide acceptable simulated times and physical cost. When the 
affinity weight is too high, the tool considers the affinity more 
than other factors and then, even if the simulated time is the best 
one, the physical cost increases and the load index indicates an 
unbalancing that indicates a possible under-load of the resources. 
In this example, the timing constraint is not considered as a big 
issue. 

Table 2. Affinity values 

 Affinity Affinity Procedure 
GPP DSP HW 

Procedure 
GPP DSP HW 

P1 0.612 0.605 0.397 P27 0.799 0.447 0.492
P2 0.425 0.649 0.388 P28 0.580 0840 0.403
P3 0.535 0.640 0.392 P29 0.460 0.840 0.403
P4 0.259 0.772 0.398 P30 0.559 0.772 0.398
P5 0.297 0.748 0.396 P31 0.868 0.046 0.688
P6 0.543 0.551 0.468 P32 0.597 0.053 0.911
P7 0.658 0.062 0.894 P33 0.997 0.053 0.211
P8 0.997 0.053 0.925 P34 0.643 0.571 0.416
P9 0.586 0.619 0.394 P35 0.580 0.620 0.405

P10 0.548 0.640 0.391 P36 0.544 0.653 0.396
P11 0.351 0.637 0.393 P37 0.608 0.595 0.406
P12 0.623 0.577 0.413 P38 0.520 0.659 0.388
P13 0.553 0.626 0.397 P39 0.553 0.634 0.390
P14 0.424 0.648 0.388 P40 0.604 0.911 0.409
P15 0.524 0.648 0.388 P41 0.471 0.810 0.401
P16 0.997 0.053 0.915 P42 0.352 0.748 0.396
P17 0.612 0.596 0.412 P43 0.459 0.772 0.388
P18 0.587 0.607 0.405 P44 0.259 0.772 0.398
P19 0.616 0.609 0.397 P45 0.574 0.651 0.533
P20 0.725 0.519 0.428 P46 0.384 0.648 0.388
P21 0.565 0.635 0.398 P47 0.524 0.628 0.368
P22 0.997 0.053 0.550 P48 0.234 0.608 0.378
P23 0.658 0.053 0.694 P49 0.987 0.063 0.921
P24 0.799 0.447 0.492 P50 0.992 0.092 0.890
P25 0.494 0.648 0.388 P51 0.968 0.085 0.787
P26 0.384 0.648 0.388 P52 0.989 0.099 0.833  

Table 3. Timing constraint: 90% TREF 

 Architecture wA Iteration IC ILSW IA 
GPP DSP FPGA 

Simulated 
Time 

0 6 0.003 0.004 0.501 1 0 1 66% TREF 
2 6 0.003 0.121 0.395 2 0 0 69% TREF 
3 9 0.020 0.121 0.390 1 1 0 60% TREF 
4 5 0.004 0.126 0.384 1 1 0 58% TREF 
7 9 0.032 0.277 0.254 2 1 0 55% TREF  

Table 4 shows the results for the constraint 50% TREF. The heavy 
constraint forces an architecture with several executors. The 
timing constraint is always met except in the case when the 
affinity index is not taken into account (i.e. wA=0). With affinity 
weights from 2 to 4, the partitioning provides good solutions.  

Table 4. Timing constraint: 50% TREF 

 Architecture wA Iteration IC ILSW IA 
GPP DSP FPGA 

Simulated 
Time 

0 10 0.320 0.040 0.394 3 0 0 51% TREF 
2 9 0.006 0.024 0.386 2 1 0 42% TREF 
3 9 0.007 0.024 0.385 2 1 0 42% TREF 
4 9 0.011 0.126 0.392 2 1 0 43% TREF 
7 10 0.220 0.060 0.340 1 2 0 45% TREF 

 
Finally, as in the previous case, an affinity weight too high drives 
to solutions that do not consider properly the other aspects: in this 
case, communication issues cause a worst simulated time. The 
results show how the partitioning tool is able to perform an 
effective design space exploration, while the affinity represents a 
useful indicator that allows the selection of an architecture 
tailored to the features of the specification. 
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