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ABSTRACT

Digital filtering algorithms are most commonly implemented
using general purpose digital signal processing chips for audio
applications, or special purpose digital filtering chips and appli-
cation-specific integrated circuits (ASICs) for higher rates. This
paper describes an approach to the implementation of digital fil-
ter algorithms based on field programmable gate arrays (FPGAs).
The advantages of the FPGA approach to digital filter imple-
mentation include higher sampling rates than are available from
traditional DSP chips, lower costs than an ASIC for moderate
volume applications, and more flexibility than the alternate ap-
proaches. Since many current FPGA architectures are in-system
programmable, the configuration of the device may be changed
to implement different functionality if required. Our examples
illustrate that the FPGA approach is both flexible and provides
performance comparable or superior to traditional approaches.

1. INTRODUCTION

The most common approaches to the implementation of digital
filtering algorithms are general purpose digital signal process-
ing chips for audio applications, or special purpose digital fil-
tering chips and application-specific integrated circuits (ASICs)
for higher rates [9, 14]. This paper describes an approach to the
implementation of digital filter algorithms on field programmable
gate arrays (FPGAs).

Recent advances in FPGA technology have enabled these de-
vices to be applied to a variety of applications traditionally re-
served for ASICs. FPGAs are well suited to datapath designs,
such as those encountered in digital filtering applications. The
density of the new programmable devices is such that a non-
trivial number of arithmetic operations such as those encountered
in digital filtering may be implemented on a single device. The
advantages of the FPGA approach to digital filter implementa-
tion include higher sampling rates than are available from tradi-
tional DSP chips, lower costs than an ASIC for moderate volume
applications, and more flexibility than the alternate approaches.
In particular, multiple multiply-accumulate (MAC) units may be
implemented on a single FPGA, which provides comparable per-
formance to general-purpose architectures which have a single
MAC unit. Further, since many current FPGA architectures are
in-system programmable, the configuration of the device may be
changed to implement alternate filtering operations, such as lat-
tice filters and gradient-based adaptive filters, or entirely different
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functionality.

2. BACKGROUND

Research on digital filter implementation has concentrated on cus-
tom implementation using various VLSI technologies. The archi-
tecture of these filters has been largely determined by the target ap-
plications of the particular implementations. Several widely used
digital signal processors such as the Texas Instruments TMS320,
Motorola 56000, and Analog Devices ADSP-2100 families have
been designed to efficiently implement filtering operations at au-
dio rates. These devices are extremely flexible, but are limited in
performance. High performance designs for filtering at sampling
rates above 100 MHz have also been demonstrated using CMOS
[3, 4, 6, 8, 9, 14, 17, 19, 20, 21] and BiCMOS [8, 20, 22] tech-
nologies, using approachesranging from full custom to traditional
factory-configured gate arrays. These efforts have produced high
performance designs for specific application domains.

There are several potential shortcomings of the custom VLSI
approach, although it does promise the best performance and ef-
ficiency for the specific application for which a particular design
is intended. The most obvious problem is the lack of flexibility
in the custom approach. Custom devices are often suited only
for use in a particular application, and can not be easily reconfig-
ured for other operations even within that same domain. Another
problem which the custom VLSI approach often imposes is a lack
of adaptability once a device is in use within a system. Typi-
cal custom approaches do not allow the function of a device to
be modified within the system, for purposes such as correcting
faults, for example. Although these problems can be overcome
with sufficient forethought, the costs in performance, implementa-
tion complexity, and additional design time often preclude flexible
solutions.

Lack of flexibility can forestall the cost-effective evaluation
of exotic algorithms in a high performance real-time environ-
ment. Only high volume applications or extremely critical low
volume applications can justify the expense of developing a full
custom solution. There are a variety of algorithms which are not
within the performance envelope of general purpose processors,
and which are not sufficiently commonplace or well-understood to
justify implementation in a full custom design. These algorithms
cannot be evaluated with the traditional approaches, thus limiting
innovation.

Field programmable gate arrays (FPGAs) can be used to allevi-
ate some of the problems with the custom approach. FPGAs are
programmable logic devices which bear a significant resemblance
to traditional custom gate arrays. While there are a variety of
approaches to FPGA implementation, some of the more popular
series consist of an array of arbitrarily programmable function
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blocks, with configurable routing resources which are used to in-
terconnect these blocks. Many of the most popular FPGAs are
in-system programmable, which allows the modification of the
operation of the device through simple reprogramming.

The primary limitations of FPGAs are related to the overhead
imposed by programmability. In particular, the density of the
devices is only now reaching the level necessary to implement
complete modules of reasonable complexity. Other difficulties
associated with the devices result from the constraints imposed by
the architecture, such as limitations on the logic functions which
may be implemented in each logic block, and routing delays in
the array. Many of these difficulties can be overcome by careful
design.

Due to ever-increasing integrated circuit fabrication capabili-
ties, the future of FPGA technology promises both higher densities
and higher speeds. Many FPGA families are based on memory
technology, so the improvements in those areas should correlate
with FPGA evolution. The expanded use of FPGAs in a variety
of challenging application domains is thus likely.

FPGAs are well suited for the implementation of fixed-point
digital signal processing algorithms. The advantages of DSP on
FPGAs are primarily related to the additional flexibility provided
by FPGA reconfigurability. Not only can high-performance sys-
tems be implemented relatively inexpensively, but the design and
test cycle can be completed rapidly due to the elimination of the in-
tegrated circuit fabrication delays. The new approach also allows
adapting the functions to account for unforeseen requirements.
The problems of DSP on FPGAs are related to the density and
routing constraints imposed by the FPGA architectures. In par-
ticular, the number of logic gates which may be implemented on
an single device, and hence the number of arithmetic units, is still
limited, and the routing between modules on an array imposes the
critical delay limitations.

Because of the constraints imposed by FPGAs, implementation
of digital filter algorithms through this medium must initially
focus on efficient structures which possess low complexity [2].
Concurrent design of efficient digital filter algorithms and FPGA
implementations is necessary to take full advantage of the new
capabilities.

In this particular work, Xilinx XC4000-series FPGAs were
used to implement various digital filter algorithms and evaluate
their performance. A Xilinx XC4000 consists of an array of con-
figurable logic blocks (CLBs), each of which has several inputs
(F1-F4, G1-G4) and outputs (X,Y and XQ,YQ). Each CLB can
contain both random logic and synchronouselements. In addition
to the general-purpose logic functions, each CLB also contains
special fast carry logic for addition operations. The XC4000-
series contains both local and global routing resources. The local
resources allow extremely low delay interconnection of CLBs
within the same neighborhood, as well as more extended connec-
tion through the use of switching matrices. The global resources
provide for the low-delay distribution of signals that are used at
widely-spaced points in the array. The speed of a particular appli-
cation is highly dependent on routing in the Xilinx FPGAs. The
XC4000 family includes parts ranging from 8 by 8 CLB arrays
to 24 by 24 CLB arrays. All of these devices are in-system pro-
grammable. Low power versions of many of these parts are also
available.

3. MULTIPLY-ACCUMULATE UNITS

Several authors [1, 11, 12, 13] have identified the multiply-
accumulate (MAC) operation as the kernel of various digital signal
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Figure 1. Basic Structure of the MAC Unit

processing algorithms. A variety of approaches to the implemen-
tation of the multiplication and addition portions of the MAC
function are possible [7, 10]. This work will focus on the re-
alization of multiplication using an array approach and addition
using ripple carry methods, although other methods are equally
applicable to the FPGA domain.

The structure of a MAC unit is illustrated in Figure 1. The
MAC unit presented in this section consists of an 8-bit by 8-bit
combinatorial array multiplier and a 16-bit accumulator. These
word sizes were chosen to balance the size of the implementa-
tion, which is limited by the FPGA density, against the numerical
precision. Larger word sizes are possible if the number of MAC
units per chips is reduced. The increase in density of FPGAs in
the future will certainly expand the design space available to the
designer, and make such constraints less severe.

3.1. Implementation of Multiplier
The combinatorial multiplier uses one CLB per partial product bit.
A 2-input AND gate generates each partial product, but additional
circuitry is required to add together all partial products of equal
weight. The total number of CLBs used for the multiplier in this
case is 64 and the basic cell structure is illustrated in Figure 2.

Each cell is configured as a full adder (except for the type A
cell). This full adder accepts a sum and a carry from a previous
operation of equal weight, as shown in Figure 2, and the logical
AND of the inputs ��� and � � . The sum and carry generated by
the adder are then sent to the CLBs of proper weight as shown in
Figure 3.

The multiplier has been configured to perform multiplication of
signed numbers in two’s complement notation. The small circles
in the figure indicate negative inputs or outputs; such bits have to
be subtracted rather than being added. The cells in the leftmost
column of the array only AND their two inputs and generate the
product. If one of the two inputs has a negative weight, then the
output will have a negative weight. The conventional 1-bit full
adder assumes positive weights on all of its 3 inputs and 2 outputs.
Such an adder can be generalized to four types of adder cells by
attaching positive and negative weights to the input/output pins
as discussed in [7]. Figure 4 lists the logic symbols for the four
types of generalized full adders.
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Figure 3. Combinatorial Array Multiplier Block Diagram
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The Boolean equations governing the Type 0 and 3 full adders
are

� � � ����� ��� �	�	� � �
�	������
� � �����
���	�
����

(1)

and those for the Type 1 and 2 adders are

� � � ����� ��� �	�	� � �
�	������
� � �����	� �	��� ���

(2)

Type 0 and Type 3 full adders are characterized by the same pair
of logic equations, identical to that of the conventional 1-bit full
adder (Type 0). This is becausea Type 3 full adder can be obtained
from a Type 0 full adder by negating all of the input and output
values and vice versa. A similar relationship can be established
between Type 1 and Type 2 full adders.

For Type 0, 1, 2, and 3 full adders, the two independent 4-bit
functions were used to generate the sum and carry outputs. We
can easily include the AND gate in the CLB just by replacing, for
example, X with ( � � AND � � ) when configuring the CLB. The
horizontal inputs ( � � , � � ) can use the horizontal longlines which
are associated with each row for distribution of the signal with
a very short routing delay. Other interconnections can be made
using the single-length or double-length lines via Programmable
Interconnection Points (PIP) or switching matrices.

3.2. Adder Implementation
In the XC4000 series, each CLB includes high-speed carry logic
that can be activated by configuration. The two 4-input function
generators may be configured as a 2-bit adder with built-in hidden
carry that can be expanded to any length. The 16-bit adder in
our MAC unit, which uses the dedicated carry logic, requires nine

3



CLBs. The middle 14 bits use 7 CLBs, one CLB is used for the
MSB, and one is used for the LSB of the adder. For each CLB in
the middle section, the F function is used for lower-order bit and
the G function is used for higher-order bit. Obviously, we need
to use the G function for the LSB bit and F function for the MSB
bit.

In the case of the LSB CLB, two values must be input on
the G1 and G4 pins. The carry signal enters on the F1 pin,
propagates through the G carry logic, and exits on the COUT
pin. The F function of this CLB is not used and can be used for
other purposes. For the middle CLBs, the logic is configured to
perform a 2-bit addition of A+B in both the F and G functions,
with the lower-order A and B inputs on the F1 and F2 pins, and
the higher-order A and B inputs on the G1 and G4 pins. The carry
signal enters on the CIN pin, propagates through the F and G carry
logic, and exits on the COUT pin. For the MSB CLB, the two
values must be input on F1 and F2 pins. The carry signal enters
on the CIN pin, propagates through the F carry logic, and exits
on the COUT pin. The G function generator of this CLB is used
to access the carry out signal or calculate a two’s complement
overflow.

The limitation of using this built-in carry logic is that the carry
out (COUT) pin of a CLB can only be connected to the carry in
(CIN) pin of the CLBs above or below. Thus the adder using fast
carry logic can only be configured vertically in the array.

The dedicated carry circuitry greatly increases the efficiency
and performance of adders. Conventional methods for improving
performance such as carry generate/propagate are not useful even
at 16-bit level, and are of marginal benefit at longer wordlengths.
In our case, the 16-bit adder has a combinatorial delay of only
20.5 ns.

3.3. MAC Implementation

We use the most significant 8 output bits of the multiplier as the
input to the low order bits of the adder. The 8-bit input of the
adder is sign-extended and added with previous outputs using
two’s complement addition.

The basic structure of the MAC unit can use pipeline registers
between the multiplier and accumulator to increase the throughput.
The flip-flops in the CLBs are used as pipeline registers and hence
no additional CLBs are needed.

The layout of a single MAC unit on an XC4000-series part is
shown in Figure 5.

The performance of the MAC unit with an 8-bit by 8-bit mul-
tiply and 16 bit accumulator is determined by the speed of the
multiplier. The worst case multiplier delay reported is approach-
ing 100 ns. The MAC unit can thus support a clock speed better
than 10 MHz. With the use of the horizontal longlines to dis-
tribute the critical path signals, the speed can be further improved,
although this may restrict the use of the MAC unit in various
system configurations. The implementation of a MAC unit on an
XC4000-series part requires 73 CLBs.

4. FIR FILTERS

4.1. Filter Structures

The transfer function of an
�

tap FIR filter is given by

������� �
� 0
�
� 1
�	� 1 � � � � �

��
 � 1
�	�� 
 � 1 � � (3)

This structure can be realized in many ways, such as the canonical
form, pipelined form, and inverted form as depicted in Figure 6.

Figure 5. Layout of Single MAC Unit on XC4010 FPGA
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4.2. High Performance Filters on FPGAs
The inverted form shown in Figure 6(c) is well-suited for achiev-
ing a high sampling rate even for higher order filters. This is
possible because the throughput does not depend strongly on the
number of taps due to extensive pipelining. The fact that the
multipliers occupy a large area, however, might render the imple-
mentation of higher order filters impractical.

It has been shown in [2] that a high performance FIR filter
with substantial number of taps can be implemented on FPGAs
by approximating the filter coefficients to a sum or difference of
two power-of-two terms. Implementation of digital filters may
be simplified by using only a limited number of power-of-two
terms so that only a small number of shift and add operations is
required. A variety of techniques have been proposed [15, 16]
to minimize the deterioration of the frequency response due to
these constraints. Such coefficient optimization techniques yield
performance sufficient for most practical applications.

4.3. Moderate Performance Filters on FPGAs
When the size of the chip is a constraint, the arithmetic resources
need to be shared at the expense of speed. The structure shown
in Figure 7 is suitable for sharing of arithmetic resources. This
is a multiply/accumulate (MAC) unit with four multipliers and an
adder tree. The inputs and the corresponding filter coefficients
are fed to the MAC unit as shown in Figure 7. With the insertion
of pipeline registers, the clock speed is increased. The delay in
the multiplier is greater than that in the adder and hence the clock
frequency is dependent on the delay in the multiplier. As there
are four multipliers in this MAC unit, summation of four terms is
computed every clock cycle. Hence a four tap filter can be made
to operate at a sampling rate equal to the clock rate, and an eight
tap filter to operate at a sampling rate half that of the clock rate.

In general, if there are
�

multipliers in a chip and if the delay
in the multiplier is � sec, then an

�
tap filter can operate at a

maximum sampling frequency ��� given by

� � � 1
��� �����
	

�
(4)

An implementation based on the multiple-input MAC unit, as
shown in Figure 7,was used to evaluate this moderate performance
approach to the realization of a filter with an arbitrary number of
taps. The placement of the MAC unit on a Xilinx XC4010 is
shown in Figure 8. The four multipliers are arranged in the four
corners of the 20 by 20 array of CLBs to reduce the delay from
the input pins to the multipliers. Inputs to the multipliers are
fed in at right angles, as explained previously, and the arrays
are oriented in such a way that the routing delays from pads are
minimized. For ease of understanding, the most significant bit
(M), intermediate bit (I), and least significant bit (L) of the output
of each multiplier are marked in the Figure. The four adders were
arranged vertically to exploit the dedicated carry logic supported
by the XC4000 series. The size of the chip limited the number of
multipliers to four. Four columns of CLBs were left for the adders.
The three intermediate adders were provided with the required
number of bits, that is, 16 bits, 16 bits, and 17 bits, respectively.
The adders were arranged in two columns as shown in Figure 8.
This leaves two full columns capable of supporting more than 70
bits for the final adder and provides sufficient intermediate word
width protection for most applications.

The routing between the arithmetic elements is not critical be-
cause the delay in the multiplier is 100 ns and that in the adder
is 22.5 ns (for a 16 bit adder) which allows routing delays to be
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Figure 7. FIR Filter Realization Using MAC with Four Multi-
pliers

as large as 75 ns without affecting the clock speed. A clock of
10 MHz is used for the pipeline registers through the global clock
buffer.

Additional support chips are required to synchronize the inputs
to the multipliers. There are a few CLBs left in the array after the
implementation of multipliers and adders, which can be used to
implement the logic for interfacing to these other devices.

As the MAC unit has 4 multipliers and the delay in the multiplier
is 100 ns, an N tap filter with these word sizes can be operated
with sampling rates of 40/N MHz, where N is a multiple of 4. For
example, a 32 tap filter can support a sampling rate of 1.25 MHz.

5. IIR FILTERS

Our implementations of multiply-accumulate units indicate that
the larger FPGAs can easily support a general purpose second
order IIR filter with reasonable word sizes at moderate to high
sampling rates. Designs which exploit the FPGAs reconfigurabil-
ity can be used to attain even higher densities and speeds.

5.1. IIR Filter Structure

The transfer function of an
�

th order IIR filter is given by

������� � � 0
� � 1

� � 1 � � � � � � 
 � 1
� �	� 
 � 1 �

�
1 � � 1

� � 1 � � 2
� � 2 � � � � � � 
 � 1

� �	� 
 � 1 �
�

(5)

Some of the realizations possible are direct form I and direct
form II, as discussed in [18]. For reducing the delay in the paths
between registers, however, the realization shown in Figure 9 is
used in this paper. This realization, like direct form II, is a cascade
of an autoregressive (AR) filter and a moving average (MA) filter,
but with a pipeline register in between. The delay elements are
also rearranged in such a way that there is only one path with a
multiplier and two adders. The others have only one multiplier
and one or no adder. This realization allows easier placement of
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Figure 8. Placement of MAC with Four Multipliers on
XC4000-Series FPGA

the multipliers and adders in the array of CLBs to achieve minimal
routing delays.

5.2. General IIR Filter Implementation on FPGAs

Second order IIR filters with general purpose multipliers, which
can take coefficients as inputs from outside the chip, can be used as
building blocks for cascade or parallel realizations of higher order
IIR filters. We will show that an XC4013 can support a general
purpose second order IIR filter at moderately high sampling rates.

The first term in the denominator of the transfer function may
be scaled according to the number of bits in the coefficients for
fixed point implementation. This implies that a scaling module
is needed before the pipeline register between the AR and MA
sections shown in Figure 9. This divider can be implemented
with a shifter without considerably increasing the area and delay
by constraining this coefficient to be equal to the nearest allowable
power-of-two number during the discrete space optimization of
the quantized coefficients.

In this implementation, the multipliers have 8 bit inputs and
the adders have 16 bit inputs. The 16 bit output of the multipliers
is fed to the adders and the most significant 8 bits of the output
of the adders are fed back to the multipliers. The two adders
in the autoregressive part of the filter referred to in Figure 9 are
implemented as a cascade of two dedicated carry logic adders.
This adder has a total combinatorial delay of 23 ns (2.5 + 20.5),
which is close to that of a single dedicated carry logic adder. Thus
the dominant delay is not necessarily in the logic path with two
adders as it may seem, but could very well be in other paths with
one multiplier and adder, unless placement is carefully considered.

The floorplan is illustrated in Figure 10. The placement was
done carefully to reduce the routing delays. Three 8 by 8 multiplier
units are arranged at the top of the array of 24 by 24 CLBs and
two multipliers below them. The placement of the multipliers
corresponding to � 2 and � 2 is not critical because there are no
adders in their logic paths. The adders are arranged vertically
to make use of the dedicated carry logic. The scaling block is
implemented with a shifter whose shift is controlled by a 3 bit
input (S). This shifter is implemented in two stages, the first stage
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Figure 9. Modified Canonical Form Realization of IIR Filters

providing shifts of any one of 0, 1, 2, or 4 shifts and the second
stage providing a shift of 0 or 3 stages. The first stage requires 8
CLBs and the second stage requires 4 CLBs.

The worst case delay in any logic path was found to be less than
145 ns. Thus using this approach, the larger parts in this series
can easily support a general purpose second order IIR filter with
the indicated word sizes at sampling rates approaching 7 MHz.

5.3. Dedicated IIR Filter Implementation on FPGAs

Dedicated IIR sections have "hardwired" coefficients that are pro-
grammed when the array is configured. In binary multiplication,
each partial product is a shifted version of the multiplicand if the
corresponding multiplier bit is a one, and a zero if the correspond-
ing bit is a zero. This zero term need not be computed and a row
of adders in the multiplier array can be eliminated, so that higher
densities can be achieved. We will show that a single XC4013 can
support two dedicated second order IIR filters using this approach.

In order to evaluate the practicality of implementing several
dedicated second order sections on a single FPGA, a typical low
pass IIR filter was designed as a cascade of two second order
sections, and was implemented on a Xilinx XC4013. As the
coefficients have only a small number of non-trivial bits, the mul-
tiplications can be realized using shift and add technique. Thus
for the filter,

������� � 6 � 10
� � 1 � 5

� � 2

64
�

113
� � 1 � 50

� � 2
�

3
� � � 1

64
�

105
� � 1 � 45

� � 2

�
(6)

the first second order section needs 12 columns and the second
one needs 11 columns. This was implemented in a single XC4013
chip. The placement of the key modules is given in Figure 11.
Addition of

�
inputs is performed by

� � 1 stages of dedicated
carry logic (DC) adder/subtractors. The dotted lines represent
horizontal longlines and the shaded triangles, the shifts. Blocks
which have registers are shaded. The shift for the scaling block
and the shifts needed for the multiplication tend to cancel each
other, thus shifting in the scaling block is absorbed into the shift of
the multiplier units. Negative coefficients were handled by using
the dedicated carry subtractors; these columns are represented in
the layout by the small circles at the inputs to the adders. The
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numerous shifts encountered in the shift and add approach will
very easily exhaust the routing resources. We have provided an
empty column between every stage, which frees up additional
routing resources. As shown in Figure 10, one second order
section is placed on top of the other, for reasons discussed above,
though the 24 columns available in the XC4013 might seem to
satisfy the requirements for the two sections, which total only 23
columns. The adders in this implementation use 22 bits, and the
most significant 14 bits of the output of the dedicated carry adders
are fed to the shift and add blocks.

The sampling rate achieved with this configuration was more
than 10 MHz.

A number of other example fixed-point filters were designed to
evaluate the utility of this approach; in all the cases studied, it was
practical to implement two IIR sections on a single chip.

6. PIPELINED MAC UNITS

It has been mentioned that the delay in the multiplier poses a
major limitation on the maximum sampling rate that can be at-
tained. Array multipliers can be configured to allow a pipelined
mode of operation, where the execution of separate multiplica-
tions overlaps. If this mode of operation is applied, the long delay
associated with the carry propagating addition performed in the
last row of the array multiplier can be minimized, since it deter-
mines the throughput of the pipeline. This approach has been
shown to yield extremely high speed custom implementations [5].
With this more aggressive pipelining, a MAC unit which oper-
ates at rates approaching 100 MHz can be implemented on the
XC4000-series FPGAs, thus providing a building block for high
sampling rate filters. The pipelined MAC units can be applied to
high performance FIR and IIR filter structures, as well as other
signal processing algorithms which can tolerate the pipeline delay.

6.1. Structure of the Pipelined MAC Unit

The structure of the pipelined MAC unit is shown in Figure 12.
The basic cells shown here are identical to that in the unpipelined

k

1a b2 b 0
a 2 b 1

D

C

D

C

D

C

D

Cy C

D

C

D

C

C

D

C

D

C

D

C

D

C

D

C

D

C

D

D

C
D

C

D

C

C

D

C

D

C

D

C

D

C

D

D

xk

first section

b 0 a 2b1

second section

a 1

24 x 24

XC4013

Figure 11. Placement of Two Dedicated Second Order IIR
Filters on XC4013

7



aaaa
3 2 1 0 0 1 2 3

 x  x  x  x

D D D D D D D

D D D D D D

D D D D D

D D D

DD

D

D D D

D D D D

D D D D D

D D D D D

D D D

D

D

D

D

D

D

D

D D

D D

D

D D

D D

D

D

D

D D

D

D

p
5

p
4

p
3 2 1 0

p p p

Figure 12. Structure of the Pipelined Multiply/Accumulate
Unit

MAC unit except that these cells include pipeline registers. Reg-
isters are needed to propagate the multiplier and multiplicand bits
to their destination and also to propagate the product bits that have
been completed, which is done in parallel with the generation of
new product bits.

For an
�

by
�

bit multiplier, the carry propagate adder is re-
placed with

�
rows of half adders with pipeline registers between

the rows. This allows a carry propagation of only one position
between any two consecutiverows. The clock speeddepends only
on the delay in the cells of the multiplier.

If multiple tap filters are to be realized, the adder needs to ac-
cumulate the result by getting feedback from the past output. By
introducing a set of full adders immediately below the diagonal of
the array and feeding back the outputs of the full adders to their
inputs through a single register, a bit-level pipelined multiply-
accumulate unit is formed. Figure 12 shows a 4 by 4 multiplier
and 6 bit accumulator with the 6 most significant bits of the mul-
tiplier output being fed back for accumulation; the dashed line
denotes the diagonal of the carry-save section. As the 4 least sig-
nificant bits are discarded, the delay elements shown in the dotted
squares need not be implemented. After the required number of
multiplications and accumulations are made, the output should be
clocked out and the accumulator reset.

The structure of FIR filters facilitates their implementation us-
ing the pipelined MAC unit. The filter coefficients and the corre-
sponding delayed inputs are fed to the multiplier in synchronized
data streams, with their arrivals corresponding to the basic clock
rate. An

�
tap filter requires

� �
1 clock cycles to complete the

computation of one output.

6.2. FPGA Implementation

Unlike the unpipelined MAC unit, the routing delay is very critical
in the pipelined MAC. This is becauseit takes 3.0 ns for the output
of the pipeline register to stabilize after it gets the clock, the output
is then routed, and finally there is a 4.5 ns delay in the next CLB.

Figure 13. Layout of the Pipelined MAC Unit on XC4010

Thus there is a minimum delay of 7.5 ns and unless proper care
is exercised, the routing delays may dominate. There is a delay
of 3.0 ns from the pad to Direct In input which will add to the
routing delay when the coefficients are distributed to the cells.
Some CLBs were used as registers between the input pads and
the cells; thus this delay was prevented from reducing the clock
speed.

A MAC unit with an 8 by 8 multiplier and a 12 bit accumulator
has been implemented on an XC4010. The pipeline registers in the
cells have been incorporated inside the CLBs which are also used
for the adders. The distribution of multiplier and multiplicand bits
is a major source of delay. The registers used to store multiplier
and multiplicand bits were interspersed between the CLBs in each
row of the multiplier array to reduce this delay.

The final output is computed in the diagonal full adders, and
hence it suffices to reset the registers in these adder cells at the
completion of an accumulation cycle. Due to the bit-level pipelin-
ing, these registers should be reset one by one starting from the
top of the carry save adder stage. This could have been easily
implemented by asserting the direct reset input to the registers in
the cells one by one through a set of skewing registers, but the 8
ns delay imposed by the direct reset is highly undesirable. This
problem was solved by making use of the multiplexing capability
of the XC4000 series, whereby the outputs of these diagonal cells
are forced to zero when a clear signal is asserted.

By careful routing, the maximum routing delay was kept within
4.6 ns which made the worst case delay in a logic path equal to
12.1 ns. Clock rates of more than 80 MHz can thus be attained.

The layout of the pipelined MAC on an XC4010 FPGA is
shown in Figure 13, which suggests that two such MAC units
could be accommodated in an XC4013.

7. CONCLUSION

This paper has described an approach to the implementation of
digital filter algorithms based on field programmable gate arrays
(FPGAs). General purpose DSP implementations often lack the
performance necessary for moderate sampling rates, and ASIC
approaches are limited in flexibility and may not be cost effective

8



for many applications. Our examples of FIR and IIR filter im-
plementations illustrate that the FPGA approach is both flexible
and provides performance comparable or superior to traditional
approaches. Because of the programmability of this technology,
the examples in this paper can be extended to provide a variety of
other high performance FIR and IIR filter realizations.
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