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multiprocessor platforms

Abstract— Nowadays, the System-on-a-chip (SoC)

has integrated more processors onto a single chip. Ap-

plications are also consisting of multiple tasks that are

presented as different source code which can be partly

executed concurrently. To efficiently use the multipro-

cessor platforms, system designers have to divide ap-

plication tasks into sets of subtasks and map subtasks

onto the parallel processors. However, the subtask-

level parallelism inside a single task is often too limited

to fully utilize all the parallel processors and results

in many slacks on processors. To better use the pro-

cessors, subtasks of multiple tasks will have to be exe-

cuted in an interleaving fashion. This paper proposes

design-time algorithms to interleave subtasks based on

the separated schedules of tasks. This can be consid-

ered as a hierarchical scheduler to steer the code gen-

eration of very complex applications with many tasks.

The scheduling experiments show that the execution

time can be shortened by 20%–30%by interleaving two

tasks and the differences between the solutions given

by our scheduling algorithm and the optimal solutions

are less than 6% for up to 20 subtasks.

I. Introduction

Nowadays, the merging of computers, consumer and
communication in information technology (IT) leads to
more and more components integrated onto one chip.
This is enabled by the rapid evolution in sub-micron pro-
cess technology. In an up to date heterogeneous plat-
form, usually one or more programmable components, ei-
ther general-purpose or DSP processor cores or ASIP’s,
the analog front end, on-chip memory, I/O and other
ASIC’s are all integrated into the same chip. However,
existing design technologies fall behind these advances in
processing technology. This is especially so when deal-
ing with complex (possibly data-dominated) and very
dynamic (partly non-deterministic) IT applications. A
consistent system design technology that can cope with
such characteristics and with the ever shortening time-to-
market requirements is greatly needed. It should allow
to map these dynamic applications cost-efficiently to the
target platform while meeting all real-time and other con-
straints.

Recent papers[10, 15] have shown that the modern mul-
timedia systems contain multiple concurrent tasks in the
original specification. Unfortunately, due to the NP-

hardness nature of most scheduling problems, it would
take tremendous amount of time to schedule a single huge
subtask frame constructed by merging multiple original
tasks. This makes it useful to consider a hierarchical
scheduling framework. That is, the subtasks in each sin-
gle task are firstly scheduled separately; then a top-level
task scheduler will generate a global schedule for a cluster
of single tasks based on their individual schedules. The
most obvious way to do that is to run all tasks sequen-
tially. That is, the next task will start when the current
task is completed. As a result of this assumption, if the
next task is invoked before the completion of the current
one, it has to wait for the current task. This assumption
is only reasonable for uniprocessor platforms. Since the
current heterogeneous multiprocessor platforms have con-
stantly increasing numbers of processors, it is necessary to
develop better techniques to keep the on-chip processors
busy. In this paper, we propose optimal and fast heuristic
algorithms to schedule task clusters based on interleaving
subtasks. In other words, our algorithm will take into
account the situation when multiple tasks are required
to run concurrently and interleave their separated sub-
tasks schedules to generate a new united schedule. The
result of our interleaving algorithm will improve the over-
all performance compared with the sequential case and
hence provide larger room for other techniques such as
Dynamic Voltage Scheduling(DVS) and Dynamic Power
Management (DPM) to further reduce the global energy
consumption.

The rest of this paper is organized as below: Firstly,
some related work is introduced in Section 2. Then a mo-
tivational example is given to illustrate the interleaving
problem in Section 3. In Section 4 a problem formulation
is given. Section 5 presents the interleaving algorithm.
Some experimental results are shown in Section 6 . Fi-
nally, the paper is concluded in Section 7.

II. Related work

Task scheduling has been investigated overwhelmingly
in the last decades. A good overview of early scheduling
algorithms can be found in [12]. In this paper, the termi-
nology task scheduling is used for both the ordering and
the assignment.

Since more and more embedded systems are targeted at
multiprocessor architectures, multiple processor schedul-
ing plays an increasingly important role. Hoang et al [5]



try to maximize the throughput by balancing the compu-
tation load of the distributed processors. All the partition
and scheduling decisions are made at compile time. This
approach is limited to pure data flow applications. Yen
et al [17, 16] try to combine the processor allocation and
process scheduling into a gradient-search co-synthesis al-
gorithm. It is a heuristic method and can only handle
periodic tasks statically. Busá et al [2] try to interleave
the coarse-grain operations and the fine-grain operations.
But their approach works at the instruction level and only
considers interleaving the I/O operations of coarse-grain
operations. Recently, a novel dynamic parallel execution
technique called Simultaneously Multi-Threading (SMT)
has become popular [13]. This technique tries to increase
the processor usage by issuing instructions from multiple
threads at run-time. The latest Pentium4 processor of
Intel has incorporated the Hyper-threading hardware to
support SMT. But their technique relies on the special
hardware support. In contrast, our technique makes use
of design-time scheduling techniques and code generation.
So no hardware change is required.

In the above work, performance is the only concern.
For embedded systems, cost factors like energy must be
taken into account as well. Gruian et al [4] have used con-
straint programming to minimize the energy consumption
at system level but their method is purely static and no
dynamic policy is applied to exploit more energy reduc-
tion.

Power consumption in a multiple processor context is
treated in [9] by evenly distributing the workload. How-
ever, no manifest power and performance relation is used
to steer the design-space exploration. In addition, they
also assume a continuously scalable working voltage. In
[8], for a multiprocessor and multiple link platform with
a given task and communication mapping, a two phase
scheduling method is proposed. The static scheduling is
based on the slack time list scheduling, and a critical path
analysis and task execution order refinement method is
used to find the off-line voltage scheduling for a set of
periodic real-time tasks. The run-time scheduling is sim-
ilar to resource reclaiming and slack stealing, which can
make use of the variation from the WCET and provide
the best-effort service to aperiodic tasks. In [18], a EDF
based multiprocessor scheduling and assignment heuristic
is given, which is shown better than the normal EDF. Af-
ter the scheduling, an ILP model is used to find the volt-
age scaling accurately or approximately by simply round-
ing the result from a LP solver and the result is claimed
within 97% accuracy. The method can be used for both
continuous and discrete voltages.

The scheduling technique in this paper is different from
the above ones: it works in a hierarchical framework.
That is, we assume that schedulers for each individual
task , such as the one introduced in [14], have explored the
most interesting scheduling tradeoff possibilities and have
generated a set of Pareto-optimal schedules for each task.
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Fig. 1. Subtask frames and their schedules

Our scheduling algorithm will then generate schedules for
a cluster of tasks based on those Pareto-optimal single
task schedules. This hierarchical scheduling will ensure a
performance which is very close to what can be guaran-
teed by running the conventional task schedulers on the
flattened combination of all tasks in the cluster while re-
ducing the computation complexity dramatically. Hence
we can effectively deal with much larger task graphs, as
shown in the results.

III. Motivational example

Before the design-time scheduling, a system should be
modeled as a set of subtask frames. A subtask frame

is equivalent to a task of the conventional models, and
these two terms will be used interchangeably in this pa-
per. However, rather than a black-box model as the con-
ventional tasks, a subtask frame contains a set of subtasks
and a control-data flow graph defining the control/data
dependencies among subtasks. The subtask frame model
can express the intra-task parallelism explicitly, which is
crucial to obtain a high performance schedule with a low
energy budget on multiprocessor platforms. Because the
computation complexity is too huge, the single subtask
frame scheduler has to work inside the frame, that is, this
scheduler will explore most possible schedules for a sub-
task frame. Fig.1 illustrates the the concept of subtask
frames as well as the schedules which will be explored by
the design-time scheduler. On the left side, each large
bubble represents a subtask frame; the smaller nodes in-
side subtask frames are subtasks. On the right side, a
number of schedules on a three processor platform are
shown; each block in the schedules represents a subtask.
Note that although we only show one schedule for one
subtask frame in the figure, one subtask frame may have
many different schedules with different makespans and en-
ergy consumptions. In general, a larger time budget will
allow the system running with a schedule with lower en-
ergy consumption.
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Fig. 2. Interleaving vs. non-interleaving

Suppose the next subtask frame can be started before
the completion of the ongoing frame, the previous run-
time scheduler will have to delay the start of the next
subtask frame till the end of the ongoing subtask frame.
This is illustrated in Fig.2(a). Since a single subtask frame
often does not have sufficient parallelism to fully exploit
all the processing resources and therefore has many slacks
in its schedules, it is beneficial to interleave two subtask
frames and thereby shorten the execution time of the two
frames, as indicated in Fig. 2(b). The shorter execu-
tion time will then allow other subtask frames have larger
time budgets and use schedules with lower energy con-
sumptions.

IV. Problem formulation

A design-time schedule of a single subtask frame on a
platform with m processors is defined as an allocation set
S = {P1 ∪ P2 ∪ ... ∪ Pm}, where Pi = {sti1, sti2, ...} is
the set of subtasks stij which have been mapped onto
the ith processor. stij is a pair (bij , eij) which denotes
a subtask starting at time bijand with an execution time
of eij . Because control/data dependencies exist among
subtasks inside a subtask frame, we have to preserve the
precedence constraints inside the schedule such that the
control/data dependencies of the subtask frame will not
be violated. For a schedule S, the set of precedence con-
straints is defined as a finite set Pre = {(stij , stkl), ...},
where the pair (stij , stkl) represents the constraint that
stijmust be complete before stklcan start.

The subtask frame interleaving problem for the set of
schedules {S1, S2, ...Sn}is to assign a start time xij to
the subtask stijsuch that the subtask frames can be com-
pleted as early as possible and all the precedence con-
straints between subtasks are satisfied:

∀stij ∈ S1 ∪ S2 ∪ ... ∪ Sn

Minimize[(xij + eij)max]

s.t.

∀(stij , stkl) ∈ Preh, h = 1, 2, ...n

xij + eij ≤ xkl

V. Subtask interleaving technique

Scheduling tasks with non-uniform execution times on
multiple processors is well-known for its intractability[3].
In fact, Hoogeveen et al [6] have proved that even for three
processors, scheduling tasks with fixed processor alloca-
tions is a NP-hard problem. Still, for not too large tasks,
an exact algorithm can be applied. We have developed a
branching-and-bound algorithm for the interleaving prob-
lem. This algorithm starts with all subtasks unscheduled.
After that, it finds a list of subtasks without precedence
constraints and branches into every precedence-free sub-
task, i.e. it schedules one precedence-free subtask from
that list and updates the stauts. Then it invokes itself
with the updated status in a recursive way. This recursion
continues until all subtasks are scheduled or the partial
schedule has a makespan larger than the upper bound.
When the algorithm reaches a valid schedule, it stores
the makespan as the upper bound. An outline of this
branching-and-bound algorithm is given in Algo.1.

Algorithm 1 Branching-and-bound algorithm for inter-
leaving
1: BnB()
2: INPUT: status; upper bound

3: OUTPUT: makespan
4: if makespan of status > upper bound then
5: return makespan of status

6: end if
7: if all subtasks are scheduled then
8: print status

9: return makespan of status

10: else
11: schedulable subtasks← precedence free subtasks

12: for all subtask i in schedulable subtasks do
13: new status← status

14: schedule subtask i and update new status

15: makespan← BnB(new status, upper bound)
16: if makespan < upper bound then
17: upper bound← makespan

18: end if
19: end for
20: return upper bound

21: end if

For larger subtask frames (with more than 20 subtasks



in our experiments) that are too expensive to handle
by the straightforwd branching-and bound approach, a
divide-and-conquer heuristic strategy can be applied to
process partitions separately. That is, the frames are
splitted into subframes such that the number of subtasks
inside each individual subframe can be handled by the
branching-and-bound approach. This comes at the cost
of sub-optimality (see Section VI)

It is still interesting though to have fast algorithms that
can handle more subtasks. Therefore an effective heuris-
tic algorithm has been developed to interleave multiple
subtask frames. This heuristic must be fast to construct
a valid schedule so that the designer can evaluate multiple
schedules which have been provided by preceding individ-
ual task scheduler.

We propose an interleaving heuristic based on the list
scheduling algorithm[7]. The basic idea is to keep a list
for each processor and add all the subtasks allocated to
the corresponding list. Then for each processor, this algo-
rithm will scan the list from left to right. Once a scanned
subtask has all of its predecessors completed, it will be
added to the ready list and scheduled onto the current
processor. We have also adapted the subtasks’ priorities
in the ready list such that the greedy behaviour of the list
scheduling is compensated.

To run the interleaving heuristic, we have created a
time tracer for each processor. We also maintain a list
of Precedence Constraints (PCs) and an Earliest Start
Time (EST) for each subtask. PCs record the number of
the subtask’s unscheduled predecessors and EST records
the latest completion time of the subtask’s predecessors.
A subtask cannot start unless its PCs are satisfied and it
cannot start earlier than the time specified by its EST.
During the initialization, the algorithm will set the time
tracers to zero, create the PCs according to the original
individual schedules of subtask frames and set all EST
records to be zero. Then it will start from the first frame
(the order of frames is arbitrary). For each processor, The
algorithm will scan if any subtask is ready to start. If a
subtask does not have unscheduled predecessors and the
timer of its allocated processor has a value not less than
its EST, then it will be added to the ready list. Then
it will be scheduled to start at the time specified by the
later one of the time tracer and its EST. The successors of
this scheduled subtask will update their EST to the time
not earlier than the completion of this scheduled subtask.
Also, the time tracer of the processor where the subtask
is scheduled will be updated to the earliest EST of all
subtasks to be scheduled of this processor. This update
can ensure that the subtask with the earliest EST will be
scheduled by the next scanning on this processor. The
scanning and updating procedure will be repeated until
all subtasks are scheduled.

Although experiments have shown that the above
heuristic is very effective in most cases, its greedy strat-
egy will make it suboptimal when dealing with subtasks

with a very long chain of precedence constraints. That
is, if many subtasks are ready to start, the current algo-
rithm does not favor the ones that have more successors.
Therefore, a long critical path will lead to a very sequen-
tial execution. To tackle this problem, we have incorpo-
rated look-ahead mechanism into the current algorithm,
i.e. we modified the algorithm such that it gives higher
priority to the subtask with more successors. The entire
heuristic algorithm is presented in Algo.2. Once the in-
terleaved schedule is generated, we can use it to steer the
code generation by using the code merging technique pre-
sented in [11]. The resulting code can then be executed
on the multiprocessor platform.

Algorithm 2 Interleaving heuristic
1: INPUT: st1, st2, ...; pre1, pre2, ....

2: OUTPUT: interleaved schedule of subtasks
3: time tracer ← 0
4: while unsched subtasks > 0 do
5: for all processor i do
6: for all subtask frame j do
7: if frame j has unsched sbutask on prcessor i then
8: if the first subtask of frame j is schedulable then
9: add the subtask to the ready list on the processor

10: end if
11: end if
12: end for
13: for all subtasks on the ready list do
14: priority← EST + number of successors

15: end for
16: EST ← EST of the highest priority subtask
17: if time tracer < EST then
18: time tracer← EST

19: end if
20: schedule the highest priority subtask at time tracer

21: update the schedule
22: inform this subtask’s start time to its successors
23: unsched subtasks← unsched subtasks− 1
24: end for
25: end while

VI. Experimental results

To evaluate the effectiveness of the interleaving algo-
rithm, we have implemented it in a prototype scheduler
with the Python language and firstly conducted the ex-
periments with a set of schedules generated randomly. We
then use the Visual Texture Coding (VTC) decoder of the
MPEG-4 as our real-life application for the experiment.
More experiments have been carried out with the Inverse
Discrete Cosine Transform(IDCT) and the Finite Impulse
Response (FIR) filter code extracted from the Trimaran
benchmarks. We have generated the interleaved source
code for IDCT and FIR and simulated the interleaved
execution on a heterogeneous multiprocessor simulator.

A. Evaluation of optimality for heuristic interleaving

To evaluate the optimalities of the scheduling algo-
rithms, we have tested the branching-and-bound algo-



5×2 7×2 10×2
Sequential Makespan 100 100 100
H Makespan 65.2 66.3 69.1

Exec. time (ms) 4.0 9.2 19.8
BB Makespan 62.6 63.3 65.9

Exec. time (ms) ≈ 104 ≈ 104 ≈ 107

15×2 17×2 20×2
Sequential Makespan 100 100 100
H Makespan 72.5 75.2 74.0

Exec. time (ms) 9.2 10.1 13.1
BB+ Makespan 71.6 78.2 76.1
DnC Exec. time (ms) ≈ 105 ≈ 105 ≈ 107

TABLE I
Optimality comparison results

rithm for two subtask frames. Each subtask frame con-
sists of 5 subtasks, 7 subtasks and 10 subtasks, respec-
tively. For larger frames that are too expensive to han-
dle by the straightforwd branching-and bound approach,
we have applied the divide-and-conquer heuristic. Us-
ing the branching-and-bound combined with the divide-
and-conquer strategy, we have conducted experiemnts for
two frames, each of which contains 15, 17 and 20 sub-
tasks, respectively. We have also tested the fast heuris-
tic algorithm for all cases. All the scheduling experi-
ments assume a platform with four heterogeneous pro-
cessors. For each case, we have repeated the experiment
for 100 times and report the average numbers. Tab.I
shows the results. H, BB and BB+DnC represent the
heuristic algorithm, branching-and-bound algorithm and
the branching-and-bound algorithm with the divide-and-
conquer strategy. For each algorithm, we report the av-
erage makespan and the execution time. Note that we
have normalized the makespans. All of the experiments
are measured on a Linux PC running at 1.7GHz. It is ob-
served that when dealing with small tasks, branching-and-
bound is always better than the heuristic algorithm. This
is because branching-and-bound is an exact fast algorithm
while heuristic is merely an approximation of the optimal
result. However, for large cases, our heuristic can give bet-
ter results than the branching-and-bound with the divide-
and-conquer strategy because that also becomes sub-
optimal. Therefore, the system-designer should consider
both branching-and-bound with the divide-and-conquer
and our interleaving heuristic when scheduling very large
subtask frames. Since both are performed at design-time,
the time overhead of applying both heuristics is accept-
able.

B. Comparisons with sequential cases

We have applied the interleaving algorithm on the
schedules of the VTC decoder. We have analyzed and
made the design-time scheduling of this decoder(see [10]
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Fig. 3. VTC: interleaved vs. non-interleaved execution

for details). In this paper, we assume that two such de-
coders will run concurrently for different objects. Fig.3
shows the interleaving results of two VTC decoders run-
ning concurrently at different decoding speeds. This fig-
ure clearly indicates that the interleaved execution times
are on average 20% shorter than the non-interleaved ex-
ecution times in the time range between 20 and 25 ms,
which is the interval of the most frequently imposed speed
requirements. We have also conducted more experiments
with benchmarks based on IDCT and FIR. Firstly, a
8×8IDCT procedure for a QCIF image was modelled as a
subtask and we have considered a subtask frame with four
such IDCT subtasks. Then, we modelled a 64-tap FIR
filter as a subtask and constructed a subtask frame with
eight FIR subtasks. After that, we scheduled each of the
two benchmarks on a four-processor platform. Finally, we
have conducted interleaving for the following two scenar-
ios: two instances of IDCT frames are scheduled to run in
the interleaved way; and one instance of IDCT frame and
one instance of FIR frame are scheduled to run in the in-
terleaved way. These system-level interleaving results are
shown in the Tab.II.

C. Code generation and simulation of benchmarks

In addition to the system-level scheduling, we have gen-
erated the interleaved source code for the IDCT and FIR
benchmarks. The generated source code is then compiled
and simulated on the multiprocessor compiler and cycle-
accurate simulator environment called CRISP[1]. In our
experiments, CRISP is configured to emulate a four het-
erogeneous VLIW processors architecture where the pro-
cessors are synchronized on a shared memory. Tab.II sum-
marizes the average performance improvements against
the non-interleaved execution of those subtask frames.



2 IDCT
System-level sequential(103cycles) 1900
estimation interleaved(103cycles) 1320

improvement 30.5%
Cycle-accurate sequential(103cycles) 1876

simulation interleaved(103cycles) 1520
improvement 19.0%

IDCT+3FIR
System-level sequential(103cycles) 1700
estimation interleaved(103cycles) 950

improvement 44.1%
Cycle-accurate sequential(103cycles) 1696

simulation interleaved(103cycles) 946
improvement 44.2%

TABLE II
Performance improvements comparison

VII. Conclusions

Task scheduling technique becomes increasingly impor-
tant to design the real-time embedded systems with the
stringent energy budgets. This paper presents a fast
scheduling technique to minimize the processor slacks for
heterogeneous multiprocessor platforms. This technique
can interleave multiple frames of subtasks. We have im-
plemented the technique in a prototype scheduler and con-
ducted experiments for subtasks generated randomly, the
execution time can be shortened by a factor up to 37%.
The experiments on a MPEG-4 still image decoder show
an average execution time improvement of 20% in the
most used decoding speed range. More experiments on
the benchmarks have also proved the effectiveness of our
heuristic algorithm to steer the code generation for het-
erogeneous multiprocessor platforms.

References

[1] Francisco Barat, Murali Jayapala, Tom Vander Aa, Rudy
Lauwereins, Geert Deconinck, and Henk Corporaal. Low power
coarse-grained reconfigurable instruction set processor. In 3th
International Conference on Field Programmable Logic and
Applications, September 2003.
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