
1

The CoreConnect™ Bus Architecture

Recent advances in silicon densities now allow for the integration of numerous functions onto a single
silicon chip. With this increased density, peripherals formerly attached to the processor at the card level
are integrated onto the same die as the processor. As a result, chip designers must now address issues
traditionally handled by the system designer. In particular, the on-chip buses used in such system-on-a-
chip designs must be sufficiently flexible and robust in order to support a wide variety of embedded
system needs.

The IBM Blue Logic™ cores program provides the framework to efficiently realize complex system-on-a-
chip (SOC) designs. Typically, a SOC contains numerous functional blocks representing a very large
number of logic gates. Designs such as these are best realized through a macro-based approach. Macro-
based design provides numerous benefits during logic entry and verification, but the ability to reuse
intellectual property is often the most significant. From generic serial ports to complex memory controllers
and processor cores, each SOC generally requires the use of common macros.

Many single chip solutions used in applications today are designed as custom chips, each with its own
internal architecture. Logical units within such a chip are often difficult to extract and re-use in different
applications. As a result, many times the same function is redesigned from one application to another.
Promoting reuse by ensuring macro interconnectivity is accomplished by using common buses for inter-
macro communications. To that end, the IBM CoreConnect architecture provides three buses for
interconnecting cores, library macros, and custom logic:

• Processor Local Bus (PLB)
• On-Chip Peripheral Bus (OPB)
• Device Control Register (DCR) Bus

Figure 1 illustrates how the CoreConnect architecture can be used to interconnect macros in a PowerPC
440 based SOC. High performance, high bandwidth blocks such as the PowerPC 440 CPU core, PCI-X
Bridge and PC133/DDR133 SDRAM Controller reside on the PLB, while the OPB hosts lower data rate
peripherals. The daisy-chained DCR bus provides a relatively low-speed data path for passing
configuration and status information between the PowerPC 440 CPU core and other on-chip macros.

PCI-X
Bridge

SRAM/ROM
Peripheral
Controller

External
Bus Master
Controller

SRAM
Controller

PC133/DDR133
SDRAM Controller

PPC440
CPU

Inst Data

DMA
Controller

OPB
Bridge

10/100 Ethernet

USBI C2

PLB
Arbiter

OPB
Arbiter

Interrupt
Controller

Reset
Clock Control
Power Mgmt

On-Chip Peripheral Bus (OPB) 32-bit

Processor Local Bus (PLB) 128-bit

Device
Control
Register

Bus

SRAM

Custom
Logic

FPU

GPIO

Figure 1: CoreConnect Based System-On-a-Chip.

2

The CoreConnect architecture shares many similarities with the Advanced Microcontroller Bus
Architecture (AMBA™) from ARM Ltd. As shown in Table 1, the recently announced AMBA 2.01 includes
the specification of many high performance features that have been available in the CoreConnect
architecture for over three years. Both architectures support data bus widths of 32-bits and higher, utilize
separate read and write data paths and allow multiple masters. CoreConnect and AMBA 2.0 now both
provide high performance features including pipelining, split transactions and burst transfers. Many
custom designs utilizing the high performance features of the CoreConnect architecture are available in
the marketplace today.

Open specifications for the CoreConnect architecture are available on the IBM Microelectronics web site.
In addition, IBM offers a no-fee, royalty-free CoreConnect architectural license. Licensees receive the
PLB arbiter, OPB arbiter and PLB/OPB bridge designs along with bus model toolkits and bus functional
compilers for the PLB, OPB and DCR buses. In the future, IBM intends to include compliance test suites
for each of the three buses.

Processor Local Bus

The PLB and OPB buses provide the primary means of data flow among macro elements. Because these
two buses have different structures and control signals, individual macros are designed to interface to
either the PLB or the OPB. Usually the PLB interconnects high-bandwidth devices such as processor
cores, external memory interfaces and DMA controllers.

The PLB addresses the high performance, low latency and design flexibility issues needed in a highly
integrated SOC through:

• Decoupled address, read data, and write data buses with split transaction capability
• Concurrent read and write transfers yielding a maximum bus utilization of two data transfers per

clock
• Address pipelining that reduces bus latency by overlapping a new write request with an ongoing

write transfer and up to three read requests with an ongoing read transfer.
• Ability to overlap the bus request/grant protocol with an ongoing transfer

1 ARM AMBA data obtained from the ARM web pages.

IBM CoreConnect
Processor Local Bus

ARM AMBA 2.0
AMBA High-performance Bus

Bus Architecture 32-, 64-, and 128-bits
Extendable to 256-bits

32-, 64-, and 128-bits

Data Buses Separate Read and Write Separate Read and Write

Key Capabilities

Multiple Bus Masters
4 Deep Read Pipelining
2 Deep Write Pipelining

Split Transactions
Burst Transfers
Line Transfers

Multiple Bus Masters
Pipelining

Split Transactions
Burst Transfers
Line Transfers

On-Chip Peripheral Bus AMBA Advanced Peripheral Bus
Masters

Supported Supports Multiple Masters Single Master: The APB Bridge

Bridge Function Master on PLB or OPB APB Master Only
Data Buses Separate Read and Write Separate or 3-state

Table 1: Comparison of IBM CoreConnect and ARM AMBA 2.0 Architectures.

3

In addition to providing a high bandwidth data path, the PLB offers designers flexibility through the
following features:

• Support for both multiple masters and slaves
• Four priority levels for master requests allowing PLB implementations with various arbitration

schemes
• Deadlock avoidance through slave forced PLB rearbitration
• Master driven atomic operations through a bus arbitration locking mechanism
• Byte-enable capability, supporting unaligned transfers
• A sequential burst protocol allowing byte, half-word, word and double-word burst transfers
• Support for 16-, 32- and 64-byte line data transfers
• Read word address capability, allowing slaves to return line data either sequentially or target

word first
• DMA support for buffered, fly-by, peripheral-to-memory, memory-to-peripheral, and memory-to-

memory transfers
• Guarded or unguarded memory transfers allow slaves to individually enable or disable

prefetching of instructions or data
• Slave error reporting
• Architecture extendable to 256-bit data buses
• Fully synchronous

The PLB specification describes a system architecture along with a detailed description of the signals and
transactions. PLB-based custom logic systems require the use of a PLB macro to interconnect the
various master and slave macros.

Figure 2 illustrates the connection of multiple masters and slaves through the PLB macro. Each PLB
master is attached to the PLB macro via separate address, read data and write data buses and a plurality
of transfer qualifier signals. PLB slaves are attached to the PLB macro via shared, but decoupled,
address, read data and write data buses along with transfer control and status signals for each data bus.

The PLB architecture supports up to 16 master devices. Specific PLB macro implementations, however,
may support fewer masters. The PLB architecture also supports any number of slave devices. The

PLB Masters PLB Macro PLB Slaves

Status
&

Control

Read Data

Shared Bus

Central Arbiter

Status & Control

Read Data

Control

Address
& Transfer
Qualifiers

Write Data

Arbitration

Address
& Transfer
Qualifiers

Control

Write Data

Figure 2: Example of PLB Interconnection.

4

number of masters and slaves attached to a PLB macro directly affects the maximum attainable PLB bus
clock rate. This is because larger systems tend to have increased bus wireload and a longer delay in
arbitrating among multiple masters and slaves.

The PLB macro consists of a bus arbitration control unit and the control logic required to manage the
address and data flow through the PLB. The separate address and data buses from the masters allow
simultaneous transfer requests. The PLB macro arbitrates among these requests and directs the address,
data and control signals from the granted master to the slave bus. The slave response is then routed from
the slave bus back to the appropriate master.

PLB Bus Transactions

PLB transactions consist of multiphase address and data tenures. Depending on the level of bus activity
and capabilities of the PLB slaves, these tenures may be one or more PLB bus cycles in duration. In
addition, address pipelining and separate read and write data buses yield increased bus throughput by
way of concurrent tenures. Address tenures have three phases: request, transfer and address acknowl-
edge. A PLB transaction begins when a master drives its address and transfer qualifier signals and
requests ownership of the bus during the request phase of the address tenure. Once the PLB arbiter
grants bus ownership the master's address and transfer qualifiers are presented to the slave devices
during the transfer phase. The address cycle terminates when a slave latches the master's address and
transfer qualifiers during the address acknowledge phase.

Figure 3 illustrates two deep read and write address pipelining along with concurrent read and write data
tenures. Master A and Master B represent the state of each master's address and transfer qualifiers. The
PLB arbitrates between these requests and passes the selected master's request to the PLB slave
address bus. The trace labeled Address Phase shows the state of the PLB slave address bus during
each PLB clock.

As shown in Figure 3, the PLB specification supports implementations where these three phases can
require only a single PLB clock cycle. This occurs when the requesting master is immediately granted
access to the slave bus and the slave acknowledges the address in the same cycle. If a master issues a
request that cannot be immediately forwarded to the slave bus, the request phase lasts one or more
cycles.

Each data beat in the data tenure has two phases: transfer and acknowledge. During the transfer phase
the master drives the write data bus for a write transfer or samples the read data bus for a read transfer.
As shown in Figure 3, the first (or only) data beat of a write transfer coincides with the address transfer

Read Data Phase

Write Data Phase

XFER ACK

XFER ACKREQ XFER ACKREQ

XFER ACKREQ

XFER ACK XFER ACK XFER ACK

XFER ACKREQ

XFER ACK XFER ACK

XFER ACK XFER ACK XFER ACK

PLB Clock

Master A

Master B

Address Phase

XFER ACK

XFER ACKXFER ACK

Figure 3: PLB Transfer Protocol Example.

5

phase. Data acknowledge cycles are required during the data acknowledge phase for each data beat in a
data cycle. In the case of a single-beat transfer, the data acknowledge signals also indicate the end of the
data transfer. For line or burst transfers, the data acknowledge signals apply to each individual beat and
indicate the end of the data cycle only after the final beat. The highest data throughput occurs when data
is transferred between master and slave in a single PLB clock cycle. In this case the data transfer and
data acknowledge phases are coincident. During multi-cycle accesses there is a wait-state either before
or between the data transfer and data acknowledge phases.

The PLB address, read data, and write data buses are decoupled from one another, allowing for address
cycles to be overlapped with read or write data cycles, and for read data cycles to be overlapped with
write data cycles. The PLB split bus transaction capability allows the address and data buses to have
different masters at the same time. Additionally, a second master may request ownership of the PLB, via
address pipelining, in parallel with the data cycle of another master's bus transfer. This is shown in Figure
3. Overlapped read and write data transfers and split-bus transactions allow the PLB to operate at a very
high bandwidth by fully utilizing the read and write data buses.

Allowing PLB devices to move data using long burst transfers can further enhance bus throughput.
However, to control the maximum latency in a particular application, master latency timers are required.
All masters able to issue burst operations must contain a latency timer that increments at the PLB clock
rate and a latency count register. The latency count register is an example of a configuration register that
is accessed via the DCR bus. During a burst operation, the latency timer begins counting after an address
acknowledge is received from a slave. When the latency timer exceeds the value programmed into the
latency count register, the master can either immediately terminate its burst, continue until another master
requests the bus or continue until another master requests the bus with a higher priority.

PLB Cross-Bar Switch

In some PLB-based systems multiple masters may cause the aggregate data bandwidth to exceed that
which can be satisfied with a single PLB. With such a system it may be possible to place the high data
rate masters and their target slaves on separate PLB buses. An example is a multiprocessor system
using separate memory controllers. A macro known as the PLB Cross-Bar Switch (CBS) can be utilized to
allow communication between masters on one PLB and slaves on the other. As shown in Figure 4, the
CBS is placed between the PLB arbiters and their slave buses. When a master begins a transaction, the
CBS uses the associated address to select the appropriate slave bus. The CBS supports simultaneous
data transfers on both PLB buses along with a prioritization scheme to handle multiple requests to a
common slave port. In addition, a high priority request can interrupt a lower priority transaction.

On-Chip Peripheral Bus

The On-Chip Peripheral Bus (OPB) is a secondary bus architected to alleviate system performance
bottlenecks by reducing capacitive loading on the PLB. Peripherals suitable for attachment to the OPB
include serial ports, parallel ports, UARTs, GPIO, timers and other low-bandwidth devices. As part of the

Slave A

Slave B

Slave C

Slave D

Slave Bus 2

Slave Bus 1

Master A

Master B

Master C

Master D

PLB
Arbiter 1

PLB
Arbiter 2

Cross-Bar
Switch

Figure 4: PLB Crossbar Switch.

6

IBM Blue Logic cores program, all OPB core peripherals directly attach to OPB. This common design
point accelerates the design cycle time by allowing system designers to easily integrate complex
peripherals into an ASIC.

The OPB provides the following features:

• A fully synchronous protocol with separate 32-bit address and data buses
• Dynamic bus sizing to support byte, half-word and word transfers
• Byte and half-word duplication for byte and half-word transfers
• A sequential address (burst) protocol
• Support for multiple OPB bus masters
• Bus parking for reduced-latency transfers

OPB Bridge

PLB masters gain access to the peripherals on the OPB bus through the OPB bridge macro. The OPB
bridge acts as a slave device on the PLB and a master on the OPB. It supports word (32-bit), half-word
(16-bit) and byte read and write transfers on the 32-bit OPB data bus, bursts and has the capability to
perform target word first line read accesses. The OPB bridge performs dynamic bus sizing, allowing
devices with different data widths to efficiently communicate. When the OPB bridge master performs an
operation wider than the selected OPB slave the bridge splits the operation into two or more smaller
transfers.

OPB Implementation

The OPB supports multiple masters and slaves by implementing the address and data buses as a
distributed multiplexer. This type of structure is suitable for the less data intensive OPB bus and allows
adding peripherals to a custom core logic design without changing the I/O on either the OPB arbiter or
existing peripherals. Figure 5 shows one method of structuring the OPB address and data buses.
Observe that both masters and slaves provide enable control signals for their outbound buses. By
requiring that each macro provide this signal, the associated bus combining logic can be strategically

Data In
Data Out

Address

Master B

Enable

Data In
Data Out

Address

Slave B

Enable

Enable

Data In
Data Out

Address

Master A

Enable

Enable

Arbiter

Request Grant

Request Grant

Data In
Data Out

Address

Slave C

Enable

Data In
Data Out

Address

Slave A

Enable

Figure 5: OPB Physical Implementation.

7

placed throughout the chip. As shown in the figure, either of the masters is capable of providing an
address to the slaves, whereas both masters and slaves are capable of driving and receiving the
distributed data bus.

DCR Bus

Lower performance status and configuration registers are typically read and written through the Device
Control Register (DCR) Bus. The DCR provides a maximum throughput of one read or write transfer
every two cycles and is a fully synchronous bus typically implemented as a distributed multiplexer. Figure
6 illustrates the address and data flow between a processor core master and the DCR slaves. Observe
that the relatively slow DCR bus utilizes a ring-type data bus. This provides the required connectivity while
minimizing silicon usage.

Design Toolkits

Design toolkits are available for each of the on-chip buses. These toolkits contain master, slave and
arbiter Bus Functional Models (BFM). Also provided is a Bus Functional Compiler used to translate
testcases written in a bus functional language into simulator commands executable by the master and
slave models.

These toolkits aid in unit and subsystem simulation of macros designed for attachment to any of the three
on-chip buses. The toolkits are available in VHDL and Verilog such that they can be used in any
simulation environment. The Bus Functional Language (BFL) command definition is unique for each bus
and allows the user to execute and respond to all allowable transactions on the particular bus. BFL is
processed by the bus functional compiler into command sequences executable by a BFM running on an
event driven simulator such as VerilogXL, MTI or VSS.

Each bus toolkit provides a bus monitor that automatically performs architectural protocol checking on all
masters and slaves attached to the bus. These checks verify that the masters and slaves under test
adhere to the defined bus protocol and help to ensure compatibility when the macros are interconnected
in a system environment. In addition to protocol checking, the master and slave models also perform read
and write data checking. For example, when a master is programmed to perform a read transfer, the
model checks the read data with the expected data as programmed in the BFL.

The toolkits also support concurrently executing multiple master models. A model intercommunication
scheme is provided to allow transaction synchronization between the masters. One use of this feature is
creating bus contention testcases often necessary to verify a macro.

DCR Slave B

DCRs DCRs

DCR Slave A

PPC440
CPU

DCR Master

Address

Write DataRead Data

Figure 6: DCR Bus Structure.

8

Summary

The open standard CoreConnect bus provides the primary means of communication between macros in
an IBM Blue Logic design. Designers realize several advantages in creating and using compliant macros.
First, IBM is continually expanding its extensive library of Blue Logic off-the-shelf core macros. These
logic blocks are easily integrated into a customer's SOC solution. Additionally, customers benefit by being
able to reuse their own macros in multiple products. Finally, these common interfaces allow for easy
integration, providing valuable time savings when implementing complex designs.

Design toolkits are available for the CoreConnect bus and include functional models, monitors, and a bus
functional language to drive the models. These toolkits provide an excellent validation environment for
engineers designing macros to attach to the PLB, OPB and DCR buses.

Further information on CoreConnect licensing, IBM Blue Logic, available cores, macros, and design
toolkits is available on the WWW at:

http://www.chips.ibm.com/products/coreconnect

© International Business Machines Corporation, 1999. All Rights Reserved.

IBM is a registered trademark of the International Business Machines Corporation.

Blue Logic, CoreConnect, PowerPC and PowerPC 440 are trademarks of the International Business Machines Corporation.

All other products and company names are trademarks or registered trademarks of their respective holders.

IBM will continue to enhance products and services as new technologies emerge. Therefore, IBM reserves the right to make
changes to its products, other product information, and this publication without prior notice. Please contact your local IBM
Microelectronics representative on specific standard configurations and options.

IBM assumes no responsibility or liability for any use of the information contained herein. Nothing in this document shall operate as
an express or implied license or indemnity under the intellectual property rights of IBM or third parties. NO WARRANTIES OF ANY
KIND, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE ARE OFFERED IN THIS DOCUMENT.

