

SystemC-VHDL co-simulation and synthesis in the HW domain

Massimo Bombana, Siemens MC S.p.A., Italy

Francesco Bruschi, Politecnico di Milano, Italy

Abstract
Embedded systems design requires the development of
complex HW modules to cope with the most stringent
timing constraints of the specifications. This implies
the need to update and enrich HW design
methodologies to face abstraction and novel
requirements. Here we will present some results of
design practice of HW modules in this context. Co-
simulation and synthesis are combined in this
approach to achieve higher abstraction levels in the
design, to improve validation and re-use of previous
designs and human experience. The proposed
methodology is embedded in a SystemC based design
flow. The SystemC-VHDL co-simulator tool is also
based on a SystemC/C++ front-end developed to
support the co-simulation between VHDL and
SystemC. The prototypal state of the adopted tools
increase the novelty and interest of the approach.

1 Introduction

Embedded systems are increasingly used in various

application domains, ranging from telecom to

automotive, from domotics to avionics. Design tasks

face increasing demands of advanced functionalities of

devices, and tight integration with available IPs,

components and platforms. This triggers an expansion

of the design methodology also for HW components,

giving relevance to issues like re-use, quick

prototyping, HW/SW integration. Such new approach

should allow the development of programmable IP-

oriented devices (FPGAs) and the introduction on the

market of novel EDA toolsets, operating at high levels

of abstraction and producing automatic

implementations.

In the telecom domain the design of customised

interfaces between standard busses and proprietary

modules sitting, for exa mple, on boards for mobile

communication systems, is one of the crucial issues

and bottleneck to success. SystemC is nowadays

considered one of the languages that will allow an

increase of abstraction for HW modelling and will

ease the integration of SW mo dules in the context of a

formalized system level design methodology. One of

the features that this language offers is the possibility

to mix various levels of model abstraction during the

design flow. The designer can model an item of the

system through a pure functional untimed

specification, and then check its interaction with other

elements of the system in the early design phases.

New applications are seldom designed from scratch:

more often in industrial practice several modules are

reused from previous versions or implementations.

This paves the way to a methodology that mixes not

only abstraction levels but also languages. In fact the

large majority of the databases of reusable designs in

our industrial design centers are written in VHDL,

while much effort is being spent on introducing

SystemC as the system level modelling language.

Model validation becomes a crucial issues in such

context.

In this paper we focus on the analysis and

formalization of a design methodology able to mix

abstraction levels and languages for HW development,

combining behavioural synthesis and SystemC/VHDL

cosimulation. In section 2 we will describe the adopted

design flow, underlining the integration of various

existing commercial tools into a unified design flow.

Requirements and constraints are analysed and

solutions evaluated. In section 3 we describe a design

practice involving the design of elements of different

complexity in this design flow. An assessment of the

design experience is summarised in section 4. Finally

conclusions and plans for future work are described in

section 5.

2 Methodological approach and design
flow

The main goal of our activity consisted in defining,

applying and evaluating a tool flow that allows

cosimulation of VHDL modules and SystemC code, in

a methodological framework including specifically

high-level modelling, simulation and synthesis. The

task is accomplished by satisfying the following

requirements:

 ¦ possibility of modelling the application at RT

and/or behavioural SystemC level, mixing VHDL

and SystemC modules, both in the model itself

and in the test bench;

¦ feasibility of applying synthesis, either from the

RT or from the behavioural level of abstraction,

both for VHDL and SystemC modules;

 ¦ possibility of simulating each representation

and to cosimulate mixed representations (for

example of SystemC models and VHDL test

benches);

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

 ¦ using a flow that is based on commercially

supported tools and exploiting the available

expertise at the human level.

The complete and formalized design flow is shown

in Figure 1. The design activity starts with the

modeling phase at behavioral level, where SystemC

(specifically the SystemC subset for synthesis) is used

for a high level description of the application. The test

bench is also specified in SystemC at the same level of

abstraction. The system consisting of model and test

bench is simulated in order to verify the satisfaction of

the functional requirements and to identify the

compliance with design constraints and specs at this

level.

After system level verification, the synthesis step is

performed using SystemC Compiler or Design

Compiler, according to the selected level of

abstraction that was adopted in the previous phase.

Specifically using SystemC Compiler a VHDL netlist

at RT level is generated. In order to check the results

of the synthesis step, when some degree of

manipulations have been performed after synthesis by

the designer (in form of corrections or additional

manual coded modules), this level of the design is

simulated again at this level of abstraction, including

also the low level design details. In order to perform

this step without translating the test bench manually

from SystemC into VHDL (manual operation that can

introduce errors in the design), the cosimulation step is

performed. At first the test bench is given to an

intermediate module (HDL Cosim), that creates an

environment around the VHDL description to allow its

connections with the SystemC environment. All these

translation procedures are transparent to the final user.

The test bench and the elaborated module are then

provided to Modelsim and Synopsys DLL for final

simulation. This design step produces cosimulation

traces that are visually inspected to verify correctness.

The actual state of the cosimulator allows using

different simulators available on the market, including

Scirocco and ModelSim. In our case we used

ModelSim since this is the tool we usually adopt for

VHDL simulation.

2.1 Design issues: Integrability into an EDA
environment

Reuse of existing designs and valorisation of

human expertise are key factors in design centers in

industry. The tool is part of a commercial toolset fully

compatible with our design flow.

A main issue concerns the fact that different

abstraction levels are applied in the previous flow: it

may happen that the test bench belongs to a different

level in comparison with the VHDL model. This may

introduce a mismatch in some signal types. For

instance, this happens for bool vs. std_logic type of

ports. Typically the interfaces of the behavioural

modules contain ports of type bool, that is a more

abstract and generic type with respect to the resolved

ones. The synthesis step, in turn, generates VHDL

entities that have interfaces made of std_logic ports

(this is reasonable for a RT description). So, a manual

file correction is needed in order to specify that the

SystemC interface generated must match bool types to

sc_logic ones. Different-level adaptations of this kind

can be automatically produced. This effort will be

justified when the proposed design flow will generate

a relevant demand in the designers’ community.

SystemC Testbench

Target Library

<SystemC Compiler™

Design Compiler™

First RTL design

VHDL RTL Design

Model Sim™

SystemC Behavioural
Model

Cosim Exec Model

Model_IF

Cosimulation
 Results

HDL Cosim

Synthesis Backend

Figure 1 HW design flow for synthesis and cosimulation.

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

2.2 Input specification style and comparison
with standard simulators

All the SystemC constructs are supported by the co-

simulator. This implies that specifications syntax need

not to be tailored to any specific language subset.

VHDL specifications also follow the standard format,

according to the used VHDL simulator. However the

synthesis tool is constrained by the synthesis subset,

both for VHDL and SystemC. This issue finally

imposes to adopt the synthesis subset for the entire

flow (except for the testbench).

A few manipulations are necessary at the moment

in the generation of the SystemC test bench, like for

instance in the include sections and in the name that

instantiates the module. These are trivial issues that

will likely be corrected in the future releases of the

tools.

3 Design Practice

The first set of design tasks using the combination

of behavioural synthesis and cosimulation had the goal

to provide a methodological assessment and the

identification of the optimal conditions for the

measurements, in terms of different parameters tuning.

For this goal SystemC behavioural specifications of

two simple devices were used.

We applied the formalized design flow (figure 1),

including synthesis, high level SystemC simulation

and low-level SystemC/VHDL cosimulation. The

traces derived from the simulations at at the two

abstraction levels, i.e. before and after the generation

of the VHDL RTL netlist, were compared. This

allowed to check the correctness of the design task

consisting of automatic synthesis and manual code

adaptations and to verify the lack of trivial bugs in the

new toolset applying SystemC/VHDL cosimulation.

SystemC tracing features were used to generate

waveforms. They were put into a graphical format

using free waveform viewers. A preprocessor flag

controls the switching among the simulation of the full

SystemC model and the cosimulation (see Figure 2).

The tracing routine makes use of this attribute as

shown in the same code sample.

After a reset phase of 100 cycles, the simulation runs

for 1000 cycles.

The trace obtained instantiating a counter allows to

verify that the device exhibits the expected behaviour,

with the counter incremented at each clock cycle.

According to the flow depicted in Figure 1, synthesis

is then performed. After this phase, three files are

available.

#ifndef COSIM
F = sc_create_vcd_trace_file("waves");
#else
F =
sc_create_vcd_trace_file("waves_cosim")
;
#endif
sc_trace(F,clock,"clock");
sc_trace(F,reset,"reset");
sc_trace(F,out,"out");

Figure 2 Code sample from the testbench

The first one provides some information on the

interfaces generated for cosimulation. The most

relevant one in this case is the type of the ports, that is

written as bool (see text in Figure 3). This type was

inserted manually and substitutes the type sc_int. This

operation is due to the combination of synthesis and

simulation that we are experimenting. If VHDL and

SystemC modules were interfaced directly at the same

(for example RT) level, this manipulation would have

not been necessary.

 .INPUT_PORTS
 1 clk (STD_L) [=] bool (clk)
 2 reset (STD_L) [=] bool (reset)

.OUTPUT_PORTS
 1 out_port (STD_L_V(3 downto 0))
sc_int (out_port)

Figure 3 Generated interface definition

The second file represents a wrapper for the VHDL

modules, created by the cosimulation environment.

These interfaces incapsulate the VHDL code, allowing

communication with the SystemC blocks. They are

implemented in SystemC and transparent to the final

user.

Finally, the third file contains the VHDL code that has

been generated by the synthesis flow from the

SystemC specification. This is an RT level VHDL

description and the blocks defined in this net will be

cosimulated with the original SystemC test bench.

The fact the obtained cosimulation trace is

behaviourally similar to the fully SystemC simulation

suggests that the two simple models are functionally

equivalent.

A more complex testing was applied to a PCI-like

Interface to be used in GSM Base Station Controllers

(BSCs) This application has been described elsewhere

[x]. We only remind that the reconfigurability features

of the PCI (plug’n’play) are not implemented; the

mapping of the device in the address spaces of the bus

is hardwired; (it is obviously parametric in the model,

but it cannot be changed at run time);

Starting from these requirements, a functional

decomposition of the specification is performed,

modelling different blocks. Further steps of the

synthesis flow will produce FPGA implementation.

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

This real life application is characterized by a much

larger number of signals to be checked and by a more

complex control flow, generating different sections of

behaviour to be controlled separately. As an example

of the traces produced from the behavioural SystemC

description, refer to figure 4 for the example of a

master write PCI transition. Here the correct

arbitration phase can be observed (control signals

req/gnt), followed by the address phase and by the

data burst phase (signals frame,ad,be).
Note the presence of a second clock, at a higher

frequency than the PCI bus one. This overclocking

was needed by the interface because the constraints

given by the synthesisable subset handled by SystemC

Compiler force to add some otherwise redundant clock

cycles in the behavioural code. The overclock ratio has

been kept minimal in order to allow fpga synthesis.

These remarks are related to the synthesis aspect and

not to the cosimulation.

From this design practice a relevant design

experience was gained not only on the cosimulation

task but als o on the synthesis process which is

strongly interleaved to our methodological approach.

Specifically, the following points where highlighted in

which the diversity of abstraction level can introduce

additional design steps, that can be addressed at this

time only in a manual (not automatic) way:

1) Stimuli generation: the different behaviour of

the SystemC description and of the

synthesised VHDL model could impair

cosimulation behaviour. To exemplify this

problem, one could think of the reset

behaviour: the SystemC test bench could

work even in absence of a correct reset phase,

while this is not the case for the VHDL

synthesised description.

2) Signal compatibility issues: as described

earlier, the manual adaptation of the signal

types during the interface generation could

cause some subtle unexpected synthesis

behaviour (at least, it is not exactly known

how this signal semantics translation is

performed by the tool).

Moreover we will develop examples of middle

complexity and at the same abstraction level.

4 Evaluation of the methodology

Part of the novelty of the described approach lies in

the fact that commercial tools operating at this level

have been only recently made available. Moreover

SystemC and VHDL cosimulation is a novel approach

that allows better reliability for the functional

correctness of mixed specifications and

implementations.
Some improvements are necessary to provide

acceptable solutions to the limiting factors highlighted

during this design practice and reported in the

previous section.

Figure 3 Cosimulation traces

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

We see a clear advantage in using this tool inside a

methodology strongly biased towards synthesis (as in

our case). Other approaches (mixing VHDL and

SystemC models at the same abstraction levels) are

also very relevant for good design practice, but not

considered here. In order to cope with the synthesis -

oriented market segment, it would be relevant to

implement strategies that would reduce the level of

manipulation required by the user in order to adapt, for

instance, the types of the ports depending on the

adopted abstraction level. Other priorities should

include a complete debugging of the toolset, and its

full integration into System Studio.

From the results of our experiments, we believe that

the innovative aspects of the toolset address the co-

simulation needs in a satisfactory way. Moreover the

user interaction with the tool is good.

A final remark on the market potential of this

design approach concerns the fact that it depends

strongly on the acceptance of SystemC as a HW

description language in a large numbers of design

centers and industry labs. Since VHDL is already well

established for RT level design, it seems reasonable

that SystemC will at least address more abstract design

levels, including system level design and then

involving interaction with SW modules. In this

perspective the cosimulation tool should also address a

tighter link with synthesis and how to provide co-

simulation for more abstract models and design cases.

From this point of view, the success of SystemC as a

language is also depending strongly on the good

performance and market success of the synthesis flow

from abstract SystemC specifications.

Performance comparisons with pure RTL

simulations are not feasible. In fact, the behavioural

abstraction level of the testbench could improve the

global speed, but the computations performed to

simulate the RTL part can act as a bottleneck for the

global figure.

However the goal of this approach was not the

performance boost of the simulation, but the analysis

of the possibility to simulate together models written

at different levels of abstraction and with different

languages.

5 Conclusions and future work

As SystemC gains popularity as a specification and

design language, the possibility of simulating models

written in different languages will become more and

more important. The availability of design tools that

can simulate new design modules, written in SystemC,

together with existing ones, modelled with the

traditional HLDs, will possibly allow a smooth

transition towards the use of this design language, thus

broadening the set of design teams that can take

advantage from it. In this paper we reported a set of

design experiences with the tools today available that

allow cosimulation. Even if the maturity level of these

tools isn’t full yet, the results of the tests we

performed were satisfactory. Some major

improvements that should be addressed regard the

integration in a design flow that contemplates

synthesis from high level behavioral models.

6 References

[1] SystemC Version 2.0 User Guide

[2] http://www.systemc.org/index.html

[3] Synopsis, “CoCentric SystemC HDL Cosim User

Guide”, 2001

[4] A. Allara, M. Bombana, P. Cavalloro:

Requirements for synthesis oriented modelling in

SystemC, Proc. FDL 2001, Lyon, 3-7 September 2001

[5] PCI Special Interest Group, PCI Local Bus

Specification, Production Version, Revision 2.1, June,

1, 1995

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

