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Abstract 
 

The concept of a SOC platform architecture introduces 

the concept of a communication infrastructure. In the 
transaction-level a finite set of architecture components 

(memories, arithmetic units, address generators, caches, 

etc) communicate among each other over shared 

resources (buses). Until recently, modeling architectures 

required pin-level hardware descriptions, typically coded 

in RTL. Great effort is required to design and verify the 
models, and simulation at this level of detail is tediously 

slow. Transaction level modeling is the solution. 

Transaction level models (TLMs) effectively create an 

executable platform model that simulates orders of 

magnitude faster than a RTL model.  

In this paper, we present a SystemC 2.0 TLM of the 
AMBA architecture developed by ARM, oriented to SOC 

platform architectures. 
 

1. Introduction 
 

 Evidently, system-on-chip era is creating many new 

challenges to the current design flow. Increased demand 

for complexity captures and consistency in hardware 

modeling, especially for SOC design, has led to the 

development of new modeling methodologies and 

corresponding simulation engines. To specify, design, and 

implement such complex systems, incorporating 

functionality implemented in both hardware and software 

forms, we are compelled to move on from HDLs of old. 

We must also move beyond the RT level of abstraction 

used with these HDLs. We need to move to what has been 

termed the “system level” of design with a modeling 

language that can support this level. Several modeling 

methodologies have been proposed in the past years for 

increasing the level of abstraction and enabling hardware-

software co-design [6,8,9]. Specification at higher levels 

of abstraction is possible in environments such as 

SystemC 2.0 [8,10]. SystemC 2.0 is an emerging standard 

modeling platform based on C++ that supports design 

abstraction at the RTL, behavioral and system level.  

 Apart from the modeling benefits of C++ [2] such as 

data abstraction, modularity, and object orientation, 

advantages of SystemC 2.0 include the establishment of a 

common design environment consisting of C++ libraries, 

models and tools providing the ability to exchange and 

reuse IP easily and efficiently across different levels of 

abstraction. In this paper, we show how the 

communication classes available in SystemC 2.0 can be 

used in order to produce very fast transaction-level bus 

models suitable for SOC platform architectures. The key 

in efficient bus modeling is to create code in a way that 

allows simulation to run very fast. The only way to 

achieve this goal is to write code completely detached 

from hardware block implementations, raising the 

abstraction level [9] and opening a new scenario in model 

development. In particular, we created a SystemC 2.0 

Bus-cycle-accurate (BCA) model of AMBA specification 

developed by Arm. The model that we wrote supports the 

full AMBA rev2.0 specification and the Arm Multi-layer 

AHB. The remainder of this paper is organized as follows. 

In Section 2, we explain the transaction level modeling 

style. In Section 3, we describe the AMBA model, with 

C++ class descriptions and implementation methodology. 

In Section 4, we show the test environments. In Section 5, 

we report the performance evaluation and test results. 

Finally, Section 6 draws the conclusion. 
 

2. Transaction-level modeling 
 

SystemC 2.0 introduces a new set of features for 

generalized modeling of communication and 

synchronization [9,10]. These are: channels, interfaces 

and events. An interface defines a set of methods, but does 

not implement these methods. It is a pure functional object 

without any data in order not to anticipate implementation 

details. A channel implements one or more interfaces. A 

port enables a module and hence its processes, accessing a 

channel’s interface. A port is defined in terms of an 

interface type, which means that the port can be used only 

with channels implementing that interface type. With 

channels, there is a distinction between so-called primitive 

channels and hierarchical channels.  
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Primitive channels do not exhibit any visible structure, 

do not contain processes, and cannot directly access other 

primitive channels. Hierarchical channels, on the other 

hand, are modules, which means they can have structure, 

they can contain other modules and processes, and they 

can directly access other channels. The use of interfaces 

enables a very powerful scheme called interface-method-

call (IMC). IMC refers to a process calling an interface 

method of a channel. The interface method is 

implemented in the channel, but it is executed in the 

context of the process. At Transaction-Level, 

communication mechanisms such as buses or FIFOs are 

modeled as channels, and are presented to modules using 

SystemC 2.0 interface classes. Transaction requests take 

place by calling interface functions of these channels 

models, which encapsulate low-level details of the 

information exchange. In other words, at the transaction-

level, the emphasis is more on the functionality of the data 

transfers-what data are transferred to and from what 

locations- and less on their actual implementation (that is, 

on the actual protocol used for data transfer). In 

transaction level modeling, synchronization details are 

typically abstracted into the categories of blocking and 

non-blocking I/O, and in the case of buses, priorities may 

be assigned to clients, and arbitration can be modeled in a 

centralized way. Transaction-level modeling also enables 

higher simulation speed than pin-based interfaces [3], 

through the suppression of “uninteresting” details [7]. For 

example, in the real world a large burst-mode transfer may 

take many actual clock cycles to complete. In most of 

these clock cycles, the bus is merely doing routine work 

and those clients that have pending bus requests are just 

waiting. If we view the burst-mode transfer as a single 

operation, there is no need to devote simulation time to 

these “uninteresting” clock cycles. Depending on whether 

the model needs to be bus-cycle-accurate (BCA) or not, 

different strategies can be applied to take advantage of 

this, resulting in significant savings in simulation time. As 

we will demonstrate in the next sections, even when a 

transactional-level model needs to be cycle accurate, it 

still may simulate much faster than a typical cycle-

accurate RTL model. 
 

3. AMBA model overview 
 

The AMBA specification defines an on-chip 

communication standard for designing high performance 

embedded micro controllers [1]. Three different bus 

specifications are defined within AMBA architecture: 

• the advanced high-performance bus AHB; 

• the advanced peripheral bus APB; 

• the advanced system bus ASB. 

Our goal was to create cycle-accurate TLMs for the 

AHB and the APB buses. This would allow effective 

incorporation of buses into SOC modeling platforms, with 

appropriate communication interfaces and correct timing.  

Moreover, we had wanted to build models that execute 

faster than others in usual simulation environments. Our 

AMBA model shows how to obtain a clock-accurate 

simulation without using RTL [7] specific hardware 

signals and components; that is to say, we developed a 

model with a high-level of abstraction [11] that does not 

need to describe all hardware details that the real 

architecture needs.  

The model, as we will explain later, uses the dynamic 

sensitivity implemented by SystemC 2.0 in order to avoid 

useless function calls when it is not useful, at simulation 

level, holding the model running. Being a transaction-

level model, it can be used to simulate the AHB and APB 

bus protocols in a correct way, keeping the right control 

options, but masking them in a layer whose 

implementation is completely hidden to the user. This is 

very important, since the composition of a high level 

behavioral model for an embedded system must be based 

[4] on protocol refinement. AMBA TLMs are built using 

all necessary building blocks for modeling standard 

channels available in SystemC 2.0, that is, interfaces, 

ports and channels.   
 

3.1 Classes’ structure 
 

In this Section, we describe the C++ classes’ structure 

to build on-chip bus models. The classes’ structure is 

based on SC_interface, SC_channel (SC_Module) and 

SC_port (SystemC 2.0) classes but it does not use 

SC_primary_channel. In Fig. 1, we show the APB 

classes’ structure expressed using OMT notation. Notice 

that for the AHB we kept the same structure. 

The vertical line with a triangle denotes class 

inheritance. An arrowhead line is used to represent 

aggregate dependency between classes, i.e. one class is 

composed in part from another class. This aggregation can 

be further redefined. Reference aggregation, graphically 

denoted as a black rhombus, means the whole object 

maintains a pointer or a reference to its part, while value 

aggregation, graphically denoted as a white rhombus, 

means the whole object is included. Starting from the high 

level, we declared a bus like a template class that uses 

template arguments as the ones used for the related 

interface. The user defines such arguments, and adds 

further attributes that can be used by higher-level 

communications, in order to implement custom transfer 

over the physical AMBA protocol. Notice that the 

programmer cannot use a completely user-defined class 

for the attributes, because at least the controls of protocol 

must be declared inside it (with a particular attention to 

hready signal, as we will explain later, when we will 

describe this important feature of our model).  
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Figure 1: AMBA model classes’ structure 
 

The Bus class (see Fig. 1) is at the top level of the 

hierarchy and is used as interface with the ports that 

connect the user’s test bench with the Bus Class.  

The Bus class provides all the constructs that make the 

communication between behaviors possible. In particular, 

we use dynamic instantiation that creates a new class 

X_channel (where X represents bus protocol) for every 

master or slave port instantiated into the model. That is, 

we create a Bus as an object that contains several channels 

(X_channel is not a SC_channel, it is a normal C++ 

object), just to respect the modularity of an object oriented 

reuse specification. The Bus class inherits the class Bus 

Base Channel (see Fig. 1), where we perform several 

activities, first of all a mechanism of data transfer totally 

hidden to the user, which is used just to simulate the data 

transfer in a clock-accurate manner. Finally, the class Bus 

base channel inherits the (SystemC 2.0) SC_channel that 

is a base class for all the SystemC 2.0 hierarchical 

channels, and is where the data transfer is really 

performed.  The Bus Class is used also to declare the 

X_process() function  (inside Bus class, where X 

represents bus protocol), implemented as a SC_method.  

The X_process() method, that is, the bus core, 

performs the bus operations and manages the complete 

protocol. For the AMBA model development, we used the 

two-phase synchronization scheme, so, the X_process() 

method is sensible to negative edge of the clock. This 

because certain modules (masters and slaves) are active on 

the rising edge of the clock, while other modules (bus) are 

active on the falling edge. Because the Bus now executes 

on the falling edge of the clock, we can be sure that by the 

time the bus executes it has gathered all of the requests for 

this bus cycle, since all masters execute on the rising edge, 

assuring deterministic design. 
 

3.2 A state-oriented model 
 

 A state-oriented model is one that represents the 

system as a set of states and a set of transitions between 

them, which are triggered by external events. A finite-

state machine (FSM) is an example of a state-oriented 

model.  

 Basically, the FSM model consists of a set of states, a 

set of transitions between states, and a set of actions 

associated with these states or transitions. 

 In our model, we concentrated exclusively in the 

program-state machine (PSM)[5], that is, an instance of 

a heterogeneous model that integrates a hierarchical 

concurrent finite-state-machine (HCFSM) with a 

programming language paradigm. The HCFSM is 

essentially an extension of the FSM model, which adds 

support for hierarchy and concurrency, thus eliminating 

the potential for state and arc explosion that occurred 

when describing hierarchical arc concurrent system with 

FSM models. Like the FSM, the HCFSM model consists 

of a set of states and a set of transitions. Unlike the FSM, 

however, in the HCFSM each state can be further 

decomposed into concurrent sub states, which execute in 

parallel and communicate through global variables. As 

already say, we focused on the PSM model. 

 This model consists of a hierarchy of program-states, 

in which each program state represents a distinct mode of 

computation [5]. At any given time, only a subset of 

program-states will be active, that is, actively carrying out 

their computation. Both the APB and AHB X_process() 

methods have been implemented using PSM model, as we 

are going to explain. 
 

3.3 The APB bus core 
 

 The X_process() method present in every bus class, is, 

as already described in Section 3.1, the real core of the 

bus model. We chose for the apb_process() 

implementation the Program State Machine model (see 

section 3.2).  

 We can explain the PSM implementation of the APB 

Bus apb_process() method as follows. The APB IDLE 

state mapped in our model [1] is just used to check the 

opcode pwrite signal and the pselx signal (selected slave 

port), so the transaction continues taking into 

consideration these initial conditions. Hereinafter we 

show the pseudo-code of PSM in the apb_process() 

method (IDLE state): 
 
template <class MasterAttr,class SlaveAttr> 
void ApbBus<MasterAttr,SlaveAttr>::apb_process() 
{ 
 ... 
 case IDLE: 
  if (opctmp) { 
        current=TX_WRITE; 
        //(Sequence of operations) 
        return; 
             } 
  else { 
        current=TX_READ; 
        //(Sequence of operations) 
        return; 
       } 
 return; 
} 
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 Every single state performs different operations, 

depending on the past state and the future state. In this 

way, we manage the Bus protocol in every clock cycle 

without having to implement any system that describes 

protocol signals (e.g. the penable signal does not exist in 

our model that remains clock accurate). This avoids an 

enormous computation burden, so simulation is very fast 

as shown in our results. Using a PSM, it is quite simple to 

simulate a given communication protocol without the 

concept, costly in terms of performance, of hardware 

signal (SystemC 2.0 RTL style), reaching a higher level of 

abstraction and consequently a faster simulation.  

 Moreover, there is a further option that permits the 

simulation to run faster. Our system is composed by 

different components (System C 2.0 modules) that run in 

parallel each performing its task. But when a Module (e.g. 

a Bus module) during a determined period of time has 

nothing to do, it is useless and costly in terms of CPU 

time to continue to call it by the system scheduler, that is, 

the class that manages the simulation. Thus, we 

implemented the so-called “de-scheduling“ function by 

dynamic sensitivity, that avoids useless calls to the 

apb_process() method when it has nothing to perform and 

permits to “re-schedule” (notify) it when a determined 

event comes. With the bus control in the form of a PSM, it 

was easy to manage the de-scheduling option since in 

every state we have enough information that permit us to 

know the bus status, and the need of computation.  

 In the APB Bus we adopted the choice of to “de-

schedule “ the bus when the Master Interface is not ready 

to send the data; that is, the bus class is waiting for an 

event (next_trigger (event)) coming from master’s 

module. When the master starts communication, in the 

same time it notifies the event associated to the bus, so, 

static sensibility of the bus (negative edge of the clock) re-

becomes active. We would like to note that if we had used 

a hardware-like implementation, correct use of the de-
scheduling option, if accomplishable, would have been 

more tedious and difficult.   
 

3.4 The AHB bus core 
 

 We have already described the PSM model of 

X_process() method in a bus class with the APB example. 

We now consider implementation of the ahb_process() 

method within AHB Bus. We described the Bus as a PSM 

where each state represents in the same time the transfer 

that we have just performed and the transfer that we have 

to perform in the current cycle. We made this choice 

taking into consideration the pipelined nature of AHB Bus 

that implies the transfer of the current control signals and 

at the same time the transfer of the data referring to the 

previous cycle.  

 In this way, the ahb_process() method can be 

considered as a table where we describe all the possible 

transactions that the AHB Bus can perform.  

 Looking at this table in a fixed clock-cycle we know 

exactly what we must do and who must do it, e.g. a read 

transfer to slave port 3.  The user must only supply the 

correct control signals, respecting the protocol 

implementation, but it is important to notice that at bus 

level we do not simulate the hardware RTL signals 

transfer to keep the correct timing. Instead, we use the 

blocking methods just to set several classes that manage 

the addresses and compute the right state for the PSM, 

that must only perform the code relative at the actual state, 

resulting in a very low computational burden. We would 

notify that an effort was made to manage the PSM when a 

bus handover occurs, because with the pipelined nature of 

the data and address bus we must continue the data 

transfer of the old master while charging the new control 

signals for the new master.  

 This results in different PSM states to be written on 

purpose for the bus handover. We would like to notice 

that our model is quite detached from the hardware level. 

In fact, just as example, the classes that we used to 

describe the AHB Bus do not reflect any hardware block 

that anyone can find in the Arm AMBA specification. We 

have just described the AHB like a so-called black box 

within which we mask the hardware implementation with 

a high-level abstract implementation.  
 Obviously, the de-scheduling problem in a bus like 

AHB holds a lot of interest, because in a so complex 

object we looked a lot for a method that avoids useless 

function calls, improving the simulation speed. 

 Our choice was de-scheduling (or masking) the bus 

work with respect to hready signal, the signal used by the 

slave ports to manage a correct transfer, by dynamic 

sensitivity of ahb_process() method. By the AMBA 

protocol [1] we know (see Fig. 2) that when a slave port 

sets hready low and hresp equal to okay, the transfer is in 

a so-called “sleepy state”.  
 

 
 

Figure 2: HREADY signal example 
 

 That is to say, the bus has nothing to perform in a 

determined clock cycle. If we do not use a de-scheduling 

option the scheduler every cycle would call the bus 

ahb_process() method (Bus core) waiting on a response 

different from okay or a hready= high, resulting in a 

considerable performance reduction. 
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 We resolved the de-scheduling problem by mapping 

the hready and hresp signals (declared as Boolean and 

enumerated values) as an event: the event that has the 

capability to supersede static sensitivity in ahb_process() 

method when no transfer is needed and that in the same 

time can reschedule (hready rises or hresp differs from 

okay) the bus when a transfer must be performed.  

 In this elegant way, the Bus class avoids useless 

routine work during the time hready is held low, lowing 

computational burden and improving simulation speed. 
 

4. Test environment 
 

 The following section shows the test bench 

environment that we chose to test the AMBA Model. We 

used CThread objects, in order to simulate every Master 

and Slave port, triggered by the positive edge of the clock. 

A CThread consists of a function that is executed in an 

infinite loop, obviously with blocking conditions inside 

(conditions that are waiting a time-dependent event to 

restart the block of code, typical transactions at TL). We 

chose two different types of test bench for the APB Bus 

and the AHB Bus. In the APB Bus we chose a single 

CThread in both sides (Master, Slave), because the 

protocol is quite simple and for a correct simulation we do 

not need to split write and read operations in two separate 

CThreads. On the contrary, with AHB specification, we 

chose to split read and write operations in Slave Side with 

two CThreads (Fig. 3). In the AHB Master side we used 

also two CThread processes (Fig. 3), the first performing 

all the transfers (Main), the second used just to receive the 

data coming from slave ports during read transfer. 

 

 
 

Figure 3: AHB testbench configuration 
 

5. Performance 
 

 The following section describes improvement on the 

simulation speed of the AMBA model. Before it was 

implemented, we examined the SystemC 2.0 TLM of 

STBus, ST proprietary standard on-chip bus. It was a 

static C model providing clock cycle-accurate simulation.  

Next, it has been integrated by ST designers in SystemC 

2.0 environment directly at TL. 

 STBus TLM simulated slow due to an extremely 

accurate hardware modeling concerning all signals 

(modeled by variables, not by SystemC 2.0 signals) and 

blocks, closer to a RTL model than a TLM. Each 

hardware block had its class representation, with all 

output signals and input signals, e.g. the class arbiter 

reflects perfectly the arbiter hardware block, and each 

block was simulated cycle per cycle (STBus SystemC 2.0 

TLM does not implement dynamic sensitivity). Every 

effort made in order to construct an abstract simulation 

engine, quite detached from HDLs was wasted in a 

communication channel that simulated the exact hardware 

structure. We realized that this was not the correct way to 

operate, and thus we examined methods to define a bus 

implementation in a more abstract way based on PSM and 

de-scheduling (dynamic sensitivity) concepts as already 

described. Our implementation does not reflect any 

hardware block in AMBA specification; that is, we wrote 

a model that executes in the same manner as hardware but 

it does not use any hardware concept. At the end of code 

writing, we were faced with the evaluation and test of our 

TLMs. In Fig. 4, we report the results of several 

comparisons between SystemC 2.0 TLMs of STBus, 

APBBus, AHBBus. We ran several simulations using two 

kinds of bus traffic and two types of Sun workstation: 

Ultra 60 and Blade 1000. 
 

 
 

Figure 4: Simulation efficiency for various 
architectures and model delay options 

 

 The first test simulates full rate traffic with alternative 

write and read transfers; that is, the bus performs a 

transfer every cycle. The second simulates the same 

transfers, but with a read cycle performed with five cycles 

delay. Simulation results were as expected. The models of 

APB and AHB Bus run at same speed in both cases, 

whereas the model of STBus is much slower. This shows 

that new design methodologies achieved our goal.  

 The second comparison is between two models of 

AHB Bus written at different levels of abstraction, our 

SystemC 2.0 TLM and a proprietary model used by ST 

designers written in SystemC 2.0 at RTL. 

 Both models have been tested with same traffic 

architecture: a DMA controller alternatively drives write 

and read transfers to RAM memory (see Fig. 5). 
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Figure 5: Testbench used to test performance 
 

 The following model assumptions are made. The delay 

time for a write transfer is 0, while the delay for a read 

transfer is one clock cycle; that is to say, the slave module 

holds low the signal hready with hresp=okay during the 

first read cycle. The DMA needs four clock cycles in 

order to pass to next write and read operations. There is no 

delay state between write and read operations. The 

simulation has run on Ultra 60 machine. The results that 

we obtained were as expected: both methodologies that 

we implemented (PSM and dynamic sensitivity) gained a 

lot in comparison to a hardware level design  (Tab. 1).  
 

 AHB SystemC 2.0 

RTL Model 

AHB SystemC 2.0 

TLM 

Kcycles/sec    3                             300 
 

Table 1: Comparison between SystemC 2.0 TLM 
and RTL model (Sun Ultra 60) 

 

 Moreover, the choice of de-scheduling becomes 

effective when in the bus there is merely routine work, 

yielding faster simulation since RTL model continues to 

perform operations in these clock cycles. In Table 1, we 

report the results that give a correct and objective 

dimension of the gain-factor magnitude. We must also 

keep in mind that a TLM is also more effective for IP 

reuse [4], so, with an eye to the future, it will gain more 

avoiding the need of test bench rewriting. 
 

6. Conclusion 
 

 The TLMs of AMBA Architecture provide some 

important results for SOC modeling. First, we showed that 

with a higher level of abstraction than RTL, we gain two 

orders of magnitude in simulation speed. Assuming the 

same simulation is performed on the same machine, if 

SystemC 2.0 TLM requires a day to run, the SystemC 2.0 

RTL model requires almost one hundred days. This very 

important result removes any residual doubt in TL 

modeling effectiveness. Second, in a bus implementation, 

the de-scheduling feature, implemented by dynamic 

sensitivity, allows the simulation to run faster, avoiding 

useless function calls, showing that it can become a must 

in bus modeling.  

 Finally, the PSM implementation opens a new 

scenario in bus modeling, providing the user with a robust 

method in order to create models in a simple way, 

avoiding useless computational burden. In this way, 

several other buses can be developed keeping the idea of a 

single central unit that manages communication in a faster 

manner, especially without waste of precious CPU time. 

 Further works are in progress in order to integrate the 

AMBA TLMs within a SOC platform, oriented to power 

estimation at system level. We expect that these works 

will produce further improvements in the modeling 

concept and implementation.  
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