
Transaction-Level Models for AMBA Bus Architecture Using SystemC 2.0

M. Caldari*, M. Conti*, M. Coppola**, S. Curaba**, L. Pieralisi*, C. Turchetti*

* University of Ancona, via Brecce Bianche, I-60131, Ancona, Italy

** STMicroelectronics, Grenoble, France

Abstract

The concept of a SOC platform architecture introduces

the concept of a communication infrastructure. In the
transaction-level a finite set of architecture components

(memories, arithmetic units, address generators, caches,

etc) communicate among each other over shared

resources (buses). Until recently, modeling architectures

required pin-level hardware descriptions, typically coded

in RTL. Great effort is required to design and verify the
models, and simulation at this level of detail is tediously

slow. Transaction level modeling is the solution.

Transaction level models (TLMs) effectively create an

executable platform model that simulates orders of

magnitude faster than a RTL model.

In this paper, we present a SystemC 2.0 TLM of the
AMBA architecture developed by ARM, oriented to SOC

platform architectures.

1. Introduction

 Evidently, system-on-chip era is creating many new

challenges to the current design flow. Increased demand

for complexity captures and consistency in hardware

modeling, especially for SOC design, has led to the

development of new modeling methodologies and

corresponding simulation engines. To specify, design, and

implement such complex systems, incorporating

functionality implemented in both hardware and software

forms, we are compelled to move on from HDLs of old.

We must also move beyond the RT level of abstraction

used with these HDLs. We need to move to what has been

termed the “system level” of design with a modeling

language that can support this level. Several modeling

methodologies have been proposed in the past years for

increasing the level of abstraction and enabling hardware-

software co-design [6,8,9]. Specification at higher levels

of abstraction is possible in environments such as

SystemC 2.0 [8,10]. SystemC 2.0 is an emerging standard

modeling platform based on C++ that supports design

abstraction at the RTL, behavioral and system level.

 Apart from the modeling benefits of C++ [2] such as

data abstraction, modularity, and object orientation,

advantages of SystemC 2.0 include the establishment of a

common design environment consisting of C++ libraries,

models and tools providing the ability to exchange and

reuse IP easily and efficiently across different levels of

abstraction. In this paper, we show how the

communication classes available in SystemC 2.0 can be

used in order to produce very fast transaction-level bus

models suitable for SOC platform architectures. The key

in efficient bus modeling is to create code in a way that

allows simulation to run very fast. The only way to

achieve this goal is to write code completely detached

from hardware block implementations, raising the

abstraction level [9] and opening a new scenario in model

development. In particular, we created a SystemC 2.0

Bus-cycle-accurate (BCA) model of AMBA specification

developed by Arm. The model that we wrote supports the

full AMBA rev2.0 specification and the Arm Multi-layer

AHB. The remainder of this paper is organized as follows.

In Section 2, we explain the transaction level modeling

style. In Section 3, we describe the AMBA model, with

C++ class descriptions and implementation methodology.

In Section 4, we show the test environments. In Section 5,

we report the performance evaluation and test results.

Finally, Section 6 draws the conclusion.

2. Transaction-level modeling

SystemC 2.0 introduces a new set of features for

generalized modeling of communication and

synchronization [9,10]. These are: channels, interfaces

and events. An interface defines a set of methods, but does

not implement these methods. It is a pure functional object

without any data in order not to anticipate implementation

details. A channel implements one or more interfaces. A

port enables a module and hence its processes, accessing a

channel’s interface. A port is defined in terms of an

interface type, which means that the port can be used only

with channels implementing that interface type. With

channels, there is a distinction between so-called primitive

channels and hierarchical channels.

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

Primitive channels do not exhibit any visible structure,

do not contain processes, and cannot directly access other

primitive channels. Hierarchical channels, on the other

hand, are modules, which means they can have structure,

they can contain other modules and processes, and they

can directly access other channels. The use of interfaces

enables a very powerful scheme called interface-method-

call (IMC). IMC refers to a process calling an interface

method of a channel. The interface method is

implemented in the channel, but it is executed in the

context of the process. At Transaction-Level,

communication mechanisms such as buses or FIFOs are

modeled as channels, and are presented to modules using

SystemC 2.0 interface classes. Transaction requests take

place by calling interface functions of these channels

models, which encapsulate low-level details of the

information exchange. In other words, at the transaction-

level, the emphasis is more on the functionality of the data

transfers-what data are transferred to and from what

locations- and less on their actual implementation (that is,

on the actual protocol used for data transfer). In

transaction level modeling, synchronization details are

typically abstracted into the categories of blocking and

non-blocking I/O, and in the case of buses, priorities may

be assigned to clients, and arbitration can be modeled in a

centralized way. Transaction-level modeling also enables

higher simulation speed than pin-based interfaces [3],

through the suppression of “uninteresting” details [7]. For

example, in the real world a large burst-mode transfer may

take many actual clock cycles to complete. In most of

these clock cycles, the bus is merely doing routine work

and those clients that have pending bus requests are just

waiting. If we view the burst-mode transfer as a single

operation, there is no need to devote simulation time to

these “uninteresting” clock cycles. Depending on whether

the model needs to be bus-cycle-accurate (BCA) or not,

different strategies can be applied to take advantage of

this, resulting in significant savings in simulation time. As

we will demonstrate in the next sections, even when a

transactional-level model needs to be cycle accurate, it

still may simulate much faster than a typical cycle-

accurate RTL model.

3. AMBA model overview

The AMBA specification defines an on-chip

communication standard for designing high performance

embedded micro controllers [1]. Three different bus

specifications are defined within AMBA architecture:

• the advanced high-performance bus AHB;

• the advanced peripheral bus APB;

• the advanced system bus ASB.

Our goal was to create cycle-accurate TLMs for the

AHB and the APB buses. This would allow effective

incorporation of buses into SOC modeling platforms, with

appropriate communication interfaces and correct timing.

Moreover, we had wanted to build models that execute

faster than others in usual simulation environments. Our

AMBA model shows how to obtain a clock-accurate

simulation without using RTL [7] specific hardware

signals and components; that is to say, we developed a

model with a high-level of abstraction [11] that does not

need to describe all hardware details that the real

architecture needs.

The model, as we will explain later, uses the dynamic

sensitivity implemented by SystemC 2.0 in order to avoid

useless function calls when it is not useful, at simulation

level, holding the model running. Being a transaction-

level model, it can be used to simulate the AHB and APB

bus protocols in a correct way, keeping the right control

options, but masking them in a layer whose

implementation is completely hidden to the user. This is

very important, since the composition of a high level

behavioral model for an embedded system must be based

[4] on protocol refinement. AMBA TLMs are built using

all necessary building blocks for modeling standard

channels available in SystemC 2.0, that is, interfaces,

ports and channels.

3.1 Classes’ structure

In this Section, we describe the C++ classes’ structure

to build on-chip bus models. The classes’ structure is

based on SC_interface, SC_channel (SC_Module) and

SC_port (SystemC 2.0) classes but it does not use

SC_primary_channel. In Fig. 1, we show the APB

classes’ structure expressed using OMT notation. Notice

that for the AHB we kept the same structure.

The vertical line with a triangle denotes class

inheritance. An arrowhead line is used to represent

aggregate dependency between classes, i.e. one class is

composed in part from another class. This aggregation can

be further redefined. Reference aggregation, graphically

denoted as a black rhombus, means the whole object

maintains a pointer or a reference to its part, while value

aggregation, graphically denoted as a white rhombus,

means the whole object is included. Starting from the high

level, we declared a bus like a template class that uses

template arguments as the ones used for the related

interface. The user defines such arguments, and adds

further attributes that can be used by higher-level

communications, in order to implement custom transfer

over the physical AMBA protocol. Notice that the

programmer cannot use a completely user-defined class

for the attributes, because at least the controls of protocol

must be declared inside it (with a particular attention to

hready signal, as we will explain later, when we will

describe this important feature of our model).

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

Figure 1: AMBA model classes’ structure

The Bus class (see Fig. 1) is at the top level of the

hierarchy and is used as interface with the ports that

connect the user’s test bench with the Bus Class.

The Bus class provides all the constructs that make the

communication between behaviors possible. In particular,

we use dynamic instantiation that creates a new class

X_channel (where X represents bus protocol) for every

master or slave port instantiated into the model. That is,

we create a Bus as an object that contains several channels

(X_channel is not a SC_channel, it is a normal C++

object), just to respect the modularity of an object oriented

reuse specification. The Bus class inherits the class Bus

Base Channel (see Fig. 1), where we perform several

activities, first of all a mechanism of data transfer totally

hidden to the user, which is used just to simulate the data

transfer in a clock-accurate manner. Finally, the class Bus

base channel inherits the (SystemC 2.0) SC_channel that

is a base class for all the SystemC 2.0 hierarchical

channels, and is where the data transfer is really

performed. The Bus Class is used also to declare the

X_process() function (inside Bus class, where X

represents bus protocol), implemented as a SC_method.

The X_process() method, that is, the bus core,

performs the bus operations and manages the complete

protocol. For the AMBA model development, we used the

two-phase synchronization scheme, so, the X_process()

method is sensible to negative edge of the clock. This

because certain modules (masters and slaves) are active on

the rising edge of the clock, while other modules (bus) are

active on the falling edge. Because the Bus now executes

on the falling edge of the clock, we can be sure that by the

time the bus executes it has gathered all of the requests for

this bus cycle, since all masters execute on the rising edge,

assuring deterministic design.

3.2 A state-oriented model

 A state-oriented model is one that represents the

system as a set of states and a set of transitions between

them, which are triggered by external events. A finite-

state machine (FSM) is an example of a state-oriented

model.

 Basically, the FSM model consists of a set of states, a

set of transitions between states, and a set of actions

associated with these states or transitions.

 In our model, we concentrated exclusively in the

program-state machine (PSM)[5], that is, an instance of

a heterogeneous model that integrates a hierarchical

concurrent finite-state-machine (HCFSM) with a

programming language paradigm. The HCFSM is

essentially an extension of the FSM model, which adds

support for hierarchy and concurrency, thus eliminating

the potential for state and arc explosion that occurred

when describing hierarchical arc concurrent system with

FSM models. Like the FSM, the HCFSM model consists

of a set of states and a set of transitions. Unlike the FSM,

however, in the HCFSM each state can be further

decomposed into concurrent sub states, which execute in

parallel and communicate through global variables. As

already say, we focused on the PSM model.

 This model consists of a hierarchy of program-states,

in which each program state represents a distinct mode of

computation [5]. At any given time, only a subset of

program-states will be active, that is, actively carrying out

their computation. Both the APB and AHB X_process()

methods have been implemented using PSM model, as we

are going to explain.

3.3 The APB bus core

 The X_process() method present in every bus class, is,

as already described in Section 3.1, the real core of the

bus model. We chose for the apb_process()

implementation the Program State Machine model (see

section 3.2).

 We can explain the PSM implementation of the APB

Bus apb_process() method as follows. The APB IDLE

state mapped in our model [1] is just used to check the

opcode pwrite signal and the pselx signal (selected slave

port), so the transaction continues taking into

consideration these initial conditions. Hereinafter we

show the pseudo-code of PSM in the apb_process()

method (IDLE state):

template <class MasterAttr,class SlaveAttr>
void ApbBus<MasterAttr,SlaveAttr>::apb_process()
{
 ...
 case IDLE:
 if (opctmp) {
 current=TX_WRITE;
 //(Sequence of operations)
 return;
 }
 else {
 current=TX_READ;
 //(Sequence of operations)
 return;
 }
 return;
}

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

 Every single state performs different operations,

depending on the past state and the future state. In this

way, we manage the Bus protocol in every clock cycle

without having to implement any system that describes

protocol signals (e.g. the penable signal does not exist in

our model that remains clock accurate). This avoids an

enormous computation burden, so simulation is very fast

as shown in our results. Using a PSM, it is quite simple to

simulate a given communication protocol without the

concept, costly in terms of performance, of hardware

signal (SystemC 2.0 RTL style), reaching a higher level of

abstraction and consequently a faster simulation.

 Moreover, there is a further option that permits the

simulation to run faster. Our system is composed by

different components (System C 2.0 modules) that run in

parallel each performing its task. But when a Module (e.g.

a Bus module) during a determined period of time has

nothing to do, it is useless and costly in terms of CPU

time to continue to call it by the system scheduler, that is,

the class that manages the simulation. Thus, we

implemented the so-called “de-scheduling“ function by

dynamic sensitivity, that avoids useless calls to the

apb_process() method when it has nothing to perform and

permits to “re-schedule” (notify) it when a determined

event comes. With the bus control in the form of a PSM, it

was easy to manage the de-scheduling option since in

every state we have enough information that permit us to

know the bus status, and the need of computation.

 In the APB Bus we adopted the choice of to “de-

schedule “ the bus when the Master Interface is not ready

to send the data; that is, the bus class is waiting for an

event (next_trigger (event)) coming from master’s

module. When the master starts communication, in the

same time it notifies the event associated to the bus, so,

static sensibility of the bus (negative edge of the clock) re-

becomes active. We would like to note that if we had used

a hardware-like implementation, correct use of the de-
scheduling option, if accomplishable, would have been

more tedious and difficult.

3.4 The AHB bus core

 We have already described the PSM model of

X_process() method in a bus class with the APB example.

We now consider implementation of the ahb_process()

method within AHB Bus. We described the Bus as a PSM

where each state represents in the same time the transfer

that we have just performed and the transfer that we have

to perform in the current cycle. We made this choice

taking into consideration the pipelined nature of AHB Bus

that implies the transfer of the current control signals and

at the same time the transfer of the data referring to the

previous cycle.

 In this way, the ahb_process() method can be

considered as a table where we describe all the possible

transactions that the AHB Bus can perform.

 Looking at this table in a fixed clock-cycle we know

exactly what we must do and who must do it, e.g. a read

transfer to slave port 3. The user must only supply the

correct control signals, respecting the protocol

implementation, but it is important to notice that at bus

level we do not simulate the hardware RTL signals

transfer to keep the correct timing. Instead, we use the

blocking methods just to set several classes that manage

the addresses and compute the right state for the PSM,

that must only perform the code relative at the actual state,

resulting in a very low computational burden. We would

notify that an effort was made to manage the PSM when a

bus handover occurs, because with the pipelined nature of

the data and address bus we must continue the data

transfer of the old master while charging the new control

signals for the new master.

 This results in different PSM states to be written on

purpose for the bus handover. We would like to notice

that our model is quite detached from the hardware level.

In fact, just as example, the classes that we used to

describe the AHB Bus do not reflect any hardware block

that anyone can find in the Arm AMBA specification. We

have just described the AHB like a so-called black box

within which we mask the hardware implementation with

a high-level abstract implementation.
 Obviously, the de-scheduling problem in a bus like

AHB holds a lot of interest, because in a so complex

object we looked a lot for a method that avoids useless

function calls, improving the simulation speed.

 Our choice was de-scheduling (or masking) the bus

work with respect to hready signal, the signal used by the

slave ports to manage a correct transfer, by dynamic

sensitivity of ahb_process() method. By the AMBA

protocol [1] we know (see Fig. 2) that when a slave port

sets hready low and hresp equal to okay, the transfer is in

a so-called “sleepy state”.

Figure 2: HREADY signal example

 That is to say, the bus has nothing to perform in a

determined clock cycle. If we do not use a de-scheduling

option the scheduler every cycle would call the bus

ahb_process() method (Bus core) waiting on a response

different from okay or a hready= high, resulting in a

considerable performance reduction.

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

 We resolved the de-scheduling problem by mapping

the hready and hresp signals (declared as Boolean and

enumerated values) as an event: the event that has the

capability to supersede static sensitivity in ahb_process()

method when no transfer is needed and that in the same

time can reschedule (hready rises or hresp differs from

okay) the bus when a transfer must be performed.

 In this elegant way, the Bus class avoids useless

routine work during the time hready is held low, lowing

computational burden and improving simulation speed.

4. Test environment

 The following section shows the test bench

environment that we chose to test the AMBA Model. We

used CThread objects, in order to simulate every Master

and Slave port, triggered by the positive edge of the clock.

A CThread consists of a function that is executed in an

infinite loop, obviously with blocking conditions inside

(conditions that are waiting a time-dependent event to

restart the block of code, typical transactions at TL). We

chose two different types of test bench for the APB Bus

and the AHB Bus. In the APB Bus we chose a single

CThread in both sides (Master, Slave), because the

protocol is quite simple and for a correct simulation we do

not need to split write and read operations in two separate

CThreads. On the contrary, with AHB specification, we

chose to split read and write operations in Slave Side with

two CThreads (Fig. 3). In the AHB Master side we used

also two CThread processes (Fig. 3), the first performing

all the transfers (Main), the second used just to receive the

data coming from slave ports during read transfer.

Figure 3: AHB testbench configuration

5. Performance

 The following section describes improvement on the

simulation speed of the AMBA model. Before it was

implemented, we examined the SystemC 2.0 TLM of

STBus, ST proprietary standard on-chip bus. It was a

static C model providing clock cycle-accurate simulation.

Next, it has been integrated by ST designers in SystemC

2.0 environment directly at TL.

 STBus TLM simulated slow due to an extremely

accurate hardware modeling concerning all signals

(modeled by variables, not by SystemC 2.0 signals) and

blocks, closer to a RTL model than a TLM. Each

hardware block had its class representation, with all

output signals and input signals, e.g. the class arbiter

reflects perfectly the arbiter hardware block, and each

block was simulated cycle per cycle (STBus SystemC 2.0

TLM does not implement dynamic sensitivity). Every

effort made in order to construct an abstract simulation

engine, quite detached from HDLs was wasted in a

communication channel that simulated the exact hardware

structure. We realized that this was not the correct way to

operate, and thus we examined methods to define a bus

implementation in a more abstract way based on PSM and

de-scheduling (dynamic sensitivity) concepts as already

described. Our implementation does not reflect any

hardware block in AMBA specification; that is, we wrote

a model that executes in the same manner as hardware but

it does not use any hardware concept. At the end of code

writing, we were faced with the evaluation and test of our

TLMs. In Fig. 4, we report the results of several

comparisons between SystemC 2.0 TLMs of STBus,

APBBus, AHBBus. We ran several simulations using two

kinds of bus traffic and two types of Sun workstation:

Ultra 60 and Blade 1000.

Figure 4: Simulation efficiency for various
architectures and model delay options

 The first test simulates full rate traffic with alternative

write and read transfers; that is, the bus performs a

transfer every cycle. The second simulates the same

transfers, but with a read cycle performed with five cycles

delay. Simulation results were as expected. The models of

APB and AHB Bus run at same speed in both cases,

whereas the model of STBus is much slower. This shows

that new design methodologies achieved our goal.

 The second comparison is between two models of

AHB Bus written at different levels of abstraction, our

SystemC 2.0 TLM and a proprietary model used by ST

designers written in SystemC 2.0 at RTL.

 Both models have been tested with same traffic

architecture: a DMA controller alternatively drives write

and read transfers to RAM memory (see Fig. 5).

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

Figure 5: Testbench used to test performance

 The following model assumptions are made. The delay

time for a write transfer is 0, while the delay for a read

transfer is one clock cycle; that is to say, the slave module

holds low the signal hready with hresp=okay during the

first read cycle. The DMA needs four clock cycles in

order to pass to next write and read operations. There is no

delay state between write and read operations. The

simulation has run on Ultra 60 machine. The results that

we obtained were as expected: both methodologies that

we implemented (PSM and dynamic sensitivity) gained a

lot in comparison to a hardware level design (Tab. 1).

 AHB SystemC 2.0

RTL Model

AHB SystemC 2.0

TLM

Kcycles/sec 3 300

Table 1: Comparison between SystemC 2.0 TLM
and RTL model (Sun Ultra 60)

 Moreover, the choice of de-scheduling becomes

effective when in the bus there is merely routine work,

yielding faster simulation since RTL model continues to

perform operations in these clock cycles. In Table 1, we

report the results that give a correct and objective

dimension of the gain-factor magnitude. We must also

keep in mind that a TLM is also more effective for IP

reuse [4], so, with an eye to the future, it will gain more

avoiding the need of test bench rewriting.

6. Conclusion

 The TLMs of AMBA Architecture provide some

important results for SOC modeling. First, we showed that

with a higher level of abstraction than RTL, we gain two

orders of magnitude in simulation speed. Assuming the

same simulation is performed on the same machine, if

SystemC 2.0 TLM requires a day to run, the SystemC 2.0

RTL model requires almost one hundred days. This very

important result removes any residual doubt in TL

modeling effectiveness. Second, in a bus implementation,

the de-scheduling feature, implemented by dynamic

sensitivity, allows the simulation to run faster, avoiding

useless function calls, showing that it can become a must

in bus modeling.

 Finally, the PSM implementation opens a new

scenario in bus modeling, providing the user with a robust

method in order to create models in a simple way,

avoiding useless computational burden. In this way,

several other buses can be developed keeping the idea of a

single central unit that manages communication in a faster

manner, especially without waste of precious CPU time.

 Further works are in progress in order to integrate the

AMBA TLMs within a SOC platform, oriented to power

estimation at system level. We expect that these works

will produce further improvements in the modeling

concept and implementation.

Acknowledgments

This research has been sponsored in part by EU Medea+.

References

[1] AMBA Specification (rev2.0) and Multi layer AHB

specification, Arm: http://www.arm.com, 2001.

[2] M. Caldari, M. Conti, M. Coppola, M. Giuliodori, C.

Turchetti: “C++ based System-on-chip Design” IEEE

Canadian Journal of Electrical and computer Engineering,

vol. 26, no. 3/4, July/Oct. 2001, pp. 115-123.

[3] CoCentric System Studio Data Sheet, Synopsys

http://www.synopsys.com, 2002.

[4] R. Domer, Daniel D. Gajski: “Reuse and protection of

Intellectual Property in the SpecC system”, University of

California, Irvine, http://www.ics.uci.edu.

[5] Daniel D.Gajski, Jianwen Zhu, Rainer Domer “Essential

issues in co-design” University of California, Irvine

Technical report June 1997, http://www.ics.uci.edu.

[6] J. Gerlach, W. Rosenstiel “System level design using

SystemC modeling platform “ University of Tubingen,

Germany, www-ti.informatik.uni-tuebingen.de/~systemc.

[7] A.Gerstlauer, S.Zhao, D.Gajski, A.Horak: “SpecC System-

level design methodology applied to design of a GSM

Vocoder” University of California, Irvine and Motorola

Semiconductor products sector, http://www.ics.uci.edu.

[8] T. Grotker, S. Liao, G. Martin, S. Swan: “System design

with SystemC” Kluwer Academic Publishers, 2002.

[9] Preeti Ranjan Panda: “SystemC – A modeling platform

supporting multiple design abstractions”, Synopsys Inc,

http://www.synopsys.com.

[10] Open SystemC Iniative (OSCI), SystemC documentation:

http://www.systemc.org, 2001.

[11] Kjetil Svarstad, Gabriela Nicolescu, Ahmed A. Jerraya: “A

model for Describing Communication between Aggregate

Objects in the Specification and Design of Embedded

systems” SINTEF Telecom and Informatics, TIMA

Laboratory, SLS group, http://www.systemc.org.

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

