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Abstract 
 

System-level design techniques promise a way to lessen 

the productivity gap between fabrication and design.  

Unfortunately, these techniques have been slow to catch 

on, in part because they do little to help designers 
optimize hardware.  This paper presents a brief summary 

of three system-level design techniques, Platform-based 

design, SystemC, and Chip-in-a-day, in order to propose 

that more system-level abstraction of physical 

performance is needed to make these techniques more 
useful.  An analysis of design-productivity for three chips 

designed with the Chip-in-a-Day flow is also presented. 

 

 

1. Introduction 
 

Today’s silicon technology offers ASIC designers the 
potential for great speed, density, and energy efficiency.  

Unfortunately, issues such as interconnect-delay and 

cross-talk make it very difficult to prototype systems 

with the latest technologies, forcing many promising 

ideas to go untested.  To make up for increasing design 

time, companies have no option but to throw more 
engineers at every project.  This problem is evidenced in 

the “productivity gap” between the number of 

transistors-per-chip that we can effectively manufacture 

and the transistors-per-designer-per-year that we can 

effectively design.  The International Technology 

Roadmap for Semiconductors (ITRS) [1] claims that cost 
of design is the greatest threat to the continued growth of 

the semiconductor industry. 

System-level design techniques, as described in the 

ITRS, promise a means to increase designer productivity.  

These techniques use specifications at a higher level of 
abstraction than RTL or C code that are intended to 

allow software and hardware to be optimized 

simultaneously.  Most system-level methodologies aim 

to increase productivity by making the behavior of a 

system independent from its architecture.  This 

independence would simplify the mapping of a system’s 
functionality to blocks of existing intellectual property 

(IP).     

 

The promise of system-level design allows us to 

envision integrated systems with the speed, area-

efficiency, and energy-efficiency of dedicated hardware 

but with the flexibility of software.  Unfortunately, the 
existing techniques for system-level design are focused 

much more on the communication between 

programmable cores (software-software co-design) and 

offer very little to accelerate the design of dedicated 

hardware.  As a result, we tend to abandon system-level 
design and use old, unproductive techniques when we 

want high-performance silicon. 

This paper presents a perspective of how 

modification of our system-level design approach could 

lead to the promised improvements in productivity 

without sacrificing circuit performance.  The paper 
begins by discussing a model for analyzing a designer’s 

productivity in the context of a specific design flow.  

Next, this model is used to analyze two popular system-

level design techniques, SystemC and Platform-based 

design, as applied to the development of dedicated 

hardware, to illustrate where circuit performance is lost.  
Then this model is applied to a lesser known system-

level approach called the Chip-in-a-day flow, which is 

focused on accelerating the design of dedicated 

hardware.  It is shown that the distinguishing aspect of 

this technique is that it attempts to provide system-level 

abstractions for physical performance. This section 
concludes by comparing the designer-productivity for 

three chips made with this flow with a fourth made with 

a traditional flow.   

 

2. A model for analyzing productivity 
 

When we examine the productivity of designers on 

large, dedicated hardware projects, we see that most of 

their time is spent repeating lengthy cycles of a design 

flow as they explore the design-space.  Whether a 

system-designer is choosing the number of function 

units, a hardware-designer is writing lines of RTL code, 
or a physical designer is creating a floorplan, all must 

make decisions and test their assumptions with a variety 

of CAD tools to see if they are correct.  If we examine 
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the time spent in these cycles more closely, we find that 

the majority of time is not spent analyzing the data and 

making new decisions.  Instead, the majority of time is 
spent figuring out how to make each CAD tool run the 

desired test. 

Figure 1 shows a portion of an automated design 

flow.  The boxes represent design data, while the lines 

represent steps in the flow.  Here we use solid lines to 

represent fast automated steps, while the dashed lines 
represent steps in which time-consuming user input is 

required.  This figure illustrates a designer creating an 

initial specification, then using an automated synthesis 

step to create an implementation.  When the automated 

flow completes, the designer makes a judgment about the 

performance of the implementation and then may or may 
not use this information to modify the specification. 

 
Figure 1: A simple automated design flow 

 
There are four ways to increase a designer’s 

productivity in such a flow: 

• Reduce the length of time needed to generate 

the user-input (dashed lines). 

• Reduce the number of iterations needed to 

converge on the final implementation. 

• Accelerate the automated steps. 

• Remove steps from the flow. 

 

The remaining sections discuss how various system-

design techniques attempt to improve productivity in one 
of these four ways. 

 

3. SystemC design flow 
 

SystemCTM [2] is a C++ class-library that allows 

high-level modeling of hardware and software.  The most 

popular use of SystemCTM is to co-simulate hardware 
and software, encapsulating low-level models of the 

hardware and bus inside software system-calls, which is 

called Transaction-Level Modeling [3].  Figure 2 

illustrates how we might use SystemCTM to improve 

productivity when designing the dedicated-hardware 

portion of a project.  A traditional system-level 
specification, such as a C or C++ simulation, requires 

manual translation to RTL code before a standard-cell 

netlist can be synthesized, as illustrated in Figure 2(a).  

However, by using a SystemCTM specification and a 

synthesis tool such as the CoCentricTM compiler from 

SynopsysTM [4], the RTL authoring and optimization 

steps can be removed, thereby accelerating the flow as 
shown in Figure 2(b).  In these figures, the parts of the 

flow to optimize the system-level specification have been 

omitted for simplicity, since they should be nearly the 

same. 

 
(a)         (b) 

Figure 2: A traditional flow (a)  

compared with a SystemC flow (b). 

 
The flow in Figure 2(b) assumes that behavioral 

synthesis is used to generate the netlist.  Although 

SystemCTM and CoCentricTM do allow RTL modeling 

and synthesis, it is likely that the system-level code 

would be quite different from the RTL code, requiring 

manual translation as in Figure 2(a).  Many argue that 
they are less productive using SystemCTM in this way, 

since it is much more verbose that Verilog for RTL 

modeling. 

Unfortunately, many designers feel that it easier to 

optimize a system without behavioral synthesis.  This is 

because some changes in behavior that may seem 
insignificant to a designer can cause the compiler to 

produce circuits with significant differences in 

performance.  Figure 3 shows two similar VHDL 

behaviors synthesized with Behavioral CompilerTM from 

SynopsysTM [4].  We may assume that the use of 

SystemCTM and CoCentricTM would produce a similar 
effect.  Although the code for the examples is nearly 

identical, the architecture in Figure 3(a) has less area, 

less latency, and consumes less power than the 

architecture in Figure 3(b).  An experienced designer 

would never use the code in Figure 3(b), but for the 
inexperienced designer, there is nothing in the 

behaviorally abstracted code that alerts him or her to the 

fact that a slight change would improve performance.  In 

addition, behavioral synthesis is typically much slower 

than RTL synthesis, which deters designers from 

spending the time to gain an intuition of good coding 
styles. For these reasons, the use of SystemCTM seems 
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most appropriate when we have a behavior and need to 

build a chip quickly with little regard to its performance.  

However, if we need to build a chip that outperforms 
another, we are unlikely to choose this approach. 

 
(a)   (b) 

Figure 3: Two similar behaviors synthesized with 

SynopsysTM Behavioral CompilerTM. 

 

4. Platform-based design flow 
 

Platform-based design [5] is an approach to system-

level design that encourages extensive, planned design 

reuse.  Tools are beginning to emerge, such as Virtual-

Component Co-design (VCC) from CadenceTM [6], that 

offer a glimpse of an automated platform-based design 
flow.  We may project that, given more widespread 

availability of IP, that VCC will eventually be able to 

provide a flow like the one in Figure 4. 

 
Figure 4: A Platform-based design flow. 

 

As with SystemCTM, a Platform-based design flow 

attempts to treat behavior and architecture as 

independent.  The flow in Figure 4 begins with the 

development of function and architecture specifications.  

In VCC, the function specification is annotated C-code 
called “White-C”, and the architecture is specified as a 

high-level collection of IP-blocks (called “virtual 

components”) with some communication resources 

connecting them.  Once both the function and 

architecture are specified, the designer creates a mapping 

of the function onto the architecture and may request 

analyses of system performance, such as an estimate of 
processor utilization for functionality mapped into 

software.  The designer may map more functionality to 

an under-utilized processor or may add another virtual 

component to accept some of the functionality of an 

over-utilized processor.  This flow improves productivity 

by reducing the time required to generate user input.  The 
user-input cycles in Figure 4 would proceed much faster 

than the cycles in Figure 2(a) and (b), because the 

specifications and mapping have very little detail and are 

easy to change. 

Once the mapping is finalized, we can envision an 

automated step that synthesizes the interfaces to the 
virtual components, using tools like CoWareTM [7], or 

connects them with a special interconnection component, 

such as the Silicon BackplaneTM from SonicsTM [8].  This 

synthesis step could also generate the software or 

configuration bits for the various programmable 

components in the architecture.  Note that Figure 4 
shows no user-input cycles after the generation of the 

netlist and software.  Assuming that the virtual 

components are well characterized, there is no need to 

analyze the performance of the netlist or software in 

order to change the function or architecture specification. 
This flow will generate high-performance hardware, 

given a fixed library of virtual components.  If we want 

to determine what new virtual components to build, 

however, then it becomes less clear how this flow helps 

to achieve high-performance hardware.  In order to 

develop a highly-efficient, flexible architecture with this 
flow, we would need to be able to map functionality onto 

non-existent, dedicated hardware and then obtain 

performance estimates.  Unfortunately, obtaining these 

performance estimates is very difficult.  Most of the 

currently available Platform-based design tools use 

behaviorally abstracted function-specifications, which 
make it difficult to converge on efficient behavior-

architecture pair.  Instead, we need a way to specify 

behavior that makes it easy to predict the most efficient 

architecture.  

 

5. Chip-in-a-day flow 
 

The goal of the Chip-in-a-day flow [9] flow is to 

enable feasibility studies from high-level descriptions by 

aggressively automating a flow to produce fully 

functional mask-layout within a day.  This flow differs 

from other system-level design techniques in that its 
function specification is a discrete-time signal-flow 

graph rather than behaviorally abstracted code.  With this 

flow, behavior and architecture are not independent and 

must be optimized together.  As such, this flow does not 

begin 
  z_next := a + b; 
  wait until clk’event
    and clk = ‘1’; 

  z <= z_next; 
end process; 

begin 
  z_next := a + b; 
  z <= z_next; 
  wait until clk’event 

    and clk = ‘1’; 
end process; 

a 

b 

D Q z 

clk 

D D Q Q 

a 

b 

clk 

z

Function 
Spec. 

Software/ 
Configuration 

Architecture 
Spec. 

Mapping 

Netlist 

Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI’03) 
0-7695-1904-0/03 $17.00 © 2003 IEEE 



attempt to reduce the number of iterations and instead 

attempts to improve productivity by removing steps from 

the flow. 
Figure 5 shows an example of how this flow removes 

design-flow steps.  Figure 5(a) shows a flow similar to 

Figure 2(b) with added layout steps.  This flow begins 

with entry of the system-level spec, which was 

performed with the signal-flow graph editor SimulinkTM 

from the Math WorksTM [10].  This specification is then 
mapped to an RTL description and synthesized to a 

standard-cell netlist, using an approach very similar to 

the one used by the tool System GeneratorTM from 

XilinxTM [11].  This approach removes the RTL-

optimization cycles as the SystemCTM flow did in Figure 

2.  However, this is no guarantee that this architecture 
will work once wire capacitances are included.  To prove 

the correctness of the architecture, the designer must 

create a floorplan, which can then be routed 

automatically to create layout.  A second user-input cycle 

illustrates the need for the designer to modify the 

floorplan depending on the quality of the layout.  If no 
floorplan can be found to make the architecture work, 

then the system-level specification must be changed.  

This flow ends up being very time consuming, because 

the designer cannot begin to create the floorplan until 

after the netlist has been created.  A time-consuming 
cycle to perfect the floorplan must be performed every 

time the designer wishes to see how a change to the 

system-level specification affects the system 

performance. 

The Chip-in-a-day flow attempted to remove this 

cycle by creating a system-level spec that combined 
floorplanning information with the discrete-time signal-

flow graph, thereby eliminating all but the outermost 

user-input cycles, as shown in Figure 5(b).  This flow 

was never completely realized but was instead 
approximated as shown in Figure 5(c), which merges the 

last floorplan with the current netlist on each iteration of 

the flow.  The hope was that, if the automated flow were 

fast enough, it could give the appearance of a floorplan 

and system-level specification being developed side-by-

side.  Unfortunately, for large designs, the generation of 
the standard-cell netlist and merging of the last floorplan 

would take 30 minutes to an hour to perform.  Designer 

effort was saved only if the system-level specification 

changed very slightly.  Significant changes still required 

the design-flow cycle to perfect the floorplan.  

There are three main drawbacks to this flow 
compared to the other system-level techniques.  First, it 

requires the creation of a floorplan, which is difficult and 

time consuming.  Users often forgo the generation of 

layout because it takes too long.  Second, the flow is 

difficult to maintain.  It requires extensive scripting of 

physical design tools that continually change as 
technologies evolve.  Third, it has no approach to deal 

with software.  However, SimulinkTM does have software 

generation capabilities, which could lead to software 

generation methods in the future. 

Even with these drawbacks, the Chip-in-a-day flow is 
much better suited to the development of highly-

efficient, dedicated architectures than the other system-

level techniques.  This is because the discrete-time 

signal-flow graph leads to a much more predictable 

architecture than behavioral code does.  This 

predictability comes from hints or abstractions of the 
physical performance in the system-level specification.   

System-Level 
Spec. 

Standard-Cell 
Netlist 
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Floorplan 

Merged 
Floorplan 

Layout 

Next 
Floorplan 

System-Level 
Spec. 

Standard-Cell 
Netlist 

Layout 
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Figure 5: Illustration of removing steps in the chip-in-a-day flow, before (a), ideal (b) and actual (c) 
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Such abstractions include 

• Operator depth to denote delay 

• Size of the model to denote area 

• Operator locality to denote locality in floorplan 

• Operator activity to denote power 

• Commands to indicate use of particular circuits, 

such as ripple-carry vs. carry-lookahead adders 

or flip-flops vs. SRAMs 
Even if the designer does not execute the complete flow, 

he or she can still roughly predict the performance of the 

architecture based on extrapolations of past executions of 

the flow.  These abstractions lead to an overall increase 

in productivity when designing dedicated hardware. 
Tables 1 and 2 show the evolution of design 

productivity resulting from use of the Chip-in-a-day 

flow.  All designs were dedicated-logic architectures for 

DSP applications, and all were designed by full-time 

students who had never designed chips previously.  In all 

cases, the duration of the project is measured from 
concept to tape-out, including time spent developing the 

system-level specification.  Time is measured in months 

during which the chip was the designers primary focus.   

The first chip was multi-user detection CDMA chip 

(MUD) [12] designed with a block-based, semi-custom 
flow.  This project required 4 hardware designers and 

one physical designer working a total of 39 person-

months, as shown in Table 1.  Once support for the 

automated flow was developed, a physical designer was 

no longer needed.  The next three chips implement a 

Soft-output Viterbi Algorithm (SOVA) [13], a TDMA 
baseband receiver (TDMA) [14], and a Lempel-Ziv 

decompressor for maskless lithography (LZ-DECOMP).  

Table 2 shows design-productivity statistics for each chip 

in terms of transistors per person per year, along with 

complexity data for each chip.  Because the LZ-

DECOMP chip consisted of 8 identical rows that did not 
communicate, only one row was used to calculate 

design-productivity.  Overall productivity for the LZ-

DECOMP chip was lower, because this chip made 

extensive use of SRAM, which was not well supported 

by the automated flow. 

 

 

 

Table 1: Comparison of design effort for chips made with and without the automated flow. 

 

 MUD 

(block-based flow) 

SOVA 

(automated flow) 

TDMA 

(automated flow) 

LZ-DECOMP 

(automated flow) 

 no. of 

designers 

person-

months 

no. of 

designers 

person-

months 

no. of 

designers 

person-

months 

no. of 

designers 

person-

months 
Lead 1 13 1 10 1 13 1 10 
Sub-block 3 19 1 3 2 6 - - 
Physical 1 7 - - - - - - 
Total 4 39 2 13 3 19 1 10 

 

 

Table 2: Comparison of complexity and design-productivity  

for chips made with and without the automated flow. 

 

 MUD 

(block-based flow) 

SOVA 

(automated flow) 

TDMA 

(automated flow) 

LZ-DECOMP 

(automated flow) 

Design- 

Productivity 

130,000 

xstrs./person/year 

600,000 

xstrs./person/year 

580,000 

xstrs./person/year 

420,000 

xstrs./person/year 

Transistors 410,000 340,000 630,000 2,800,000 

Die Size 4.6 mm x 3.4 mm 

= 15.5 mm2 

1.9 mm x 1.9 mm

= 3.5 mm2 

3.7 mm x 3.7 mm 

= 13.8 mm2 

5.2 mm x 2.5 mm

= 13.2 mm2 

Core Size 3.7 mm x 2.5 mm 

= 9.1 mm2 

1.0 mm x 1.0 mm

= 1.0 mm2 

1.8 mm x 1.3 mm 

= 2.3 mm2 

4.7 mm x 1.9 mm

= 9.0 mm2 

Process 0.25 µm, 6 metal 0.18 µm, 6 metal, 
low-threshold 

0.18 µm, 6 metal, 
high-threshold 

0.18 µm, 6 metal, 
high-threshold 

Supply 1.0 V 1.0 V 1.0 V 1.8 V 

Frequency 25 MHz 500 MHz 25 MHz 100 MHz 

Power 10 mW 

(simulated) 

800 mW 

(measured) 

15 mW 

(measured) 

560 mW 

(measured) 
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6. Conclusions 

 

This paper has presented a discussion of three 

system-level design techniques from the perspective of 

optimizing dedicated hardware.  The popular system-
level design techniques SystemCTM and Platform-based 

design promise to alleviate the design-productivity gap 

by simplifying the mapping of behavior onto reusable, 

programmable cores.  However, it is important not to 

sacrifice performance in the pursuit of greater 

productivity.  The Chip-in-a-day flow uses higher levels 
of abstraction to accelerate the design of high-efficiency 

hardware.  The primary means of this acceleration is the 

abstraction of circuit performance at the system level.  It 

is possible that system-level design can be made more 

attractive for high-performance chips by focusing less on 

behavioral abstraction and more on abstraction of circuit 
performance. 
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