
Getting High-Performance Silicon from System-Level Design

W. Rhett Davis

Department of Electrical and Computer Engineering
North Carolina State University

rhett_davis@ncsu.edu

Abstract

System-level design techniques promise a way to lessen

the productivity gap between fabrication and design.

Unfortunately, these techniques have been slow to catch

on, in part because they do little to help designers
optimize hardware. This paper presents a brief summary

of three system-level design techniques, Platform-based

design, SystemC, and Chip-in-a-day, in order to propose

that more system-level abstraction of physical

performance is needed to make these techniques more
useful. An analysis of design-productivity for three chips

designed with the Chip-in-a-Day flow is also presented.

1. Introduction

Today’s silicon technology offers ASIC designers the
potential for great speed, density, and energy efficiency.

Unfortunately, issues such as interconnect-delay and

cross-talk make it very difficult to prototype systems

with the latest technologies, forcing many promising

ideas to go untested. To make up for increasing design

time, companies have no option but to throw more
engineers at every project. This problem is evidenced in

the “productivity gap” between the number of

transistors-per-chip that we can effectively manufacture

and the transistors-per-designer-per-year that we can

effectively design. The International Technology

Roadmap for Semiconductors (ITRS) [1] claims that cost
of design is the greatest threat to the continued growth of

the semiconductor industry.

System-level design techniques, as described in the

ITRS, promise a means to increase designer productivity.

These techniques use specifications at a higher level of
abstraction than RTL or C code that are intended to

allow software and hardware to be optimized

simultaneously. Most system-level methodologies aim

to increase productivity by making the behavior of a

system independent from its architecture. This

independence would simplify the mapping of a system’s
functionality to blocks of existing intellectual property

(IP).

The promise of system-level design allows us to

envision integrated systems with the speed, area-

efficiency, and energy-efficiency of dedicated hardware

but with the flexibility of software. Unfortunately, the
existing techniques for system-level design are focused

much more on the communication between

programmable cores (software-software co-design) and

offer very little to accelerate the design of dedicated

hardware. As a result, we tend to abandon system-level
design and use old, unproductive techniques when we

want high-performance silicon.

This paper presents a perspective of how

modification of our system-level design approach could

lead to the promised improvements in productivity

without sacrificing circuit performance. The paper
begins by discussing a model for analyzing a designer’s

productivity in the context of a specific design flow.

Next, this model is used to analyze two popular system-

level design techniques, SystemC and Platform-based

design, as applied to the development of dedicated

hardware, to illustrate where circuit performance is lost.
Then this model is applied to a lesser known system-

level approach called the Chip-in-a-day flow, which is

focused on accelerating the design of dedicated

hardware. It is shown that the distinguishing aspect of

this technique is that it attempts to provide system-level

abstractions for physical performance. This section
concludes by comparing the designer-productivity for

three chips made with this flow with a fourth made with

a traditional flow.

2. A model for analyzing productivity

When we examine the productivity of designers on

large, dedicated hardware projects, we see that most of

their time is spent repeating lengthy cycles of a design

flow as they explore the design-space. Whether a

system-designer is choosing the number of function

units, a hardware-designer is writing lines of RTL code,
or a physical designer is creating a floorplan, all must

make decisions and test their assumptions with a variety

of CAD tools to see if they are correct. If we examine

Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI’03)
0-7695-1904-0/03 $17.00 © 2003 IEEE

the time spent in these cycles more closely, we find that

the majority of time is not spent analyzing the data and

making new decisions. Instead, the majority of time is
spent figuring out how to make each CAD tool run the

desired test.

Figure 1 shows a portion of an automated design

flow. The boxes represent design data, while the lines

represent steps in the flow. Here we use solid lines to

represent fast automated steps, while the dashed lines
represent steps in which time-consuming user input is

required. This figure illustrates a designer creating an

initial specification, then using an automated synthesis

step to create an implementation. When the automated

flow completes, the designer makes a judgment about the

performance of the implementation and then may or may
not use this information to modify the specification.

Figure 1: A simple automated design flow

There are four ways to increase a designer’s

productivity in such a flow:

• Reduce the length of time needed to generate

the user-input (dashed lines).

• Reduce the number of iterations needed to

converge on the final implementation.

• Accelerate the automated steps.

• Remove steps from the flow.

The remaining sections discuss how various system-

design techniques attempt to improve productivity in one
of these four ways.

3. SystemC design flow

SystemCTM [2] is a C++ class-library that allows

high-level modeling of hardware and software. The most

popular use of SystemCTM is to co-simulate hardware
and software, encapsulating low-level models of the

hardware and bus inside software system-calls, which is

called Transaction-Level Modeling [3]. Figure 2

illustrates how we might use SystemCTM to improve

productivity when designing the dedicated-hardware

portion of a project. A traditional system-level
specification, such as a C or C++ simulation, requires

manual translation to RTL code before a standard-cell

netlist can be synthesized, as illustrated in Figure 2(a).

However, by using a SystemCTM specification and a

synthesis tool such as the CoCentricTM compiler from

SynopsysTM [4], the RTL authoring and optimization

steps can be removed, thereby accelerating the flow as
shown in Figure 2(b). In these figures, the parts of the

flow to optimize the system-level specification have been

omitted for simplicity, since they should be nearly the

same.

(a) (b)

Figure 2: A traditional flow (a)

compared with a SystemC flow (b).

The flow in Figure 2(b) assumes that behavioral

synthesis is used to generate the netlist. Although

SystemCTM and CoCentricTM do allow RTL modeling

and synthesis, it is likely that the system-level code

would be quite different from the RTL code, requiring

manual translation as in Figure 2(a). Many argue that
they are less productive using SystemCTM in this way,

since it is much more verbose that Verilog for RTL

modeling.

Unfortunately, many designers feel that it easier to

optimize a system without behavioral synthesis. This is

because some changes in behavior that may seem
insignificant to a designer can cause the compiler to

produce circuits with significant differences in

performance. Figure 3 shows two similar VHDL

behaviors synthesized with Behavioral CompilerTM from

SynopsysTM [4]. We may assume that the use of

SystemCTM and CoCentricTM would produce a similar
effect. Although the code for the examples is nearly

identical, the architecture in Figure 3(a) has less area,

less latency, and consumes less power than the

architecture in Figure 3(b). An experienced designer

would never use the code in Figure 3(b), but for the
inexperienced designer, there is nothing in the

behaviorally abstracted code that alerts him or her to the

fact that a slight change would improve performance. In

addition, behavioral synthesis is typically much slower

than RTL synthesis, which deters designers from

spending the time to gain an intuition of good coding
styles. For these reasons, the use of SystemCTM seems

Specification

Implementation

System-Level
Spec.

RTL
code

Std.-Cell
Netlist

SystemC
Spec.

Std.-Cell
Netlist

Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI’03)
0-7695-1904-0/03 $17.00 © 2003 IEEE

most appropriate when we have a behavior and need to

build a chip quickly with little regard to its performance.

However, if we need to build a chip that outperforms
another, we are unlikely to choose this approach.

(a) (b)

Figure 3: Two similar behaviors synthesized with

SynopsysTM Behavioral CompilerTM.

4. Platform-based design flow

Platform-based design [5] is an approach to system-

level design that encourages extensive, planned design

reuse. Tools are beginning to emerge, such as Virtual-

Component Co-design (VCC) from CadenceTM [6], that

offer a glimpse of an automated platform-based design
flow. We may project that, given more widespread

availability of IP, that VCC will eventually be able to

provide a flow like the one in Figure 4.

Figure 4: A Platform-based design flow.

As with SystemCTM, a Platform-based design flow

attempts to treat behavior and architecture as

independent. The flow in Figure 4 begins with the

development of function and architecture specifications.

In VCC, the function specification is annotated C-code
called “White-C”, and the architecture is specified as a

high-level collection of IP-blocks (called “virtual

components”) with some communication resources

connecting them. Once both the function and

architecture are specified, the designer creates a mapping

of the function onto the architecture and may request

analyses of system performance, such as an estimate of
processor utilization for functionality mapped into

software. The designer may map more functionality to

an under-utilized processor or may add another virtual

component to accept some of the functionality of an

over-utilized processor. This flow improves productivity

by reducing the time required to generate user input. The
user-input cycles in Figure 4 would proceed much faster

than the cycles in Figure 2(a) and (b), because the

specifications and mapping have very little detail and are

easy to change.

Once the mapping is finalized, we can envision an

automated step that synthesizes the interfaces to the
virtual components, using tools like CoWareTM [7], or

connects them with a special interconnection component,

such as the Silicon BackplaneTM from SonicsTM [8]. This

synthesis step could also generate the software or

configuration bits for the various programmable

components in the architecture. Note that Figure 4
shows no user-input cycles after the generation of the

netlist and software. Assuming that the virtual

components are well characterized, there is no need to

analyze the performance of the netlist or software in

order to change the function or architecture specification.
This flow will generate high-performance hardware,

given a fixed library of virtual components. If we want

to determine what new virtual components to build,

however, then it becomes less clear how this flow helps

to achieve high-performance hardware. In order to

develop a highly-efficient, flexible architecture with this
flow, we would need to be able to map functionality onto

non-existent, dedicated hardware and then obtain

performance estimates. Unfortunately, obtaining these

performance estimates is very difficult. Most of the

currently available Platform-based design tools use

behaviorally abstracted function-specifications, which
make it difficult to converge on efficient behavior-

architecture pair. Instead, we need a way to specify

behavior that makes it easy to predict the most efficient

architecture.

5. Chip-in-a-day flow

The goal of the Chip-in-a-day flow [9] flow is to

enable feasibility studies from high-level descriptions by

aggressively automating a flow to produce fully

functional mask-layout within a day. This flow differs

from other system-level design techniques in that its
function specification is a discrete-time signal-flow

graph rather than behaviorally abstracted code. With this

flow, behavior and architecture are not independent and

must be optimized together. As such, this flow does not

begin
 z_next := a + b;
 wait until clk’event
 and clk = ‘1’;

 z <= z_next;
end process;

begin
 z_next := a + b;
 z <= z_next;
 wait until clk’event

 and clk = ‘1’;
end process;

a

b

D Q z

clk

D D Q Q

a

b

clk

z

Function
Spec.

Software/
Configuration

Architecture
Spec.

Mapping

Netlist

Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI’03)
0-7695-1904-0/03 $17.00 © 2003 IEEE

attempt to reduce the number of iterations and instead

attempts to improve productivity by removing steps from

the flow.
Figure 5 shows an example of how this flow removes

design-flow steps. Figure 5(a) shows a flow similar to

Figure 2(b) with added layout steps. This flow begins

with entry of the system-level spec, which was

performed with the signal-flow graph editor SimulinkTM

from the Math WorksTM [10]. This specification is then
mapped to an RTL description and synthesized to a

standard-cell netlist, using an approach very similar to

the one used by the tool System GeneratorTM from

XilinxTM [11]. This approach removes the RTL-

optimization cycles as the SystemCTM flow did in Figure

2. However, this is no guarantee that this architecture
will work once wire capacitances are included. To prove

the correctness of the architecture, the designer must

create a floorplan, which can then be routed

automatically to create layout. A second user-input cycle

illustrates the need for the designer to modify the

floorplan depending on the quality of the layout. If no
floorplan can be found to make the architecture work,

then the system-level specification must be changed.

This flow ends up being very time consuming, because

the designer cannot begin to create the floorplan until

after the netlist has been created. A time-consuming
cycle to perfect the floorplan must be performed every

time the designer wishes to see how a change to the

system-level specification affects the system

performance.

The Chip-in-a-day flow attempted to remove this

cycle by creating a system-level spec that combined
floorplanning information with the discrete-time signal-

flow graph, thereby eliminating all but the outermost

user-input cycles, as shown in Figure 5(b). This flow

was never completely realized but was instead
approximated as shown in Figure 5(c), which merges the

last floorplan with the current netlist on each iteration of

the flow. The hope was that, if the automated flow were

fast enough, it could give the appearance of a floorplan

and system-level specification being developed side-by-

side. Unfortunately, for large designs, the generation of
the standard-cell netlist and merging of the last floorplan

would take 30 minutes to an hour to perform. Designer

effort was saved only if the system-level specification

changed very slightly. Significant changes still required

the design-flow cycle to perfect the floorplan.

There are three main drawbacks to this flow
compared to the other system-level techniques. First, it

requires the creation of a floorplan, which is difficult and

time consuming. Users often forgo the generation of

layout because it takes too long. Second, the flow is

difficult to maintain. It requires extensive scripting of

physical design tools that continually change as
technologies evolve. Third, it has no approach to deal

with software. However, SimulinkTM does have software

generation capabilities, which could lead to software

generation methods in the future.

Even with these drawbacks, the Chip-in-a-day flow is
much better suited to the development of highly-

efficient, dedicated architectures than the other system-

level techniques. This is because the discrete-time

signal-flow graph leads to a much more predictable

architecture than behavioral code does. This

predictability comes from hints or abstractions of the
physical performance in the system-level specification.

System-Level
Spec.

Standard-Cell
Netlist

Last
Floorplan

Merged
Floorplan

Layout

Next
Floorplan

System-Level
Spec.

Standard-Cell
Netlist

Layout

Floorplan

System-Level
Spec.

Floorplan

Layout

(a) (b) (c)

Figure 5: Illustration of removing steps in the chip-in-a-day flow, before (a), ideal (b) and actual (c)

Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI’03)
0-7695-1904-0/03 $17.00 © 2003 IEEE

Such abstractions include

• Operator depth to denote delay

• Size of the model to denote area

• Operator locality to denote locality in floorplan

• Operator activity to denote power

• Commands to indicate use of particular circuits,

such as ripple-carry vs. carry-lookahead adders

or flip-flops vs. SRAMs
Even if the designer does not execute the complete flow,

he or she can still roughly predict the performance of the

architecture based on extrapolations of past executions of

the flow. These abstractions lead to an overall increase

in productivity when designing dedicated hardware.
Tables 1 and 2 show the evolution of design

productivity resulting from use of the Chip-in-a-day

flow. All designs were dedicated-logic architectures for

DSP applications, and all were designed by full-time

students who had never designed chips previously. In all

cases, the duration of the project is measured from
concept to tape-out, including time spent developing the

system-level specification. Time is measured in months

during which the chip was the designers primary focus.

The first chip was multi-user detection CDMA chip

(MUD) [12] designed with a block-based, semi-custom
flow. This project required 4 hardware designers and

one physical designer working a total of 39 person-

months, as shown in Table 1. Once support for the

automated flow was developed, a physical designer was

no longer needed. The next three chips implement a

Soft-output Viterbi Algorithm (SOVA) [13], a TDMA
baseband receiver (TDMA) [14], and a Lempel-Ziv

decompressor for maskless lithography (LZ-DECOMP).

Table 2 shows design-productivity statistics for each chip

in terms of transistors per person per year, along with

complexity data for each chip. Because the LZ-

DECOMP chip consisted of 8 identical rows that did not
communicate, only one row was used to calculate

design-productivity. Overall productivity for the LZ-

DECOMP chip was lower, because this chip made

extensive use of SRAM, which was not well supported

by the automated flow.

Table 1: Comparison of design effort for chips made with and without the automated flow.

 MUD

(block-based flow)

SOVA

(automated flow)

TDMA

(automated flow)

LZ-DECOMP

(automated flow)

 no. of

designers

person-

months

no. of

designers

person-

months

no. of

designers

person-

months

no. of

designers

person-

months
Lead 1 13 1 10 1 13 1 10
Sub-block 3 19 1 3 2 6 - -
Physical 1 7 - - - - - -
Total 4 39 2 13 3 19 1 10

Table 2: Comparison of complexity and design-productivity

for chips made with and without the automated flow.

 MUD

(block-based flow)

SOVA

(automated flow)

TDMA

(automated flow)

LZ-DECOMP

(automated flow)

Design-

Productivity

130,000

xstrs./person/year

600,000

xstrs./person/year

580,000

xstrs./person/year

420,000

xstrs./person/year

Transistors 410,000 340,000 630,000 2,800,000

Die Size 4.6 mm x 3.4 mm

= 15.5 mm2

1.9 mm x 1.9 mm

= 3.5 mm2

3.7 mm x 3.7 mm

= 13.8 mm2

5.2 mm x 2.5 mm

= 13.2 mm2

Core Size 3.7 mm x 2.5 mm

= 9.1 mm2

1.0 mm x 1.0 mm

= 1.0 mm2

1.8 mm x 1.3 mm

= 2.3 mm2

4.7 mm x 1.9 mm

= 9.0 mm2

Process 0.25 µm, 6 metal 0.18 µm, 6 metal,
low-threshold

0.18 µm, 6 metal,
high-threshold

0.18 µm, 6 metal,
high-threshold

Supply 1.0 V 1.0 V 1.0 V 1.8 V

Frequency 25 MHz 500 MHz 25 MHz 100 MHz

Power 10 mW

(simulated)

800 mW

(measured)

15 mW

(measured)

560 mW

(measured)

Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI’03)
0-7695-1904-0/03 $17.00 © 2003 IEEE

6. Conclusions

This paper has presented a discussion of three

system-level design techniques from the perspective of

optimizing dedicated hardware. The popular system-
level design techniques SystemCTM and Platform-based

design promise to alleviate the design-productivity gap

by simplifying the mapping of behavior onto reusable,

programmable cores. However, it is important not to

sacrifice performance in the pursuit of greater

productivity. The Chip-in-a-day flow uses higher levels
of abstraction to accelerate the design of high-efficiency

hardware. The primary means of this acceleration is the

abstraction of circuit performance at the system level. It

is possible that system-level design can be made more

attractive for high-performance chips by focusing less on

behavioral abstraction and more on abstraction of circuit
performance.

Acknowledgments

Many thanks to Ben Wild, Josie Ammer, Engling

Yeo, and Ning Zhang for their design-productivity and

chip-complexity statistics, to Bob Brodersen and
Borivoje Nikolić for continuing advice, to ST

Microelectronics for fabrication services, to Cadence for

design tools, and to DARPA for making this work

possible through their support.

References

[1] International Technology Roadmap for

Semiconductors, 2001, available at
http://public.itrs.net

[2] SystemCTM, http://www.systemc.org

[3] T. Grötker, S. Liao, G. Martin, and S. Swan, System

Design with SystemC, Kluwer, Boston, 2002.

[4] CoCentricTM and Behavioral CompilerTM, from

SynopsysTM, http://www.synopsys.com
[5] H. Chang, et al., Surviving the SOC Revolution: A

Guide to Platform-Based Design, Kluwer, Boston,

1999.

[6] VCCTM from CadenceTM, http://www.cadence.com

[7] CoWareTM, http://www.coware.com

[8] Silicon BackplaneTM from SonicsTM,
http://www.sonicsinc.com

[9] W. Rhett Davis, et al., "A Design Environment for

High-Throughput, Low-Power Dedicated Signal

Processing Systems", IEEE Journal of Solid State

Circuits, March 2002, pp. 420-31.
[10] SimulinkTM from the Math WorksTM,

http://www.mathworks.com

[11] System GeneratorTM from XilinxTM,

http://www.xilinx.com

[12] N. Zhang, C. Teuscher, H. Lee, and B. Brodersen,

“Architectural Implementation Issues in a
Wideband Receiver Using Multiuser Detection,”

Proc. of the Allerton Conf. on Communication,

Control, and Computing, Sept. 1998, pp. 765-71.

[13] E. Yeo, S. Augsburger, W. R. Davis, and B.

Nikolic, "500 Mb/s Soft Output Viterbi Decoder,"

Proc. IEEE European Solid-State Circuit Conf.,
Sept. 2002, pp. 523-26.

[14] J. L. da Silva, et al, “Design methodology for

PicoRadio networks,” Proc. of Design, Automation

and Test in Europe, March 2001, pp. 314-23.

Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI’03)
0-7695-1904-0/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

