
Functional Verification for SystemC Descriptions Using Constraint Solving

Fabrizio Ferrandi
Politecnico di Milano

Dipartimento di Elettronica
e Informazione

ferrandi@elet.polimi.it

Michele Rendine
Politecnico di Milano

Dipartimento di Elettronica
e Informazione

mirendi@jumpy.it

Donatella Sciuto
Politecnico di Milano

Dipartimento di Elettronica
e Informazione

sciuto@elet.polimi.it

Abstract

This paper addresses the problem of test vectors gener-
ation starting from an high level description of the system
under test, specified in SystemC. The verification method
considered is based upon the simulation of input sequences.
The system model adopted is the classical Finite State Ma-
chine model. Then, according to different strategies, a set
of sequences can be obtained, where a sequence is an or-
dered set of transitions. For each of these sequences, a set
of constraints is extracted. Test sequences can be obtained
by generating and solving the constraints, by using a con-
straint solver (GProlog). A solution of the constraint solver
yields the values of the input signals for which a sequence
of transitions in the FSM is executed. If the constraints can-
not be solved, it implies that the corresponding sequence
cannot be executed by any test. The presented algorithm is
not based on a specific fault model, but aims at reaching the
highest possible path coverage.

1 Introduction

Functional verification is mainly based on the concept of
simulation. There are a number of commercial simulators
in the market which are able, with different degrees of pre-
cision and accuracy, of simulating the behavior of an hard-
ware component, if we provide a specification with an hard-
ware description language and a vector of input bits. The
major problem of this technique is how to generate a set of
input test vectors that is accurate enough to cover the largest
possible set of behaviors of the component, using a limited
amount of resources, typically represented by time. Manual
and random approaches do not provide an accurate solution
for the problem of verification, because there is no guar-
antee on the accuracy of the results that can be achieved in
terms of bug-finding. This is why in the recent years the sci-
entific community has focused its efforts upon this problem,
trying to provide alternative techniques for the automatic

generation of test cases. The algorithms that try to automat-
ically generate test vectors, aimed at verification through
simulation, are called ATPG (Automatic Test Pattern Gen-
eration). There are ATPGs based on the extended Finite
State Machine model, such as [1], ATPGs based on genetic
algorithms, such as [2] and [3], ATPG based on Binary De-
cision Diagrams, such as [4] and [5] and ATPG based on
Assignment Decision Diagrams, such as [6]. The ATPG
presented in this paper can be considered in the family of
ATPGs based on controllability and observability through
the solution of SAT problems. This approach has been de-
veloped also in [7], and [8]. Our algorithm improves these
approaches by consideringing the solution of all constraints
involving bits, bit vectors and integers that drive the control
flow of the system under test. After the production of the
test vectors, it is necessary to evaluate their effectiveness,
and this goal can be achieved by using a coverage met-
ric. Different criteria are commonly adopted to determine
how good a test set is: statement coverage, branch cover-
age, condition coverage and path coverage. Path coverage
is the most stringent of these criteria, the problem is that
the number of paths is a generic description of an hardware
model can be infinite. The algorithm we propose introduces
the concept of sequence of transitions, where a sequence is
a path of a given length in terms of time frames, and then
generates all the test vectors necessary to exercise these se-
quences. In this way, we realize path coverage for all paths
with a length that is less or equal to the fixed one.

2 Assumptions and Computational Model

The proposed test generation algorithm considers as in-
ternal description of the system under test the classical Fi-
nite State Machine computational model. A Finite State
Machine,

�
, can be formalized as a 5-tuple

���������
	�����
���������
where

�������
represents the input alphabet,

	������
represents the output alphabet,

�������
is the set of states,

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

� �
is the initial state and R is the global relation.

Naturally, the set
�

is defined as B= "! �$#�% .
The use of FSMs can be exploited to represent concurrency:
in fact, a complex system can always be described with a
certain number of interconnected FSMs. To allow cooper-
ation among interconnected FSMs, a communication and
interaction mechanism is required: this is realized through
FSMs composition. Through FSM composition we obtain
a complex system, that is composed of a certain number
of single FSMs, that however interact and exchange data
among them. To realize such a system, a fundamental hy-
pothesis must be satisfied: all FSMs must change state to-
gether. In this case it is possible to define the system state as
the cartesian product of the states of all single FSMs com-
posing the system. Moreover, we have considered only de-
scriptions with a single clock signal.

3 The Test Generation Algorithm

3.1 Overview

The test generation approach proposed, aimed at verifi-
cation, can be decomposed into 5 major tasks:

1. Acquisition of Data: In this phase all available infor-
mation about the system is processed. These informa-
tion are mainly constituted by four lists. These are the
port list, the statement list, the conditional instruction
list and the transition list. The lists are obtained from
an analysis of the source SystemC code.

2. Analysis of Transitions: It consists in finding the initial
and final state for each transition present in the transi-
tion list.

3. Sequence Enumeration: Sequence enumeration is the
process of enumerating various potential execution
paths through the SystemC program for which test vec-
tors are required. The generation of these sequences
can be performed according to different techniques.
For instance, the breadth first approach with depth & is
equivalent to consider all the possible execution paths
that last & clock cycles.

4. Analysis of Sequences and Production of Constraints:
For each considered sequence, a set of constraints is
produced. This set of constraints corresponds to all the
conditional instructions that have to result true during
the execution of the sequence. The problem is that, in
general, these constraints do not apply only to input
ports, but also to variables and signals. Generally, it is
not possible to force the value of a variable or a signal
to a given value, but it is possible to backtrack through
the code in order to obtain the direct dependence of

the value of the variable or signal from a general set of
input ports and constants. At the end of this phase, a
set of different files is produced: each file is associated
with a sequence, and reports the set of equations that
must be verified for the execution of the sequence it-
self. These equations have as constraint variables only
input ports, and also include domain constraints, that
specify the domain from which the values of a con-
straint variable are drawn. All equations are written
according to the GProlog format.

5. Constraint Solving and Test Extraction: Constraint
Solving is the process of generating a solution, if one
exists, to satisfy a set of constraints associated with
a sequence. In our implementation we have used the
GProlog constraint solver, but the technique used for
constraint generation is independent of the constraint
solver used. If the GProlog constraint solver does not
find a solution, then no verification test can be gener-
ated for the sequence. If the constraint solver finds a
solution, it is represented as a value assigned to each
constraint variable. During the test extraction phase,
we extract the test vectors from the solution written
according to the GProlog output format, and arrange
them in a suitable format for the SystemC simulator.

3.2 Acquisition of Data

During this phase, all the information about the topol-
ogy of the system under test is collected. These information
consists in four lists:

3.2.1 Port List

It is the list of all the input port of the system. The function
of this list is to provide the data necessary during the equa-
tions expansion phase; moreover it is used also during the
phase of constraint generation, in order to derive the cor-
rect upper and lower bounds for each constraint variable.
If a port is declared as bit or bit vector, the only possible
domain is the boolean one '! �(#�% . If the port represents an
integer, there is an additional information: in fact, if we de-
clare a four bit integer, it can be both used to represent the
numbers from 0 to 15, or from -8 to 7, and so on. In this
case, also the upper and lower bound of the port, intended as
the lower and the higher possible value that it is necessary
to consider using & bits, is reported.

3.2.2 Statement List

This is the list containing the data about all the statements
present in the code we want to test. A statement is defined
as each operation the ends with that writing of a value over
an operator, that is called target, and can be an output port

2

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

or a variable or a signal. In general, the value written on
the target depends on an undefined number of constants, in-
put ports, variables and signals, but for the identified model
only two kind of equations are allowed: unary equations,
constituted by a single operator, and binary equations, con-
stituted by two operators and one operation. In fact, it is
possible to prove that each complex equation can be divided
in a set of binary equations, through the introduction of a
certain number of temporary variables. The adopted model
allows different operations:

) Logic operations: NOT,AND,OR,XOR,NOR,NAND.

) Mathematical operations: Addition, Multiplication,
Subtraction, Quotient of Division, Remainder of Di-
vision, Exponential.

) Operations on bit vectors: Concatenation, Selection of
single bit, Selection of subvectors of bits.

This set of operations is sufficiently rich to allow the
modeling of a large set of SystemC operations.

3.2.3 Conditional Instruction List

This list contains all the conditional instructions present in
the code. Each conditional instruction corresponds to a con-
dition that must be verified upon a variable or a signal or an
input port. In our model, we have considered only two kind
of conditional instructions:
) Binary branch: corresponds to a binary disjunction in

the code. If the condition is true, a certain piece of code
is executed, corresponding to the *,+.-"/ branch, other-
wise another piece of code is executed, corresponding
to the -'021(- branch. This conditional instruction can be
used to represent the if-then-else control instruction,
but also more complex structures, such as the if-elseif-
else control instruction.

) Multiple branch: corresponds to a disjunction of the
code that presents more than two branches. The exe-
cuted piece of code corresponds to the first condition
that results to be true. This conditional instruction can
be used to model the case instruction.

Naturally, the entire SystemC language presents a num-
ber of control instructions that is larger with respect to the
model we have introduced; however, it is possible to prove
that, if we use the FSM model, all the conditional instruc-
tions involving loops, as for example 354'6 , or 78+:9;0<- , can
be translated in an appropriate FSM description. When a
conditional instruction is defined, it is necessary to identify
the left and the right operator, and the comparison criterion.
There are six different types of comparison criteria: Equal,
Not Equal, Greater than, Less than, Greater or Equal than,
Less or Equal than.

3.2.4 Transitions List

This list contains all the possible transitions that are allowed
in the system description. A transition is defined as the or-
dered set of all statements and conditional instructions that
can be executed and verified during a single clock cycle.
Each transition, in practice, corresponds to a path that can
be followed in the system under test, if we limit the duration
of the simulation to a single clock cycle. These transitions
can be obtained by a recursive visit of the control data flow
graph that represents the topology of the system under test.
Let us consider the following example, called Example 1.

This piece of code represents a simple Finite State Ma-
chine. Figure 2 represents the Control Data Flow graph ex-
tracted from Example 1. The graph contains both the infor-
mation about control conditions and about data flows (as-
signments on variables, signals and ports). If a single clock
cycle is considered, each different possible path from the
starting point of the CDFG to the final point of the CDFG
represents a transition for the FSM. In the example, the
number of possible paths is 8: this means that, during each
clock cycle, the system exercises one of these 8 transitions.

3.3 Analysis of Transitions

After the acquisition of all lists, the second step of the
methodology consists in analyzing each transition. The goal
is to establish, for each of these transitions, the initial state
and the final state. In fact, during the next step, all the avail-
able sequences of transitions will be considered, and a se-
quence is meaningful if and only if the final state of each
transition composing the sequence corresponds to the ini-
tial state of the previous transition. The identification of the
initial and final state of each transition is performed through
the application of two algorithms:
) Initial state: the initial state can be obtained by the first

multiple branch instruction on the state variable. In
fact, if we refer to the classical FSM model, the back-
bone of the code is constituted by a case instruction on
the value of the state variable. If the transition does not
present any multiple branch instruction on the value of
the state variable, it is assumed to have, as initial state,
the reset state.

) Final state: the final state can be obtained by the last
assignment statement on the state variable. If the tran-
sition does not present any assignment statement on
the state variable, it is assumed to have, as final state,
the same state that has been identified as initial state.
It is important to notice that it is possible to find se-
quences with the same initial and final state; this, how-
ever, does not mean that the sequences can be consid-
ered the same one, because they are characterized by a
different set of statements and conditional instructions.

3

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

#include <systemc.h>

SC_MODULE(fsm) {

sc_in<bool> clock;
sc_in<bool> reset;
sc_in<bool> line;
sc_out<bool> u;

enum {A,B,C,D} state;

SC_CTOR(fsm)
{
SC_METHOD(entry);
sensitive_pos(clock);
};

void entry();
};

void fsm::entry() {
sc_bit temp;
if (reset.read()==true)
{

state=A;
temp=’0’;
u.write(false);

}
else
{

switch (state) {
case A:
temp=’0’;
state=B;
if (line.read()== false)

temp=line.read();
else

temp=line.read();
case B:
if (temp==’0’)

state=C;
else

state=D;
u.write(false);

case C:
if (line.read()==false)

state=D;
else

state=A;
u.write(false);

case D:
state=B;
u.write((bool)temp);

}
}

}

Figure 1. Example 1

Figure 2. Control Data Flow graph

At the end of this phase, it is possible to obtain a graph, that
shows all the possible transitions between the states of the
system. Each arc between two states represents a transition,
and is labeled with the transition identifier. According to
what we said before, it is possible to have multiple arcs be-
tween two states. Figure 3 shows this graph for Example
1.

Figure 3. States and transitions graph of Ex-
ample 1.

3.4 Sequence Enumeration

The following step is the enumeration of all theoretically
possible sequences. A sequence is defined as an ordered set
of transitions. A sequence is theoretically feasible if and
only if the final state of each transition composing the se-
quence is equal to the initial state of the following transi-
tion. Moreover, each sequence always starts from the reset
state (this means that the initial state of the first transition

4

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

of each sequence is always the reset state). Once defined
these simple rules, it is possible to define different criteria
to select and enumerate the sequences. In the following, a
number of these criteria are illustrated:

1. Breadth first: given a number & , the breadth first
approach selects all the sequences that are composed
by exactly & transitions. This strategy provides the
higher possible coverage, because all the possible se-
quences with a length of & are considered. In prac-
tice, it corresponds to the path coverage, where each
path lasts at most & clock cycles. However, this is
also the most heavy strategy under the point of view
of the computational complexity: in the worst case, if
we have a fully connected graph, the number of gener-
ated sequences is = ��>�?A@'BDCE �

, where
> E is the average

number of transitions starting from each state, and
> �

is the number of considered time frames. If we con-
sider an example where there are only two transitions
starting from each state, the number of generated se-
quences will be exactly F ?G@"BIHKJLC .

2. Breadth first plus transition selection: this strategy is
similar to the previous one; the user provides, as in-
put, a set of transitions

�
. Then, the sequences are

generated according to the breadth-first approach, but
a sequence is accepted only if all transitions belong
to set

�
. Through this approach, it is possible to dis-

card a large number of sequences, and to save time and
memory. Naturally this happens because the attention
is focused on a smaller subset of transitions.

3. Transition coverage: this strategy is aimed at cover-
ing all transitions, but not necessarily all paths. A list
of covered transitions is built, where for each transi-
tion it is reported if it has been covered or not. Then
the sequences are generated according to the breadth
first approach, but if a sequence is constituted by tran-
sitions that have been covered by previous sequences,
it is discarded. In practice, a sequence is added to the
list of the valid sequences if and only if it covers at
least one transition that has not been previously cov-
ered by another sequence. The algorithm stops when
each transition has been covered at least once.

At the end of this phase, a list of theoretically feasible se-
quences is obtained. Each one of these sequences is ana-
lyzed and processed during the following step.

3.5 Analysis of Sequences and Production of Con-
straints

The goal of this phase of the algorithm is to find, for
each considered sequence, the set of constraints that corre-
sponds to the execution of that specific sequence. This set

of constraints is written according to the GProlog format. In
general, each constraint derives from a control instruction,
and the operators of a control instruction can be input ports,
variables, signals or constraints. Let us consider the case of
a variable M used in an 9;3 control instruction, as follows:

if (x==’0’) then
{block 1}

else
{block 2}

If the considered sequence contains the transition corre-
sponding to the true branch of the 9L3 control instruction, it
is possible to derive the following constraint:

M � ! �
M is not an input port, so it is not directly controllable.

The solution of this constraint is not useful to identify the
primary input values that control the variable. Moreover, let
us consider the case where the variable M is subject to an-
other assignment, and then used in another control instruc-
tion. It is necessary to distinguish the two different values
of the same variable during two different moments of the
execution. To solve these two problems, it is necessary to
introduce first of all the information about time, then to ap-
ply an expansion algorithm, that is able to write constraints
containing only input ports and constants.

) Time: The information about time can be easily de-
rived from the structure of the sequences. Each transi-
tion corresponds to a different time frame, because in
our model a transition is defined as the set of instruc-
tions and conditions that can be executed and verified
in a single time frame. This means that it is possible to
associate a mark to each variable, signal and input port.
Variables, signals and input ports characterized by the
same name, but a different time mark, could have dif-
ferent values. In the GProlog equations, the time mark
is added to the name of the variable, signal or input
port after a double underscore.

) Expansion Algorithm: Let us consider the following
list of constraints:

6N-N1"-"* #8�O#
6N-N1"-"* F � !
1$*LPQ*L- F �SR
6N-N1"-"* T � !
1(*LPQ*L- T �S�
*L-(UWV T ��#

While 6N-N1"-"* is an input port, and is directly control-
lable, 1(*LPQ*L- and *L-"UWV are two variables. We need to

5

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

express these variables in terms of known signals (con-
stants) or controllable signals (input ports). This oper-
ation can be obtained by a backward analysis of the
code. Let us consider the previous example. The equa-
tions are allocated in memory as binary trees. All the
leaves of these trees that are variables or signals could
be subject to expansion. If we scan the list of state-
ments executed during the sequence, starting from the
last one to the first one, during the second clock cycle
we find:

*L-"U�V � 0X9Y/K-QZ
Due to the fact that this statement is executed during
the second clock cycle, and this time mark is lower
than the time mark of the variable temp in the equation
trees, the substitution is executed. The equation tree
changes, and this means that the constraint is modified
into:

� 0�92/K- F �D�O#

In practice, every time we find a statement having a
variable as left operand, if the variable is also a leaf
for the equation tree and the time mark of the variable
in the tree is greater or equal to the time frame when
the statement is executed, then the leaf of the tree is
expanded. The same procedure is applied in case of
signals. If each variable and signal of the system has
been at least initialized, at the end of this phase all con-
straint equations should involve only known or directly
controllable signals. If this does not happen, it means
that there are variables or signals that have not been
initialized, so we are dealing with a non-deterministic
Finite State Machine.

) Constraints production: Once obtained the list of con-
straint equations for each sequence, it is necessary to
translate these equations according to the GProlog for-
mat. Moreover, it is necessary to consider separately
the case of bits, bit vectors and integers, because these
three types belong to different domains, and are solved
in different ways.

– Bit: Table 1 shows the correspondence between
the operations and comparators introduced previ-
ously and the GProlog equations. In this case, for
each equation in the constraint equation list of the
sequence, a single GProlog equation is produced.
The domain of all constraint variables used in
the equations is defined as the boolean domain
 '! �$#[% .

Operation or comparator GProlog
NOT \W]
AND _^`]
OR _]`^

XOR _\
NAND _]`^[]
NOR _]`][^
Equal \ba ��c

Not equal _]da ��c

Table 1. Boolean operations and comparators

– Bit vector: If at least one variable involved in a
constraint equation is a bit vector, the situation is
more complex. In fact, it is necessary to consider
that more than a single GProlog equation can be
extracted from a single constraint equation. Let
us consider two bit vectors, e # and efF , of the
same size. If we consider the constraint equation:

e #g� edF
this implies that each bit of e # must have a value
equal to the corresponding bit of e�F . In this case,
it is possible to split a single constraint equation
involving bit vectors in a series of GProlog
equations involving a single bit. Each constraint
equation between bit vectors involving an equiv-
alence can be divided in a series of equivalences
over the single bits of the bit vectors. This se-
ries of four equations in GProlog is shown below.

e # !h\ia ��c edF !
e # # \ia ��c edF #
e # Fj\ia ��c edF F
e # Th\ia ��c edF T

The number after the underscore represents the
position of the bit in the array. The same pro-
cedure can be applied if the equivalence involves
other logical operations, such as AND, OR, NOT,
XOR, etc. A different approach must be used in
case of inequality. Let us consider the following
constraint:

e #Wk� edF
where e # and e�F are bit vectors with a size
of 4 bits. In this case, it is sufficient that at
least one bit of e # is different with respect to
the corresponding bit of edF , in order to satisfy
the constraint. In fact, each constraint equation

6

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

Operation GProlog
Sum l

Subtraction m
Moltiplication n

Quotient of integer division ^
Reminder of integer division 6'-"U

Power n`n
Equal \ �

Not equal _] �
Greater \ c

Less \ia
Greater or equal \ c8�

Less or equal \ � a

Table 2. Mathematical operations and com-
parators

between bit vectors involving an inequality con-
straint can be translated into a single equation
involving the single bits of the bit vectors. This
equation can be written in GProlog language,
using the table of equivalence presented before.
The result is:

�,� \W] � e # � \W\We�F � ��� _^[]� _] � e # J _\We�F J �,� _^[]� _] � e #(o _\We�F o$�,� _^[]� _] � e #"p _\WedF p"�,��� \ba ��c ! �
– Integer: Integers represent a different kind of do-

main for GProlog equations. When a constraint
variable is declared as an integer, it is necessary
to specify also the upper and the lower bound
of the integer. Table 2 represents the equiva-
lence between the operations and comparators
we have introduced previously and the corre-
sponding GProlog instructions.

At the end of this process, for each sequence it is
possible to obtain a set of GProlog equations. These
equations are defined over variables belonging to the
boolean or integer domain. Each constraint variable
represents a bit of an input port, or a set of bits repre-
senting an integer. For the integer constraint variable, a
range of finite values of existence is provided. This set
of equations and domain constraints represents a SAT
problem: if it is possible to find an assignment on the
constraint variables that satisfies all constraints at the
same, it is possible to determine an assignment over
the input ports that exercise the sequence from which
the constraints are originated.

3.6 Constraint Solving and Test Extraction

The last phase of the verification process consists in solv-
ing the constraint equations obtained for each sequence.
There are two possible results:

1. The set of constraint equations obtained for a sequence
cannot be satisfied. In this case, the sequence of transi-
tions corresponding to the set of constraint equations is
theoretically possible, but cannot be exercised in prac-
tice.

2. The set of constraint equations obtained for a sequence
can be satisfied. In this case, the GProlog solver com-
putes one possible solution for that set of constraints,
and this solution is stored in a file.

Finally, the set of solutions obtained for all considered se-
quences is considered by a test vectors generator, that maps
the values of the solutions over the input ports along the
time frames in order to obtain a complete testbench.

3.7 Extension to Multiple Processes

The considered execution model for multiple processes
is characterized by the fact that simulation time is ad-
vanced and signal values are updated only after all the pro-
cesses are suspended. In this case, test generation must
follow this model of execution. Consider the specification
of / interacting FSMs, with /rq #

, written using a sin-
gle SystemC module. Each FSM defines a different pro-
cess s J � s o`� s p��$tGtGtA� s � . If process Pi has xi possible transi-
tions in a single clock cycle, then, since the processes can
potentially execute independently of each other, there are
M J nuM o nIM p n tGtGt n�M � potential execution paths in the pro-
gram. Also in this case, some of these paths may be infea-
sible. This happens when processes influence each other’s
control flow by communicating through shared signals. Our
approach to the problem consists in two phases: during the
first phase, the algorithm is applied to each FSM indepen-
dently. For each single process the sequences of transitions
are generated, and for each sequence the constraint list is
produced. Then, in a second phase, the interaction among
different FSMs is considered. Let us consider the case of
two interacting FSMs, v J and v o . After the application of
the algorithm, the number of sequences produced is respec-
tively M J and M o . This means that the total number of the-
oretically possible sequences is M J n�M o . Let us consider
the following case: we want to generate the test vectors
that will cause the execution of sequence

� Jxw y for the Finite
State Machine v J and sequence

� o w z for the Finite State Ma-
chine v o . The execution of

� J
w y imposes a certain number of
constraints on the shared signals; these constraints must be
added to the constraint list corresponding to sequence

�{o w z

7

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

of v o . At the same time, the constraint on the shared signal
caused by the execution of the sequence

�{o w z of v o must
be added to the constraint list corresponding to sequence� J
w y of v J . For instance, let us consider 4'|�* an output port
for v J . The execution of the sequence

� Jxw y provokes the
fact that the value } # } is assigned to this port during the first
clock cycle. If this port represents a shared signal, there will
be an input port of v o connected to the output port of v J .
Let us call this port 9Y/ . In this case, the constraint to be
added to the sequence

�{o w z is the following one:

� 9Y/ F �D��#
In fact, when v o reads the value of the input port during the
following clock cycle (the second one), it reads the value
forced by v J . In practice, the extension of the algorithm
to multiple process architectures can be realized by adding
the constraints over shared variables to each possible n-uple
of theoretically possible sequences generated through the
application of the basic test generation algorithm. We con-
sider as shared variable each signal that is read from an out-
put port for a process and than written on an input port of
another process. The constraint is generated every time the
output port is assigned to a value or an expression, and is
added to the constraint list of the second process.

4 Experimental Results and Conclusion

The algorithm has been tested with a set of examples
written in SystemC. These examples are translation in Sys-
temC of a subset of benchmarks developed at Politecnico di
Torino. The breadth first strategy has been used to produce
the sequences of transitions. Table 3 shows the results of
experiments: for each circuit, we have reported the depth
of the breadth first algorithm, the number of theoretically
possible sequences, the number of feasible sequences, the
percentage of discarded sequences, and the path coverage
reached through the test vectors generated by our algorithm.
Moreover, we have also reported the path coverage reached
by Commit [5], and Rage [2]. The results show that, in case
of simple benchmarks without ports representing integers,
the coverages are equivalent, otherwise the algorithm out-
performs classical ATPG in terms of path coverage. This
happens because the use of GProlog allows a faster and
more efficient management of constraints involving integer
variables. Future work will extend the experiments toward
industrial SystemC descriptions, to deal with larger size ex-
amples.

References

[1] K. Cheng, A.S. Krishnakumar, ”Automatic generation
of functional vectors using the extended finite state

Circ Depth T.seq F.seq Proposed Commit Rage
b01 10 512 512 100% 100% 100%
b02 11 50 50 100% 100% 100%
b03 7 26244 189 100% 100% 100%
b04 5 1296 100 46% 25% 35%
b06 7 2048 2048 100% 66% 96%
b10 5 108 108 87% 87% 87%
b11 8 372 205 68% 54% 68%

Table 3. Test generation results

machine model”, ACM Transactions on Design Au-
tomation of Electronic Systems, Volume 1, Issue 1,
January 1996

[2] S. Chiusano, F. Corno, P. Prinetto, ”RT-level TPG
exploiting high-level synthesis information”Proceed-
ings 17th IEEE VSLI Test Symposium, 1999

[3] F. Ferrandi, A. Fin, F. Fummi, D. Sciuto, ”An ap-
plication of genetic algorithms and BDDs to func-
tional testing” Proceedings International Conference
on Computer Design, 2000

[4] M.K. Ganai, A. Aziz, A. Kuehlmann, ”Enhancing
simulation with BDDs and ATPG”, Proceedings 36th
Design Automation Conference, 1999

[5] F. Ferrandi, F. Fummi, D. Sciuto, ”Implicit test gen-
eration for behavioral VHDL models”, Proceedings
IEEE International Test Conference, 1998

[6] I. Ghosh, M. Fujita, ”Automatic test pattern gener-
ation for functional RTL circuits using Assignment
Decision Diagrams”Proceeding Design Automation
Conference, 2000

[7] F. Fallah, P. Ashar, S. Devadas, ”Simulation vector
generation from HDL descriptions for observability-
enhanced statement coverage”, Proceedings 35th De-
sign Automation Conference, 1999

[8] R. Vemuri, R. Kalyanaraman, ”Generation of de-
sign verification test from behavioral programs us-
ing path enumeration and constraint programming”;
IEEE Transactions on Very Large Scale Integration
Systems, Vol.3, No.2, June 1995

8

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

